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Abstract. In this paper we show the unexpected property that extension
from local to global without loss of regularity holds for the solutions of a wide
class of vector-valued differential equations, in particular for the class of frac-
tional abstract Cauchy problems in the subdiffusive case. The main technique
is the use of the algebraic structure of these solutions, which are defined by new
versions of functional equations defining solution families of bounded opera-
tors. The convolution product and the double Laplace transform for functions
of two variables are useful tools which we apply also to extend these solutions.
Finally we illustrate our results with different concrete examples.

1. Introduction

Let A be a closed linear operator with domain D(A) defined in a complex
Banach space X, and let 0 < τ ≤ ∞. Suppose that A is the generator of a local
C0-semigroup {T (t)}t∈[0,τ) or, equivalently, that the first-order Cauchy problem{

u′(t) = Au(t) + x, 0 ≤ t < τ,

u(0) = 0
(1.1)
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has a unique solution u ∈ C1([0, τ), X) ∩ C([0, τ), D(A)) (i.e., it is locally well-
posed). Then it is well known that A is the generator of a global C0-semigroup
{T (t)}t≥0 (i.e., the problem is globally well posed ; see [2, Theorem 1.2], [1, Sec-
tion 3.1], and also [29]). We observe that this dynamic behavior of the solution for
the Cauchy problem (1.1) (i.e., the extension property from local to global with-
out loss of regularity) heavily depends on the translation in time property of the
Cauchy’s functional equation, namely T (t + s) = T (t)T (s), t, s ≥ 0. In contrast,
this extension property is not more true for the class of local integrated semi-
groups (see [2, Example 4.6]). Furthermore, we have that if A generates a local
(1∗k)-convoluted semigroup on [0, τ), then A generates a local (1∗k∗n)-convoluted
semigroup on an interval [0, nτ) (see [8, Theorem 4.4], [23, Theorem 3.3]). In other
words, in these cases there is evolution with jumps of regularity, and naturally the
need of regularize the family of operators appears (in the sense of convolution) in
order to have extension. In all of these cases, the property of translation in time
of the associated functional equation is strongly connected with the problem of
extension from a short to a long interval of definition for the corresponding family
of operators.

Fractional diffusion equations are widely used to describe anomalous diffusion
processes. From the point of view of operator-theoretical methods for partial
differential equations, subdiffusion phenomena is modeled naturally by means of
fractional Cauchy problems in the form{

Dα
t u(t) = Au(t) + x, 0 ≤ t < τ,

u(0) = 0,
(1.2)

where 0 < α < 1 and the fractional derivative is taken in the Caputo sense
(see [3], [24]). In [14] the existence of solutions of fractional Cauchy problems is
studied in detail; it is also studied in [12] for the superdiffusive case 1 < α < 2.
Suppose that A generates a local 1-parameter family of bounded operators that
makes the equation (1.2) locally well posed. The natural question that arises is:
Can (1.2) be globally well posed?

We point out that (1.2) is included in the more general Volterra-type equation

u(t) = k(t)x+ A

∫ t

0

a(t− s)u(s) ds, t ∈ (0, τ), (1.3)

for the special choice of kernel a(t) = k(t) = tα−1

Γ(α)
, for α, t > 0 and where Γ is

the Euler gamma function. This Volterra-type equation in case k(t) ≡ 1 has been
deeply treated in the monograph [25] by Prüss. Further relevant studies have
been done in the monographs [10] and [11] by Kostić. (See also [7]–[9], [15]–[18],
and [23] for related work.) Therefore, we can set our problem in a more general
context by classifying the classes of pairs (a, k) where extension of (1.3) from local
to global and without loss of regularity holds.

We note that under certain conditions on the scalar-valued kernels a and k,
well-posedness of the Volterra equation (1.3) is equivalent to the existence of a
1-parameter and strongly continuous family of bounded operators {S(t)}t>0 that
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satisfies a functional equation in the form

S(s)

∫ t

0

a(t− τ)S(τ) dτ − S(t)

∫ s

0

a(s− τ)S(τ) dτ

= k(s)

∫ t

0

a(t− τ)S(τ) dτ − k(t)

∫ s

0

a(s− τ)S(τ) dτ,

(1.4)

for t, s > 0 (see [17, Theorem 3.1]).
Explicitly, in the present article we will study the following questions.

(Q1) (Evolution with or without jumps of regularity; Sections 4 and 5). If A is
the generator of a local regularized resolvent family on the interval (0, τ), is A
also the generator of an local extended regularized resolvent family on the interval
(0, (n+1)τ) for n ∈ N? And in particular, for which class of pairs of kernels (a, k)
do we have that if A is the generator of a local (a, k)-regularized resolvent family,
then A is the generator of a global (a, k)-regularized resolvent family?

(Q2) (Time translation; Section 6). Determine the class of pairs (a, k) for which
it is possible to find an equivalent and explicit expression for equation (1.4) in
terms of the sum t+ s instead of t and s.

We will first answer globally the problem of evolution (Q1), that is, the possi-
bility to extend the family of operators S(t) from the interval (0, τ) to the whole
semiaxis (0,∞). More precisely, we prove the following: if A is the generator of a
local (a, k)-regularized resolvent family on (0, τ), then A is the generator of a local
(a, (a ∗ k)∗n ∗ k)-regularized resolvent family in (0, (n + 1)τ) (see Theorem 4.3).
We note that this problem, which has been studied in a series of articles in the
last few years, is settled here in a simple way, making transparent the process
of regularization needed in each step of the extension. In particular, our result
intersects the papers [2], [8], and [23] where the problem of extension for local
integrated semigroups, local convoluted semigroups, and local convoluted cosine
functions is studied, respectively. The question about extension for local convo-
luted semigroups and local convoluted cosine functions, which is resolved in [8]
and [23], respectively, had been cited previously in the paragraph directly preced-
ing [10, Theorem 1.2.7]. Results related to the extension of local C-regularized
semigroups and local C-regularized cosine functions appeared for the first time
in [29].

