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Abstract. Let A be a unital algebra over a number field F. A linear mapping
φ from A into itself is called a Jordan-centralized mapping at a given point
G ∈ A if φ(AB +BA) = φ(A)B + φ(B)A = Aφ(B) +Bφ(A) for all A, B ∈ A
with AB = G. In this paper, it is proved that each Jordan-centralized mapping
at a given point of triangular algebras is a centralizer. These results are then
applied to some non-self-adjoint operator algebras.

1. Introduction and preliminaries

Let A be an associative algebra over a field F, and let Φ : A → A be a lin-
ear mapping. Recall that Φ is a left (right) centralizer or multiplier if Φ(AB) =
Φ(A)B (Φ(AB) = AΦ(B)) holds for all A and B in A. Φ is called a centralizer
if it is both a left and right centralizer. More generally, Φ is a left (right) Jor-
dan centralizer if Φ(A2) = Φ(A)A (Φ(A2) = AΦ(A)) is fulfilled for all A in A;
equivalently, Φ(AB+BA) = Φ(A)B+Φ(B)A (Φ(AB+BA) = AΦ(B)+BΦ(A))
is fulfilled for all A and B in A. Φ is called a Jordan centralizer if it is both a
left and right Jordan centralizer. It is well known that centralizers and Jordan
centralizers are very important both in theory and applications, and so they have
been studied intensively. For example, the theory of centralizers for C∗-algebras
and some non-self-adjoint operator algebras have been relatively well studied in
the literature (see [1], [2], [10], [11] and references therein). Centralizers and Jor-
dan centralizers have also been studied in the general framework of prime rings
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and semiprime rings by Zalar [18] and more recently by Vukman and Kosi-Ulbl
[8], [14], [16], [15].

In this paper, we mainly study Jordan centralizers by their local actions. In
general there are two directions in the study of the local actions of mappings
of operator algebras. One is the well-known local mappings problem, such as
local derivations and local automorphisms (see, e.g., [6], [7], [9] and references
therein). The other direction is to study conditions under which mappings of
operator algebras can be completely determined by the action on some sets of
operators. A linear mapping Φ : A → A is said to be left (right) centralized at
a given point G ∈ A if Φ(AB) = Φ(A)B (Φ(AB) = AΦ(B)) for all A, B ∈ A
with AB = G. Φ is called centralized at G if it is both left centralized and right
centralized at G. Recently, Bres̆er [3] studied the centralizers of prime rings in
this direction. It was proved in [3] that if A is a prime ring containing a nontrivial
idempotent and Φ is right centralized at 0, then Φ is a right centralizer on A.
Later, Qi and Hou [13] discussed the same question on triangular rings.

Motivated by centralizers, we say a linear mapping Φ : A → A is left (right)
Jordan-centralized at a given point G ∈ A if Φ(AB + BA) = Φ(A)B + Φ(B)A
(Φ(AB + BA) = AΦ(B) + BΦ(A)) holds for all A, B ∈ A with AB = G.
Φ is called Jordan-centralized at G if it is both left Jordan-centralized and right
Jordan-centralized at G. It is natural to ask how to characterize the mappings
which are Jordan-centralized at a general given point. The purpose of the present
paper is to answer the question for triangular algebras. These results are then
applied to some non-self-adjoint operator algebras.

The triangular algebras were first introduced in [4] and then studied by many
authors (see, e.g., [5], [17]). Let A and C be two algebras over a field F with unit
I1 and I2, respectively, and let M be a faithful (A, C)-bimodule; that is, M is
an (A, C)-bimodule satisfying, for X ∈ A, that if XM = {0}, then X = 0 (i.e.,
M is a faithful left A-module), and, for Z ∈ C, that if MZ = {0}, then Z = 0
(i.e., M is a faithful right C-module ). Recall that the algebra

T = Tri(A,M, C) =
{[

X Y
0 Z

]
: X ∈ A, Y ∈ M, Z ∈ C

}
,

under the usual matrix addition and formal matrix multiplication will be called a
triangular algebra. Let Z(T ) be the center of T . It follows from [5, Proposition 3]
that

Z(T ) =

{[
X 0
0 Z

]
: X ∈ Z(A), Z ∈ Z(C), XY = Y Z for all Y ∈ M

}
.

In Section 2, we characterize the structure of the left (right) Jordan centralizers
by acting on a general point of triangular algebras (see Theorems 2.1, 2.3). We
also prove that every Jordan-centralized mapping at a given point is a centralizer
on triangular algebras (see Theorem 2.4). We ought perhaps to mention that our
approach is simple but efficient.

Let H be a complex Hilbert space, and let B(H) denote the algebra of all
bounded linear operators on H. A subspace lattice L on H is a collection of
projections in B(H) that is closed under the usual lattice operations ∨ (the
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closed linear span) and ∧ (the set-theoretic intersection), and contains the zero
operator 0 and the identity operator I. A totally ordered subspace lattice is called
a nest. A subspace lattice L is called a commutative subspace lattice, or a CSL, if
each pair of projections in L commute. For E ∈ L, we define

E− = ∨{F ∈ L : F � E}, E 6= 0

and

E+ = ∧{F ∈ L : F � E}, E 6= I.

A subspace lattice L is said to be completely distributive if E = ∨{F ∈ L :
F− � E} for every E ∈ L with E 6= 0, which is also equivalent to E = ∧{F− :
F ∈ L, F � E} for every E ∈ L with E 6= I.

For a subspace lattice L on H, the associated subspace lattice algebra algL is
the set of operators in B(H) that leave invariant every projection in L; that is,

algL =
{
T ∈ B(H) : TE = ETE, ∀E ∈ L

}
.

Obviously, algL is a unital weakly closed subalgebra of B(H). We call a subspace
lattice algebra algL a CSL algebra if L is a CSL, and a CDC algebra if L is a
completely distributive CSL. Recall that a CDC algebra is irreducible if and only
if its commutant is CI. In particular, nest algebras are irreducible CDC algebras.
In Section 3, we show that every Jordan-centralized mapping at a given point on
irreducible CDC algebras is a centralizer. We also study Jordan centralizers on
Banach space nest algebras.

2. Main results

In this section, we consider the question of characterizing the linear mappings
on the triangular algebras which are Jordan-centralized at a given point. The
result is based on the structure of the left (right) Jordan-centralized mappings at
a given point.

Theorem 2.1. Let A and C be two algebras over a number field F with unit I1
and I2, respectively, and let M be a faithful left A-module. The triangular algebra
Tri(A,M, C) is written for T . Suppose that we have the following:

(i) For every X ∈ A, there is some integer n such that nI1 −X is invertible.
(ii) For every Z ∈ C, there is some integer n such that nI2 − Z is invertible.

If φ : T → T is a left Jordan-centralized mapping at a given point G =
[
A B
0 C

]
∈

T , then there exists an element D ∈ A, two linear mappings h12 : C → M
satisfying h12(ZW + WZ) = h12(Z)W + h12(W )Z, and h22 : C → C satisfying
h22(ZW + WZ) = h22(Z)W + h22(W )Z for all Z, W ∈ C with ZW = C such
that

φ

([
X Y
0 Z

])
=

[
DX DY + h12(Z)
0 h22(Z)

]
for all

[
X Y
0 Z

]
∈ T .

We need the following basic fact, whose proof is easy and will be skipped.

Proposition 2.2. Let V be a vector space over a number field F. For any fixed
ai ∈ V , i = 0,±1,±2, . . . ,±n, if

∑n
i=−n aix

i = 0, x ∈ F, has at least 2n + 1
distinct nonzero solutions in F, then ai = 0, i = 0,±1,±2, . . . ,±n.
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Proof of Theorem 2.1. Since φ is linear, for any S =
[
X Y
0 Z

]
∈ T , we can write

φ

([
X Y
0 Z

])
=

[
f11(X) + g11(Y ) + h11(Z) f12(X) + g12(Y ) + h12(Z)

0 f22(X) + g22(Y ) + h22(Z)

]
,

where f11 : A → A, f12 : A → M, f22 : A → C, g11 : M → A, g12 : M → M,
g22 : M → C, h11 : C → A, h12 : C → M, and h22 : C → C are linear mappings.

We shall prove the theorem by checking several claims.

Claim 1. g11(V ) = h11(W ) = 0 for all V ∈ M and W ∈ C.

For any invertible element W ∈ C and any real number λ > 0, we set

S =

[
I1 0
0 λCW−1

]
, T =

[
A B
0 λ−1W

]
.

Then ST = G, and we have[
f11(2A) + g11(B + λBCW−1) + h11(C +WCW−1) ∗

0 ∗

]
= φ(G+ TS)

= φ(S)T + φ(T )S

=

[
f11(I1) + λh11(CW−1) ∗

0 ∗

] [
A B
0 λ−1W

]
+

[
f11(A) + g11(B) + λ−1h11(W ) ∗

0 ∗

] [
I1 0
0 λCW−1

]
=

[
(f11(I1) + λh11(CW−1))A+ f11(A) + g11(B) + λ−1h11(W ) ∗

0 ∗

]
.