However, note that if we restrict this result to the C0-semigroup family, we do
not obtain evolution-conserving regularity. Under some conditions on a and k,
we improve this result and obtain an extension without a jump of regularity
in Theorem 5.1. We use this theorem to prove one of the main results in this
paper concerning the fractional equation (1.2): if A is the generator of a local
(gα, gα)-regularized resolvent family on [0, τ), with 0 < α < 1, then A is the gen-
erator of a global (gα, gα)-regularized resolvent family in [0,∞) (see Corollary 5.2).
These results recover and widely extend the property of evolution without jumps
of regularity from the case of the solutions of first-order Cauchy problems to the
case of fractional subdiffusive models.
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In this paper, we are able to completely solve (Q2) by establishing an equiva-
lent functional equation to (1.4), which defines global (a, k)-regularized resolvent
families, in the following form:∫ t+s

t

∫ r

0

k(s+ t− r)a(r − τ)S(τ) dτ dr

−
∫ s

0

∫ r

0

k(s+ t− r)a(r − τ)S(τ) dτ dr

=

∫ t

0

∫ s

0

a(t+ s− r1 − r2)S(r1)S(r2) dr1 dr2,

(1.5)

for t, s ≥ 0 (see Theorem 6.1). The above formula widely solves the problem
of time translation, not only extending all the several results existing in the
literature, but also proposing and finding a better expression for older and new
cases. For example, we will see that for a(t) = tα−1

Γ(α)
and k(t) = 1, for t > 0, the

border cases α = 1 and α = 2 are naturally included in our functional formula,
unifying the cases 0 < α < 1 and 1 < α < 2 mentioned previously. We point
out that functional equation (1.5) inspired the way to define extensions in local
(a, k)-regularized resolvent family mentioned previously.

In the last few years, special interest has developed in the study of alge-
braic function equations (Q2) for (a, k)-regularized resolvent family only with

a(t) = tα−1

Γ(α)
for t > 0 (due mainly for its connection with fractional differential

equations). First results in this direction appeared in [13] where an equivalent

functional equation to (1.4) in the case a(t) = tα−1

Γ(α)
for 0 < α < 1, and k(t) = 1,

(t > 0), is given in [13, Formula (2.1)]. After that, a similar result for the case

a(t) = k(t) = tα−1

Γ(α)
is shown in [20, Proposition 2.2]. In the recent article [15],

a further extension of a known result in the case a(t) = tα−1

Γ(α)
and k(t) = tβ

Γ(β+1)

was proved (see [15, Theorem 5]). We note that some restriction should be im-
posed for α ≥ 1 (see Example 6.5). A further generalization, this time in case

a(t) = tα−1

Γ(α)
for 0 < α < 1 and k(t) =

∫ t

0
K(s) ds, was successfully obtained in [18,

Theorem 8]. Finally, we point out that in a very recent work [19], the authors

discovered a functional equation which covers the case a(t) = tα−1

Γ(α)
and k(t) = 1

(t > 0) in the super diffusive case 1 < α < 2 (see [19, Definition 3.1]).
To handle both questions (Q1), (Q2), we introduce an original technique in

the context of scalar and vector-valued functions of two variables. In Section 2,
we work with convolution product ∗2 (see formula (2.2)), and we prove some
needed technical results that play a key role here. In Section 3, we see results
about simple and double Laplace transform, properties that this transform ver-
ifies and in which appear the above convolutions products (see, for example,
Theorem 3.4).

The double Laplace transform is an efficient and known tool to solve scalar
differential equations in two variables (see, e.g., [5, Chapitre IV.15.3], [6], [26,
pp. 226–228]). Other interesting applications of the double Laplace transform is
to supply integral formulas (see [5, Chapitre IV.15.1]) and bilinear expansions (see
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[5, Chapitre IV.15.2]). In [27], the structure of closed ideals of the convolution
algebra L1(Rn) is studied and the Laplace transform for functions of several
variables is also considered.

Finally, in Section 7, we illustrate our main results with some particular ex-
amples in which we considerer some (a, k)-regularized resolvent families, some of
which are related with the solution of fractional Cauchy problems, to conclude
that the extension process is possible with or without jumps of regularity. We
also give new functional equations obtained as a consequence of the formula (1.5)
for known operators of the 1-parameter family: C0-semigroups, cosine families,
convoluted semigroups, and resolvent families.

2. Convolution products in one and two variables

In this section, we state some technical results for convolution products (in one
and two variables) that we use to prove the relevant results in the following sec-
tions. The convolution product in several variables have been considered in some
relevant fields in mathematical analysis (see, e.g., [27]). However, the convolution
product in two variables is a new tool to apply to (a, k)-regularized resolvent
families.

We denote R+ = [0,+∞); R = (−∞,+∞), R2
+ = R+ × R+ and R2 = R × R.

We consider the space of locally integrable functions in one and two variables,
L1
loc(R+), and L1

loc(R2
+). The space Cn(R+) is formed with continuous functions

f : R+ → C such that f (j) is continuous for 0 ≤ j ≤ n for n ≥ 0. Some of
the above spaces will also be considered in (0, τ) or [0, τ) instead of R+, with
τ > 0.

Let f, g : R+ → C, we write ft(s) := f(s+t)χ[−s,+∞)(t) for t ∈ R; f+ : R2
+ → C

the function given by f+(t, s) := f(t+ s); f− : R2 → C for the function given by
f−(t, s) := f(|t − s|); f ⊗ g : R2

+ → C by f ⊗ g(t, s) := f(t)g(s) for (t, s) ∈ R2
+;

and

f ∗ g(t) =
∫ t

0

f(t− s)g(s) ds, t > 0, (2.1)

the usual convolution product, for the functions f, g where the product is con-
vergent. We write f ∗2 instead of f ∗ f and then f ∗n = f ∗ (f ∗(n−1)) for the case
where n ≥ 2 is the n-fold convolution power of f .

For F,G : R2
+ → C given, we define the convolution product in two variables

by

F ∗2 G(t, s) :=

∫ t

0

∫ s

0

F (t− u, s− v)G(u, v) dv du, t, s > 0, (2.2)

whenever it is well defined. This product is commutative and associative (see [5,
Formula (13.9)] and [26, Formula (3-18-19)]).