It follows from the matrix equation that

2f11(A) + g11(B + λBCW−1) + h11(C +WCW−1)

= f11(I1)A+ λh11(CW−1)A+ f11(A) + g11(B) + λ−1h11(W ).

By Proposition 2.2, the above equation implies that h11(W ) = 0 for all invertible
elements W ∈ C. For any W in C, by hypothesis (ii) of Theorem 2.1, there exists
some integer n such that nI2−W is invertible in C. It follows from the preceding
case that h11(nI2 −W ) = 0. Therefore, we have

h11(W ) = 0

for all W ∈ C.
Moreover, for any V ∈ M and any real number λ > 0, taking

S =

[
λ−1I1 B − V
0 C

]
, T =

[
λA λV
0 I2

]
,

we have ST = G. It follows from the fact h11(W ) = 0 that[
f11(2A) + g11(B + λA(B − V ) + λV C) ∗

0 ∗

]
= φ(G+ TS)
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= φ(S)T + φ(T )S

=

[
λ−1f11(I1) + g11(B − V ) ∗

0 ∗

] [
λA λV
0 I2

]
+

[
λf11(A) + λg11(V ) ∗

0 ∗

] [
λ−1I1 B − V
0 C

]
=

[
(f11(I1) + λg11(B − V ))A+ f11(A) + g11(V ) ∗

0 ∗

]
.

The above matrix equation implies

f11(2A) + g11
(
B + λA(B − V ) + λV C

)
=

(
f11(I1) + λg11(B − V )

)
A+ f11(A) + g11(V ).

This leads to

f11(A) + g11(B)− f11(I1)A = g11(V ).

Taking V = 0, we get f11(A) + g11(B) − f11(I1)A = 0. Hence g11(V ) = 0 for all
V ∈ M.

Claim 2. f22(X) = g22(Y ) = 0 for all X ∈ A and Y ∈ M.

Letting S =
[
λX B
0 C

]
and T =

[
λ−1X−1A 0

0 I2

]
, where X is any invertible element

in A and λ > 0 is any real number, we have ST = G. Since φ is left Jordan-
centralized at G, we have[

∗ ∗
0 f22(A+X−1AX) + g22(B + λ−1X−1AB) + h22(2C)

]
= φ(G+ TS)

= φ(S)T + φ(T )S

=

[
∗ ∗
0 λf22(X) + g22(B) + h22(C)

] [
λ−1X−1A 0

0 I2

]
+

[
∗ ∗
0 λ−1f22(X

−1A) + h22(I2)

] [
λX B
0 C

]
=

[
∗ ∗
0 λf22(X) + g22(B) + h22(C) + (λ−1f22(X

−1A) + h22(I2))C

]
.

By Proposition 2.2, this matrix equation implies f22(X) = 0 for all invertible
elements X ∈ A. For any X in A, by hypothesis (i) of Theorem 2.1, there exists
some integer n such that nI1 −A is invertible in A. It follows from the preceding
case that f22(nI1 −X) = 0. Therefore

f22(X) = 0

for all X ∈ A can be obtained.
Moreover, for an arbitrary element Y ∈ M and any real number λ > 0, if we

put S =
[
λI1 −Y
0 λ−1C

]
, T =

[
λ−1A Y+λ−1B

0 λI2

]
, then ST = G. Since we have proved
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f22(X) = 0 for all X ∈ A,[
∗ ∗
0 g22(B − λ−1AY + λ−1Y C + λ−2BC) + h22(2C)

]
= φ(G+ TS)

= φ(S)T + φ(T )S

=

[
∗ ∗
0 −g22(Y ) + λ−1h22(C)

] [
λ−1A Y + λ−1B
0 λI2

]
+

[
∗ ∗
0 g22(Y + λ−1B) + λh22(I2)

] [
λI1 −Y
0 λ−1C

]
=

[
∗ ∗
0 −λg22(Y ) + h22(C) + λ−1g22(Y + λ−1B)C + h22(I2)C

]
.

The above matrix equation implies

g22(B)− λ−1g22(AY ) + λ−1g22(Y C) + λ−2g22(BC) + 2h22(C)

= −λg22(Y ) + h22(C) + λ−1g22(Y )C + λ−2g22(B)C + h22(I2)C.

Thus g22(Y ) = 0 for all Y ∈ M.

Claim 3. f12(X) = 0 for all X ∈ A.

For any invertible element X ∈ A and any real number λ > 0, putting

S =

[
X λB
0 λC

]
, T =

[
X−1A 0

0 λ−1I2

]
,

we get ST = G. By Claims 1–2, it follows that[
∗ f12(A+X−1AX) + g12(B + λX−1AB) + h12(2C)
0 ∗

]
= φ(G+ TS)

= φ(S)T + φ(T )S

=

[
f11(X) f12(X) + λg12(B) + λh12(C)

0 λh22(C)

] [
X−1A 0

0 λ−1I2

]
+

[
f11(X

−1A) f12(X
−1A) + λ−1h12(I2)

0 λ−1h22(I2)

] [
X λB
0 λC

]
=

[
∗ ∆
0 ∗

]
,

where ∆ = λ−1f12(X) + g12(B) + h12(C) + λf11(X
−1A)B + λf12(X

−1A)C +
h12(I2)C. The above matrix equation leads to

f12(A) + f12(X
−1AX) + g12(B) + λg12(X

−1AB) + 2h12(C)

= λ−1f12(X) + g12(B) + h12(C) + λf11(X
−1A)B + λf12(X

−1A)C + h12(I2)C.

By Proposition 2.2, we obtain f12(X) = 0 for all invertible elements X ∈ A.
For any X in A, by hypothesis (i) of Theorem 2.1, there exists some integer
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n such that nI1 − A is invertible in A. It follows from the preceding case that
f12(nI1 −X) = 0. Therefore

f12(X) = 0

for all X ∈ A can be obtained.

Claim 4. f11(X) = f11(I1)X, g12(V ) = f11(I1)V for all X ∈ A and V ∈ M.

For any arbitrary V ∈ M and invertible element X ∈ A, taking

S =

[
λX B − λXV
0 C

]
, T =

[
λ−1X−1A V

0 I2

]
,

we have ST = G. So we obtain[
∗ g12(B + λ−1X−1A(B − λXV ) + V C) + h12(2C)
0 ∗

]
= φ(G+ TS)

= φ(S)T + φ(T )S

=

[
λf11(X) g12(B − λXV ) + h12(C)

0 h22(C)

] [
λ−1X−1A V

0 I2

]
+

[
λ−1f11(X

−1A) g12(V ) + h12(I2)
0 h22(I2)

] [
λX B − λXV
0 C

]
=

[
∗ 4
0 ∗

]
,

where

4 = λf11(X)V + g12(B − λXV ) + h12(C)

+ λ−1f11(X
−1A)(B − λXV ) +

(
g12(V ) + h12(I2)

)
C.

By Proposition 2.2, the above matrix equation implies that g12(XV ) = f11(X)V
for all V ∈ M and all invertible elements X ∈ A. For any X ∈ A, by hypothesis
(i) of Theorem 2.1, there exists some integer n such that nI1 − A is invertible
in A. It follows from the preceding case that g12((nI1 −X)V ) = f11(nI1 −X)V .
Therefore, we have

g12(XV ) = f11(X)V (2.1)

for all X ∈ A and V ∈ M. For any X, U ∈ A, by (2.1), we get

g12(XUV ) = f11(XU)V.

On the other hand,

g12(XUV ) = f11(X)UV.

Comparing these two equalities, we have f11(XU)V = f11(X)UV for all V ∈ M.
Since M is a faithful left A-module, we obtain

f11(XU) = f11(X)U,

which is equivalent to f11(X) = f11(I1)X for all X ∈ A.
At the same time, equation (2.1) gives g12(V ) = f11(I1)V for all V ∈ M.
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Claim 5. For any Z, W ∈ C with ZW = C, the following statements hold:

(i) h12(ZW +WZ) = h12(Z)W + h12(W )Z,
(ii) h22(ZW +WZ) = h22(Z)W + h22(W )Z.

For arbitrary Z,W ∈ C with ZW = C, taking

S =

[
λ−1I1 0
0 λZ

]
, T =

[
λA λB
0 λ−1W

]
,

we have ST = G. We have[
f11(2A) g12(B + λ2BZ) + h12(C +WZ)

0 h22(C +WZ)

]
= ϕ(G+ TS)

= φ(S)T + φ(T )S

=

[
f11(λ

−1I1) h12(λZ)
0 h22(λZ)

] [
λA λB
0 λ−1W

]
+

[
f11(λA) g12(λB) + h12(λ

−1W )
0 h22(λ

−1W )

] [
λ−1I1 0
0 λZ

]
=

[
f11(I1)A+ f11(A) f11(I1)B + h12(Z)W + λ2g12(B)Z + h12(W )Z

0 h22(Z)W + h22(W )Z

]
.