We define functions gα(t) := tα−1

Γ(α)
, eλ(t) := e−λt, and eλ,µ(t, s) := e−λt−µs =

eλ ⊗ eµ(t, s) for α ∈ R\{0,−1,−2,−3, . . . }, λ, µ ∈ C and t, s > 0. Note that
(eλ)

+ = eλ,λ for λ ∈ C. It is direct to check the following well-known identities:

gα ∗ gβ = gα+β, α, β > 0;
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eλ ∗ eµ =
1

λ− µ
(eµ − eλ), λ 6= µ;

eλ,λ′ ∗2 eµ,µ′ =
1

(λ− µ)(λ′ − µ′)
(eλ,λ′ − eλ,µ′ − eµ,λ′ + eµ,µ′), λ 6= µ, λ′ 6= µ′.

The way that ∗ and ∗2 interact with operators ⊗, (·)t, and (·)+ is shown in the
next theorem.

Theorem 2.1. Let f, g, h, j ∈ L1
loc(R+). Then we have the following:

(i) (f ⊗ g) ∗2 (h⊗ j) = (f ∗ h)⊗ (g ∗ j),
(ii) (g+ ∗2 (f ⊗ h))(t, s) = h ∗ (f ∗ g)t(s)− ft ∗ (h ∗ g)(s), for t, s ≥ 0,
(iii)

(f+ ∗2 g+)(t, s)

=

{
(ft ∗M(g))(s) + s(fs ∗ gs)(t− s) + (M(f) ∗ gt)(s), 0 ≤ s ≤ t,

(fs ∗M(g))(t) + t(ft ∗ gt)(s− t) + (M(f) ∗ gs)(t), 0 ≤ t ≤ s,

where M(g)(s) := sg(s) for s ∈ R+.

Proof. The proof of part (i) is straightforward. To show (ii), note that if
g ∈ L1

loc(R+), then g+ ∈ L1
loc(R2

+). We change variables to obtain the follow-
ing equalities: ∫ t

0

∫ s

0

g(t+ s− r1 − r2)f(r1)h(r2) dr1 dr2

=

∫ t

0

∫ s

0

g(v + z)f(t− v)h(s− z) dv dz

=

∫ s

0

h(s− z)

∫ t+z

z

f(t+ z − u)g(u) du dz

=

∫ s

0

h(s− z)

∫ t+z

0

f(t+ z − u)g(u) du dz

−
∫ s

0

h(s− z)

∫ z

0

f(t+ z − u)g(u) du dz.

Now, we apply Fubini theorem and change of variable s− z = r − u to get∫ s

0

h(s− z)

∫ z

0

f(t+ z − u)g(u) du dz =

∫ s

0

g(u)

∫ s

u

f(t+ z − u)h(s− z) dz du

=

∫ s

0

g(u)

∫ s

u

f(t+ s− r)h(r − u) dr du

=

∫ s

0

f(t+ s− r)

∫ r

0

h(r − u)g(u) du dr.

We express the above integrals in terms of convolution products to conclude the
claim. The proof of (iii) is similar to the proof of part (ii). �

Corollary 2.2. Let f, g, h ∈ L1
loc(R+). Then

(i) (g+ ∗2 (f ⊗ h))(t, s) = f ∗ (h ∗ g)s(t)− hs ∗ (f ∗ g)(t), for t, s ≥ 0,
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(ii) (g+ ∗2 (f ⊗ f))(t, s) = f ∗ (f ∗ g)t(s)− ft ∗ (f ∗ g)(s), for t, s ≥ 0.

Proof. (i) We apply the identity (g+ ∗2 (f ⊗ h))(t, s) = (g+ ∗2 (h ⊗ f))(s, t) for
(t, s) ∈ R2

+ and Theorem 2.1(ii). �

The next lemma extends [8, Lemma 2.1] and will be applied several times in
the present article.

Lemma 2.3. Take 0 ≤ τ ≤ t and f, g, h ∈ L1
loc(R+). Then∫ t−τ

0

h(t− s)(g ∗ f)(s) ds+
∫ τ

0

f(t− s)(g ∗ h)(s) ds

= (f ∗ g ∗ h)(t)− g+ ∗2 (f ⊗ h)(t− τ, τ).

Proof. We use Fubini’s theorem and a change of variables to obtain

(f ∗ g ∗ h)(t)−
∫ τ

0

f(t− r)

∫ r

0

g(r − s)h(s) ds dr

=

∫ t

0

f(r)

∫ t−r

0

g(t− r − s)h(s) ds dr −
∫ t

t−τ

f(r)

∫ t−r

0

g(t− r − s)h(s) ds dr

=

∫ t−τ

0

f(r)

∫ t−r

0

g(t− r − s)h(s) ds dr

=

∫ τ

0

h(s)

∫ t−τ

0

g(t− s− r)f(r) dr ds+

∫ t

τ

h(s)

∫ t−s

0

g(t− s− r)f(r) dr ds

=

∫ τ

0

∫ t−τ

0

g(t− s− r)h(s)f(r) dr ds+

∫ t−τ

0

h(t− s)(g ∗ f)(s) ds,

for t ∈ R+. This proves the claim. �

Remark 2.4. Let X be a Banach space, while

L1
loc(R+, X) :=

{
f : R+ → X : f is a Bochner integrable on [0, τ ] for all τ > 0

}
.

We also consider L1
loc(R2

+, X) for functions defined in two variables. The defini-
tions of ∗ and ∗2, (see (2.1) and (2.2)), Theorem 2.1, Corollary 2.2, and Lemma 2.3
hold in the case that one function is vector-valued into X. The proof of these anal-
ogous results involves the ideas already employed in the scalar case.

3. Laplace transform in one and two variables

In this section, we study properties concerned with the Laplace transform
for functions in the above spaces. We say that f ∈ L1

loc(R+, X) is a Laplace-
transformable function if there exists ωf ∈ R such that the usual Laplace trans-
form

f̂(λ) :=

∫ ∞

0

e−λtf(t) dt = lim
τ→∞

∫ τ

0

e−λtf(t) dt, <λ > ωf ,

is well defined (see, e.g., [1, Section 1.4]). Let f : R+ → X be absolutely continu-
ous and differentiable almost everywhere. Note that in the scalar case X = C any
absolutely continuous function defined for t ≥ 0 (t > 0) is differentiable almost
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everywhere t ≥ 0 (t > 0) because the space C has the Radon Nykodim property.

If <λ > 0 and f̂ ′(λ) exist, then f̂(λ) exists and

f̂ ′(λ) = λf̂(λ)− f(0) (3.1)

(see [1, Corollary 1.6.6]).
Similarly, we say that F ∈ L1

loc(R2
+, X) is a double Laplace-transformable func-

tion (or 2-Laplace-transformable) if there exist ω1,F , ω2,F ∈ R such that

L2(F )(λ, µ) :=

∫ ∞

0

∫ ∞

0

e−λte−µsF (t, s) ds dt := lim
τ→∞

∫ τ

0

∫ τ

0

e−λte−µsF (t, s) ds dt

converges for <λ > ω1,F and <µ > ω2,F (see [5, Chapitre IV] and [26, Sec-
tion 3.18]) in the scalar case; the Laplace transform L2 is commonly called the
double Laplace transform.

For further use we establish the following theorem where we include some
known identities of Laplace transforms and double Laplace transforms.

Theorem 3.1. Let f ∈ L1
loc(R+, X) and g ∈ L1

loc(R+) be Laplace-transformable
functions. Then the following identities hold:

(i) L2(f
+)(λ, µ) = 1

µ−λ
(f̂(λ)− f̂(µ)) for <λ,<µ > ωf with λ 6= µ,

(ii) L2(f
−)(λ, µ) = 1

λ+µ
(f̂(λ) + f̂(µ)) for <λ,<µ > ωf with <(λ+ µ) > 0,

(iii) L2(f ⊗ g)(λ, µ) = f̂(λ)ĝ(µ) for <λ > ωf and <µ > ωg.

Let F ∈ L1
loc(R2

+, X) and G ∈ L1
loc(R2

+) be double Laplace-transformable func-
tions. Then the following identity holds:

(iv) L2(F ∗2G)(λ, µ) = L2(G)(λ, µ)L2(F )(λ, µ), for <λ > max(ω1,F , ω1,G) and
<µ > max(ω2,F , ω2,G).

Proof. The proof of (i) appears in [26, pp. 221–222]; the proof of (ii) in [26,
pp. 223–224] and the equality (iii) appears in [26, (3-18-4)]. Finally the equality
(iv) is straightforward and it is commented in [26, (3-18-20)]. �

In what follows, given an absolutely continuous and differentiable almost ev-
erywhere function c : (0,∞) → X, we denote by c′ its derivative and c(0+) :=
limt→0+ c(t), whenever both limits exist.

Theorem 3.2. Let c ∈ L1
loc(R+, X) be an absolutely continuous on (0,∞), dif-

ferentiable almost everywhere, and Laplace-transformable function.

(i) If (c′)+ : R2
+ → X is 2-Laplace-transformable, then

L2

(
(c′)+

)
(λ, µ) =

1

µ− λ

(
λĉ(λ)− µĉ(µ)

)
, <λ,<µ > ωc, λ 6= µ.

(ii) If (c′)− : R2
+ → X is 2-Laplace-transformable and c(0+) exists, then

L2

(
(c′)−

)
(λ, µ) =

1

µ+ λ

(
λĉ(λ) + µĉ(µ)

)
− 2c(0+)

λ+ µ
, <λ,<µ > ωc,<(λ+ µ) > 0.
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Proof. (i) We integrate by parts to obtain∫ ∞

0

e−λt

∫ ∞

0

e−µsc′(t+ s) ds dt

=

∫ ∞

0

e−(λ−µ)t

∫ ∞

t

e−µvc′(v) dv dt

=

∫ ∞

0

e−(λ−µ)t
(
−c(t)e−µt + µ

∫ ∞

t

e−µvc(v) dv
)
dt.

We change the inner variable to get the equality∫ ∞

0

e−λt

∫ ∞

0

e−µsc′(t+ s) ds dt = −ĉ(λ) + µL2(c
+)(λ, µ) =

λĉ(λ)− µĉ(µ)

µ− λ
,

for <λ,<µ > ωc, and λ 6= µ. (ii) For <λ,<µ > ωc, and <(λ+ µ) > 0, note that

L2

(
(c′)−

)
(λ, µ) =

∫ ∞

0

e−λt

∫ ∞

−t

e−µ(v+t)(c′)−(t, v + t) dv dt

=

∫ ∞

0

e−(λ+µ)t

∫ ∞

0

e−µvc′(v) dv dt

+

∫ ∞

0

e−(λ+µ)t

∫ t

0

eµvc′(v) dv dt,

where we have changed the inner variable. We integrate by parts to get that∫ ∞

0

e−(λ+µ)t

∫ ∞

0

e−µvc′(v) dv dt =
1

λ+ µ

∫ ∞

0

e−µvc′(v) dv

=
1

λ+ µ

[
−c(0+) + µĉ(µ)

]
.

On the other hand, we use Fubini’s theorem to obtain,∫ ∞

0

e−(λ+µ)t

∫ t

0

eµvc′(v) dv dt =

∫ ∞

0

eµvc′(v)

∫ ∞

v

e−(λ+µ)t dt dv

=
1

λ+ µ

∫ ∞

0

e−λvc′(v) dv

=
1

λ+ µ

[
−c(0+) + λĉ(λ)

]
,

and we conclude the proof of the theorem. �

Remark 3.3. In the case that the function c′ is a Laplace-transformable function,
the proof of Theorem 3.2 is a straightforward consequence of Theorem 3.1(i),
Theorem 3.1(ii), and the equality (3.1). The interesting example c = g1−α with
0 < α < 1 does not satisfy this condition; however, it is absolutely continuous on
(0,∞) and Laplace-transformable, and we can apply Theorem 3.2(i) directly.