It follows from the above matrix equation and Claim 4 that

h22(C +WZ) = h22(Z)W + h22(W )Z

and

h12(C +WZ) = h12(Z)W + h12(W )Z

for all Z,W ∈ C with ZW = C.
Therefore, by Claims 1–5, we have

φ

([
X Y
0 Z

])
=

[
DX DY + h12(Z)
0 h22(Z)

]
for all

[
X Y
0 Z

]
∈ T ,

where D = f11(I1) ∈ A, and h12 : M → C and h22 : C → C are linear mappings
satisfying h12(ZW +WZ) = h12(Z)W +h12(W )Z, h22(ZW +WZ) = h22(Z)W +
h22(W )Z for all Z, W ∈ C with ZW = C. �

By using a similar argument to that of Theorem 2.1, we can get a characteri-
zation of right Jordan-centralized mappings at a given point.

Theorem 2.3. Let A and C be two algebras over a number field F with unit
I1 and I2, respectively, and let M be a faithful right C-module. The triangular
algebra Tri(A,M, C) is written for T . Suppose that we have the following:

(i) For every X ∈ A, there is some integer n such that nI1 −X is invertible.
(ii) For every Z ∈ C, there is some integer n such that nI2 − Z is invertible.
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If φ : T → T is a right Jordan-centralized mapping at a given point G =[
A B
0 C

]
∈ T , then there exists an element E(= h22(I2)) ∈ C, two linear mappings

f11 : A → A satisfying f11(XU + UX) = Xf11(U) + Uf11(X), and f12 : A → M
satisfying f12(XU + UX) = Xf12(U) + Uf12(X) for all X, U ∈ A with XU = A
such that

φ

([
X Y
0 Z

])
=

[
f11(X) Y E + f12(X)

0 ZE

]
for all

[
X Y
0 Z

]
∈ T .

The following result states that the Jordan centralizers on triangular algebras
can be determined by their action on a given point.

Theorem 2.4. Let A and C be two algebras over a number field F with unit
I1 and I2, respectively, and let M be a faithful (A, C)-bimodule. The triangular
algebra Tri(A,M, C) is written for T . Suppose that we have the following:

(i) For every X ∈ A, there is some integer n such that nI1 −X is invertible.
(ii) For every Z ∈ C, there is some integer n such that nI2 − Z is invertible.

If φ : T → T is a Jordan-centralized mapping at a given point G ∈ T , then φ
is a centralizer.

Proof of Theorem 2.4. By Theorems 2.1 and 2.3, we have

φ

([
X Y
0 Z

])
=

[
DX DY + h12(Z)
0 h22(Z)

]
=

[
f11(X) Y E + f12(X)

0 ZE

]
for all

[
X Y
0 Z

]
∈ T , where there exist D ∈ A, E ∈ C, four linear mappings

h12 : C → M satisfying h12(ZW + WZ) = h12(Z)W + h12(W )Z, h22 : C → C
satisfying h22(ZW+WZ) = h22(Z)W+h22(W )Z for all Z,W ∈ C with ZW = C,
f11 : A → A satisfying f11(XU + UX) = Xf11(U) + Uf11(X), and f12 : A → M
satisfying f12(XU +UX) = Xf12(U) +Uf12(X) for all X, U ∈ A with XU = A.
This leads to

DX = f11(X), ZE = h22(Z)

and

DY + h12(Z) = Y E + f12(X). (2.2)

Let X = Z = 0 in (2.2); we get DY = Y E for all Y ∈ M. It follows from
[5, Proposition 3] that

[
D 0
0 E

]
∈ Z(T ), and then D ∈ Z(A) and E ∈ Z(C).

Furthermore, let X = 0 and Z = 0 in equation (2.2), and we get h12(Z) = 0 and
f12(X) = 0. Hence

φ

([
X Y
0 Z

])
=

[
DX DY
0 ZE

]
=

[
D 0
0 E

] [
X Y
0 Z

]
and

φ

([
X Y
0 Z

])
=

[
DX Y E
0 ZE

]
=

[
X Y
0 Z

] [
D 0
0 E

]
for all

[
X Y
0 Z

]
∈ T hold. So φ is a centralizer of T . �
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We remark here that a little more can be said about the result. We in fact have[
D 0
0 E

]
=

[
f11(I1) 0

0 h22(I2)

]
= φ(I).