The following inversion theorem allows us to express operators ()+ and ()− in
terms of double convolution products. These equalities play important roles in
extension formulae which are obtained in the following sections.
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Theorem 3.4. Let a ∈ L1
loc(R+) be a Laplace-transformable function, and sup-

pose that there exists c ∈ L1
loc(R+) absolutely continuous on (0,∞) and Laplace-

transformable such that

(a ∗ c)(t) = 1, t > 0. (3.2)

(i) If (c′)+ is 2-Laplace-transformable, then a+ = −((c′)+ ∗2 (a⊗ a)).
(ii) If (c′)− is 2-Laplace-transformable and c(0+) = 0, then a− = ((c′)− ∗2

(a⊗ a)).

Proof. (i) We use Theorem 3.1(i) and Theorem 3.2(i) to prove that

L2(a
+)(z, w) =

â(w)− â(z)

z − w
=

(zĉ(z)− wĉ(w)

z − w

) 1

zwĉ(w)ĉ(z)

=
(zĉ(z)− wĉ(w)

z − w

)
â(w)â(z) = L2

(
(c′)+ ∗2 (a⊗ a)

)
(z, w).

Due to the uniqueness of the Laplace transform (see, e.g., [5, p. 346]), we conclude
the equality. The proof of part (ii) is similar and involves Theorem 3.1(ii) and
Theorem 3.2(ii). �

Example 3.5. In the case that c′ is a Laplace-transformable function, we apply
Corollary 2.2(ii) to obtain an alternative proof of Theorem 3.4(i). However, the
interesting example a = gα for 0 < α < 1 and c = g1−α does not satisfy this
condition and the direct proof given in Theorem 3.4(i) is needed. Note that c′ =
g−α and that the equality g+α = −((g−α)

+ ∗2 (gα ⊗ gα)) is equivalent, after an
algebraic manipulation, to the formula

α sinαπ

π

∫ t

0

∫ s

0

uα−1vα−1

(t+ u+ s− v)α+1
ds dv = (t+ s)α−1, t, s > 0.

Analogously, let S, T : R+ → B(X) be strongly continuous operator families
such that S(·)x, T (·)x ∈ L1

loc(R+, X) for any x ∈ X. The operators S, T are said
to be Laplace-transformable functions if there exists ω ∈ R such that the Laplace
transform of S (resp., T )

Ŝ(λ)x =

∫ ∞

0

e−λtS(t)x dt, <λ > ω,

converges for x ∈ X (see, e.g., [1, Definition 3.1.4]). For h ∈ R. we will denote Sh

the translation operator of S given by Sh(u) := S(u + h)χ[−h,+∞)(u) for u ∈ R
and the convolution product between T and S, T ∗ S given by

(T ∗ S)(t)x :=

∫ t

0

T (t− s)S(s)x ds, t > 0, x ∈ X.

If g ∈ L1
loc(R+) is a Laplace-transformable scalar-valued function, then we define

g ∗ S by

(g ∗ S)(t)x :=

∫ t

0

g(t− s)S(s)x ds, t > 0, x ∈ X,
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and (
g+ ∗2 (S ⊗ S)

)
(t, s)x

:=

∫ t

0

∫ s

0

g(t+ s− r1 − r2)S(r1)S(r2)x dr1 dr2, t, s ≥ 0, x ∈ X,

where (S⊗S)(t, s) := S(t)S(s) is the composition operator for t, s ≥ 0. We recall
the following identities given in [7, Lemma 4.1]: for λ > µ > ω,

Ŝ(λ)T̂ (µ)x =

∫ ∞

0

e−λt

∫ ∞

0

e−µsS(t)T (s)x ds dt, x ∈ X, (3.3)

and

1

µ− λ

(
Ŝ(λ)− Ŝ(µ)

)
x =

∫ ∞

0

e−λt

∫ ∞

0

e−µsS(t+ s)x ds dt, x ∈ X. (3.4)

If g : R+ → C is Laplace-transformable, we also have

1

µ− λ
ĝ(µ)

[
Ŝ(λ)− Ŝ(µ)

]
x =

∫ ∞

0

e−λt

∫ ∞

0

e−µs(g ∗ St)(s)x ds dt, x ∈ X, (3.5)

and

1

µ− λ
T̂ (µ)

[
ĝ(λ)− ĝ(µ)

]
x =

∫ ∞

0

e−λt

∫ ∞

0

e−µs(T ∗ gt)(s)x ds dt, x ∈ X. (3.6)

Defining S(t) = S(−t) for t < 0, we have

1

µ+ λ

(
Ŝ(λ) + Ŝ(µ)

)
x

=

∫ ∞

0

e−λt

∫ ∞

0

e−µsS(t− s)x ds dt, λ+ µ > 0, x ∈ X.

(3.7)

In fact equations (3.3), (3.4), (3.5), and (3.6) are valid for <λ,<µ > ω with λ 6= µ,
and (3.7) for <λ,<µ > ω with <(λ+ µ) > 0.

The following theorem shows how some double Laplace transforms of the double
convolution product is also related with the single Laplace transform.

Proposition 3.6. Let g ∈ L1
loc(R+) and S : R+ → B(X) be locally integrable

and strongly continuous functions, both Laplace-transformable functions. Then
the following identities hold:

(i) L2(g
+ ∗2 (S ⊗ S))(λ, µ) = 1

µ−λ
[ĝ(λ)− ĝ(µ)]Ŝ(λ)Ŝ(µ) for <λ,<µ > ω with

λ 6= µ,
(ii) L2(g

− ∗2 (S ⊗ S))(λ, µ) = 1
λ+µ

[ĝ(λ) + ĝ(µ)]Ŝ(λ)Ŝ(µ) for <λ,<µ > ω with

<(λ+ µ) > 0.

Proof. It is sufficient to apply Theorem 3.1(iv), (i) (or (ii)), and (3.3). �

The proof of the next corollary is a straightforward consequence of Theo-
rem 3.1(iv), Theorem 3.2, and (3.3).

Corollary 3.7. Let c ∈ L1
loc(R+) be an absolutely continuous on (0,∞) and

Laplace-transformable function, and let S : R+ → B(X) be a locally integrable
and strongly continuous and Laplace-transformable operator-valued function.
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(i) If (c′)+ : R2
+ → C is 2-Laplace-transformable, then

L2

(
(c′)+ ∗2 (S ⊗ S)

)
(λ, µ)

=
1

µ− λ

[
λĉ(λ)− µĉ(µ)

]
Ŝ(λ)Ŝ(µ), <λ,<µ > ω, λ 6= µ.

(ii) If (c′)− : R2
+ → C is 2-Laplace transformable and c(0+) exists, then

L2

(
(c′)− ∗2 (S ⊗ S)

)
(λ, µ) =

1

λ+ µ

[
λĉ(λ) + µĉ(µ)

]
Ŝ(λ)Ŝ(µ)− 2c(0+)

λ+ µ
Ŝ(λ)Ŝ(µ),

for <λ,<µ > ω with <(λ+ µ) > 0.

Example 3.8. Let c = g1−α for 0 < α < 1 and ĉ(λ) = 1
λ1−α for <λ > 0. Then

c′ = g−α and we obtain the identity

L2

(
(c′)+ ∗2 (S ⊗ S)

)
(λ, µ) =

1

µ− λ
[λα − µα]Ŝ(λ)Ŝ(µ) (3.8)

by Corollary 3.7(i). In particular, we recover [13, Formula (2.8)].

4. Local (a, k)-regularized resolvent families

In this section, we prove extension theorems for local (a, k)-regularized resolvent
families. In the following we suppose that the function k satisfies k(t) 6= 0 for all
t ∈ (0, σ), where σ is a sufficiently small positive number. We begin by recalling
the following definition.

Definition 4.1. Let 0 < τ ≤ ∞, let a, k ∈ L1
loc([0, τ)) with k ∈ C(0, τ) so that

k(t) 6= 0 for all t ∈ (0, σ) (σ small), and let A be a closed operator. A strongly
continuous operator family {S(t)}t∈(0,τ) ⊂ B(X) is a local (resp., global in case
τ = ∞) (a, k)-regularized resolvent family generated by A if the following condi-
tions are satisfied:

(i) limt→0+
S(t)x
k(t)

= x for all x ∈ X,

(ii) S(t)A ⊂ AS(t), t ∈ (0, τ),
(iii) (a ∗ S)(t)x ∈ D(A) for t ∈ (0, τ) and x ∈ X, and the following Volterra

equation holds:

A(a ∗ S)(t)x = S(t)x− k(t)x, x ∈ X, t ∈ (0, τ). (4.1)

Remark 4.2. The reason why we do not consider directly the value of S(·) at the
origin is that k could have a singularity at the origin; for example, k(t) = gβ+1(t)
has a singularity at 0 if −1 < β < 0.

In the rest of this article we will assume that the functions a, k are positive.
We note that loss of regularity arises because we treat with evolution equations

corresponding to regularization of certain base equation. The typical example is
the local α-times integrated semigroups, for example, the evolution equation

u′(t) = Au(t) + gα(t)x,
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where α > 0. In this case, the base equation, where no loss of regularity happens,
is the Cauchy problem

u′(t) = Au(t),

where A is the generator of a C0-semigroup (i.e., it is known that a local
C0-semigroup can be extended without loss of regularity). In terms of
(a, k)-regularized resolvent families, it means that if A is the generator of a lo-
cal (1, 1)-regularized resolvent family on [0, τ), then A is also the generator of a
(1, 1)-regularized resolvent family on [0, 2τ) and so on. However, this property is
no longer true in the general case of (a, k)-regularized resolvent families, where
loss of regularity is present. This phenomena has been observed for the case of
k-convoluted semigroups (see [8]; in particular, for α-times integrated semigroups,
see [2], [22]) and of k-convoluted cosine families (see [23]).

The next theorem shows the most general result about extension of
(a, k)-regularized resolvent families. It shows that we can extend a local
(a, k)-regularized resolvent family defined in (0, τ) to get a (a, (k ∗ a)∗n ∗ a)-
regularized resolvent family in (0, (n+ 1)τ).

Theorem 4.3. Let n ∈ N, 0 < τ ≤ ∞, a, k ∈ L1
loc([0, (n + 1)τ)) with k ∈ C(0,

(n + 1)τ), and let {S1(t)}t∈(0,τ) be a local (a, k)-regularized resolvent family gen-
erated by A. Then the family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined recursively
by

Sn+1(t)x := (k ∗ a ∗ Sn)(t)x, x ∈ X, t ∈ (0, nT ], and

Sn+1(t)x :=
(
a+ ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x+

∫ nT

0

k(t− r)(a ∗ Sn)(r)x dr

+

∫ t−nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(t− r)(a ∗ S1)(r)x dr,

for x ∈ X and t ∈ (nT, (n+ 1)T ], is a local (a, (k ∗ a)∗n ∗ k)-regularized resolvent
family generated by A for any T < τ . Then A will generate a local (a, (k ∗ a)∗n ∗
k)-regularized resolvent family {Sn+1(t)}t∈(0,(n+1)τ).

Proof. Note that the family {Sn+1(t)}t∈(0,(n+1)T ] is strongly continuous:

lim
t→(nT )+

Sn+1(t)x = lim
t→(nT )+

((
a+ ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x

+

∫ nT

0

k(t− r)(a ∗ Sn)(r)x dr

+

∫ t−nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(t− r)(a ∗ S1)(r)x dr

)
.