Then φ(S) = φ(I)S = Sφ(I) for all S ∈ T .

3. Applications

In this section, we shall apply Theorem 2.4 to some non-self-adjoint operator
algebras.

For irreducible CDC algebras, we have the following theorem.

Theorem 3.1. Let algL be an irreducible CDC algebra on a complex Hilbert
space H. Then every linear mapping from algL into itself Jordan-centralized at
a given point G ∈ algL is a centralizer.

Proof of Theorem 3.1. By [12, Theorem 3.4], there exists a nontrivial projection
P in L such that TP (algL)(I−P ) = {0} implies TP = 0 and P (algL)(I−P )T =
{0} implies (I − P )T = 0. It follows that

algL =

[
P (algL)P |ran P P (algL)(I − P )|ker P

0 (I − P )(algL)(I − P )|ker P

]
.

One can easily check that algL meets all of the hypotheses of Theorem 2.4. So
by Theorem 2.4, the theorem holds. �

Note that nest algebras are irreducible CDC algebras. Hence, as a consequence
of Theorem 3.1, we get the following corollary.

Corollary 3.2. Let N be a nest on a complex Hilbert space H, and let algN
be the associated nest algebra. Then every linear mapping from algN into itself
Jordan-centralized at a given point G ∈ algN is a centralizer.

Let H be a Euclidean n-dimensional space, and let {ei : i = 1, 2, . . . , n} be
its normal orthogonal basis. We may regard an n × n matrix as an operator on
Euclidean n-dimension space H, naturally. We use the symbols T Mn to denote
the algebra of all n × n upper triangular matrices. Thus T Mn is a nest algebra
associated with nest N , where N = {Ni : 1 ≤ i ≤ n} and Ni = span{ej : 1 ≤
j ≤ i}. By Corollary 3.2, we have the following corollary.

Corollary 3.3. Let T Mn be n × n upper triangular matrices algebras. Then
every linear mapping from T Mn into itself Jordan-centralized at a given point
G ∈ T Mn is a centralizer.

Next, we consider the same question on the Banach space nest algebras.
Let X be a Banach space over the complex field C, and let B(X) denote

the algebra of all bounded linear operators on X. A nest N in X is a chain of
norm-closed linear subspaces of X containing {0} and X, which is closed under
the formation of an arbitrary closed linear span and intersection. A nest is said to
be nontrivial if N 6= {{0}, X}. The nest algebra associated to a nest N , denoted
by algN , is the set

algN =
{
T ∈ B(X) : TN ⊆ N, ∀N ∈ N

}
.
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Theorem 3.4. Let N be a nest on a complex Banach space. Suppose that there
exists a nontrivial element in N which is complemented in X. If φ : algN →
algN is a Jordan-centralized mapping at a given point G ∈ algN , then φ is a
centralizer.

Proof of Theorem 3.4. IfN0 is the nontrivial element inN which is complemented
in X, then there exists an idempotent operator P ∈ B(X) with ran(P ) = N0,
such that X = ran(P )⊕ ker(P ).

Moreover, it is easy to see P ∈ algN . We set N1 = {N ∩ ranP : N ∈ N}
and N2 = {N ∩ ker(P ) : N ∈ N}. Then N1 and N2 are nests on Banach spaces
ran(P ) and ker(P ), respectively. One can check that PB(X)(I − P ) ⊆ algN ,
which leads to PB(X)(I − P ) = P algN (I − P ). So we denote

algN =

{[
X Y
0 Z

]
: X ∈ algN1, Y ∈ B

(
ker(P ), ran(P )

)
, Z ∈ algN2

}
.

This means algN can be decomposed into a triangular algebra. We claim that
B(ker(P ), ran(P )) is a faithful (algN1, algN2)-bimodule. Indeed, for X ∈ algN1,
if XY = 0 for any Y ∈ B(ker(P ), ran(P )), we have XPB(X)(I−P ) = {0}. Since
B(X) is prime, we getX = 0. So B(ker(P ), ran(P )) is a faithful (algN1)-left mod-
ule. Similarly, one can prove that B(ker(P ), ran(P )) is a faithful (algN2)-right
module. Hence, by Theorem 2.4, the theorem is obtained. �
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