The first summand tends to 0 using Corollary 2.2(i) in the vectorial case, the
second one tends to (k ∗ a ∗ Sn)(nT )x, and the last term goes to 0. Furthermore,
for ε > 0 there exists t > 0 sufficiently small such that∥∥∥ Sn(s)x

(k ∗ a)∗(n−1) ∗ k(s)
− x

∥∥∥ < ε, for 0 < s < t.
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Then∥∥∥ Sn+1(t)x

(k ∗ a)∗n ∗ k(t)
− x

∥∥∥
=

∥∥∥Sn+1(t)x− (k ∗ a)∗n ∗ k(t)x
(k ∗ a)∗n ∗ k(t)

∥∥∥
≤ 1

(k ∗ a)∗n ∗ k(t)

∫ t

0

(k ∗ a)(t− s)
∥∥Sn(s)x− (k ∗ a)∗(n−1) ∗ k(s)x

∥∥ ds
≤ 1

(k ∗ a)∗n ∗ k(t)

×
∫ t

0

(k ∗ a)(t− s)(k ∗ a)∗(n−1) ∗ k(s)
∥∥∥ Sn(s)x

(k ∗ a)∗(n−1) ∗ k(s)
− x

∥∥∥ ds ≤ ε.

So, limt→0+
Sn+1(t)x

(k∗a)∗n∗k(t) = x for all x ∈ X. Note that {Sn+1(t)}t∈(0,nT ] is a lo-

cal (a, (k ∗ a)∗n ∗ k)-regularized resolvent family generated by A (see [16, Re-
mark 2.4(4)]). Now let t ∈ (nT, (n+ 1)T ] and x ∈ X. It is clear that Sn+1(t)A ⊂
ASn+1(t). We show that (a ∗ Sn+1)(t)x ∈ D(A). Note

(a ∗ Sn+1)(t)x =

∫ nT

0

a(t− s)Sn+1(s)x ds+

∫ t

nT

a(t− s)Sn+1(s)x ds.

On the one hand,∫ nT

0

a(t− s)Sn+1(s)x ds =

∫ nT

0

a(t− s)(k ∗ a ∗ Sn)(s)x ds ∈ D(A),

since (a ∗ Sn)(s)x ∈ D(A). On the other hand,∫ t

nT

a(t− s)Sn+1(s)x ds

=

∫ t

nT

a(t− s)
(∫ s−nT

0

∫ nT

0

a(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2

)
ds

+

∫ t

nT

a(t− s)

∫ nT

0

k(s− r)(a ∗ Sn)(r)x dr ds

+

∫ t

nT

a(t− s)

∫ s−nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(s− r)(a ∗ S1)(r)x dr ds.

(4.2)

Note that (a ∗ Sn)(r)x, (a ∗ S1)(r)x ∈ D(A). Finally,∫ t

nT

a(t− s)

∫ s−nT

0

∫ nT

0

a(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2 ds

=

∫ nT

0

Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

a(u− r1)S1(s− u)x du ds dr1

=

∫ nT

0

Sn(r1)

∫ t

nT

a(u− r1)

∫ t

u

a(t− s)S1(s− u)x ds du dr1
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=

∫ nT

0

Sn(r1)

∫ t

nT

a(u− r1)

∫ t−u

0

a(t− u− v)S1(v)x dv du dr1 ∈ D(A)

since (a∗S1)(t−u) ∈ D(A). To finish the proof, we prove that for t ∈ (nT, (n+1)T ]
and x ∈ X, the equality (4.1) is satisfied. First observe that

A(a ∗ Sn+1)(t)x = A

∫ nT

0

a(t− s)(k ∗ a ∗ Sn)(s)x ds+ A

∫ t

nT

a(t− s)Sn+1(s)x ds.

We apply the operator A to the first summand of (4.2), and we obtain

A

∫ nT

0

Sn(r1)

∫ t

nT

a(t− s)

∫ s−nT

0

a(s− r1 − r2)S1(r2)x dr2 ds dr1

= A

∫ nT

0

Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

a(u− r1)S1(s− u)x du ds dr1

= A

∫ nT

0

Sn(r1)

∫ t

nT

a(u− r1)

∫ t

u

a(t− s)S1(s− u)x ds du dr1

= A

∫ nT

0

Sn(r1)

∫ t

nT

a(u− r1)

∫ t−u

0

a(t− u− v)S1(v)x dv du dr1

=

∫ nT

0

Sn(r1)

∫ t

nT

a(u− r1)
(
S1(t− u)− k(t− u)

)
x du dr1

=

∫ nT

0

Sn(r1)

∫ t−nT

0

a(t− r1 − r2)
(
S1(r2)− k(r2)

)
x dr2 dr1.

In the second summand of (4.2), we write∫ nT

0

(a ∗ Sn)(r)x

∫ t

nT

a(t− s)k(s− r) ds dr

=

∫ nT

0

(a ∗ Sn)(r)x
(∫ t−r

0

a(t− r − u)k(u) du

−
∫ nT−r

0

a(t− r − u)k(u) du
)
dr.

We apply the operator A to each of the above terms to get

A

∫ nT

0

(a ∗ Sn)(r)x

∫ t−r

0

a(t− r − u)k(u) du dr

= A

∫ t−nT

0

k(u)

∫ nT

0

a(t− u− r)(a ∗ Sn)(r)x dr du

+ A

∫ t

t−nT

k(u)

∫ t−u

0

a(t− u− r)(a ∗ Sn)(r)x dr du

=

∫ t−nT

0

k(u)

∫ nT

0

a(t− u− r)
(
Sn(r)x−

(
(k ∗ a)∗(n−1) ∗ k

)
(r)x

)
dr du

+

∫ t

t−nT

k(u)
(
(a ∗ Sn)(t− u)x− (k ∗ a)∗n(t− u)x

)
du
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=

∫ t−nT

0

k(u)

∫ nT

0

a(t− u− r)
(
Sn(r)x−

(
(k ∗ a)∗(n−1) ∗ k

)
(r)x

)
dr du

+

∫ nT

0

k(t− r)
(
(a ∗ Sn)(r)x− (k ∗ a)∗n(r)x

)
dr,

and

A

∫ nT

0

(a ∗ Sn)(r)x

∫ nT−r

0

a(t− r − u)k(u) du dr

= A

∫ nT

0

k(u)

∫ nT−u

0

a(t− u− r)(a ∗ Sn)(r)x dr du.

In the third summand of (4.2), we write∫ t−nT

0

(a ∗ S1)(r)x

∫ t

r+nT

a(t− s)
(
(k ∗ a)∗(n−1) ∗ k

)
(s− r) ds dr

=

∫ t−nT

0

(a ∗ S1)(r)x
(∫ t

r

a(t− s)
(
(k ∗ a)∗(n−1) ∗ k

)
(s− r) ds

−
∫ r+nT

r

a(t− s)
(
(k ∗ a)∗(n−1) ∗ k

)
(s− r) ds

)
dr.

We apply the operator A to each of the above terms to obtain

A

∫ t−nT

0

(a ∗ S1)(r)x

∫ t

r

a(t− s)
(
(k ∗ a)∗(n−1) ∗ k

)
(s− r) ds dr

= A

∫ t−nT

0

(a ∗ S1)(r)x

∫ t−r

0

a(t− r − u)
(
(k ∗ a)∗(n−1) ∗ k

)
(u) du dr

= A

∫ nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(u)

∫ t−nT

0

a(t− u− r)(a ∗ S1)(r)x dr du

+ A

∫ t

nT

(
(k ∗ a)∗(n−1) ∗ k

)
(u)

∫ t−u

0

a(t− u− r)(a ∗ S1)(r)x dr du

= A

∫ nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(u)

∫ t−nT

0

a(t− u− r)(a ∗ S1)(r)x dr du

+

∫ t

nT

(
(k ∗ a)∗(n−1) ∗ k(u)

)(
(a ∗ S1)(t− u)x− (a ∗ k)(t− u)x

)
du

= A

∫ nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(u)

∫ t−nT

0

a(t− u− r)(a ∗ S1)(r)x dr du

+

∫ t−nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(t− s)

(
(a ∗ S1)(s)x− (a ∗ k)(s)x

)
ds

and

A

∫ t−nT

0

(a ∗ S1)(r)x

∫ r+nT

r

a(t− s)
(
(k ∗ a)∗(n−1) ∗ k

)
(s− r) ds dr
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= A

∫ nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(u)

∫ t−nT

0

a(t− u− r)(a ∗ S1)(r)x dr du.

Then we have

A

∫ t−nT

0

(a ∗ S1)(r)x

∫ t

r+nT

a(t− s)
(
(k ∗ a)∗(n−1) ∗ k

)
(s− r) ds dr

=

∫ t−nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(t− s)

(
(a ∗ S1)(s)x− (a ∗ k)(s)x

)
ds.

Finally note that

A

∫ nT

0

a(t− s)(k ∗ a ∗ Sn)(s)x ds

= A

∫ nT

0

(a ∗ Sn)(r)x

∫ nT

r

a(t− s)k(s− r) ds dr

= A

∫ nT

0

(a ∗ Sn)(r)x

∫ nT−r

0

a(t− r − u)k(u) du dr

= A

∫ nT

0

k(u)

∫ nT−u

0

a(t− u− r)(a ∗ Sn)(r)x dr du.

We join together all summands to conclude that

A(a ∗ Sn+1)(t)x =

∫ t−nT

0

∫ nT

0

a(t− r1 − r2)Sn(r1)S1(r2)x dr1 dr2

+

∫ nT

0

k(t− r)(a ∗ Sn)(r)x dr

+

∫ t−nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(t− r)(a ∗ S1)(r)x dr

−
∫ t−nT

0

k(u)

∫ nT

0

a(t− u− r)
(
(k ∗ a)∗(n−1) ∗ k

)
(r)x dr du

−
∫ nT

0

k(t− r)(k ∗ a)∗n(r)x dr

−
∫ t−nT

0

(
(k ∗ a)∗(n−1) ∗ k

)
(t− r)(a ∗ k)(r)x dr

= Sn+1(t)x− (k ∗ a)∗n(t)x,

where we have used Lemma 2.3. �

The expression of {Sn+1(t)}t∈(0,(n+1)T ] is not unique; in the following theorem
we show {Sn+1(t)}t∈(0,(n+1)T ] in terms of {Sj(t)}t∈(0,jT ] for all 1 ≤ j ≤ n. The
proof is similar to the proof of Theorem 4.3 and therefore we omit it.

Theorem 4.4. Let n ∈ N, let 0 < τ ≤ ∞, let a, k ∈ L1
loc([0, (n + 1)τ)) with

k ∈ C(0, (n + 1)τ), and let {S1(t)}t∈(0,τ) be a local (a, k)-regularized resolvent
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family generated by A. Then the family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined
in Theorem 4.3 satisfies

Sn+1(t)x :=
(
(k ∗ a)∗(n+1−j) ∗ Sj

)
(t)x, x ∈ X, t ∈ (0, jT ], and

Sn+1(t)x :=
(
a+ ∗2 (Sj ⊗ Sn+1−j)

)
(jT, t− jT )x

+

∫ jT

0

(
(k ∗ a)n−j ∗ k

)
(t− r)(a ∗ Sj)(r)x dr

+

∫ t−jT

0

(
(k ∗ a)∗(j−1) ∗ k

)
(t− r)(a ∗ Sn+1−j)(r)x dr,

for x ∈ X, 1 ≤ j ≤ n and t ∈ (jT, (n+ 1)T ] for any T < τ .

The following result is related to [8, Theorem 4.4] and [23, Theorem 3.3]. How-
ever, note that both results are not included in this corollary.

Corollary 4.5. Let n ∈ N, let 0 < τ ≤ ∞, and let {S1(t)}t∈(0,τ) be a local
(gα, gβ+1)-regularized resolvent family generated by A, with α > 0 and β > −1.
Then the family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x := (gβ+α+1 ∗ Sn)(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x :=
(
g+α ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x+

∫ nT

0

gβ+1(t− r)(gα ∗ Sn)(r)x dr

+

∫ t−nT

0

gn(β+1)+α(n−1)(t− r)(gα ∗ S1)(r)x dr,

for x ∈ X and t ∈ (nT, (n+1)T ] is a local (gα, g(n+1)(β+1)+nα)-regularized resolvent
family generated by A for any T < τ . Then A generates a local (gα, g(n+1)(β+1)+nα)-
regularized resolvent family {Sn+1(t)}t∈(0,(n+1)τ).

However, if we restrict for example to the α-times integrated semigroup case,
the above extension is not the sharpest extension. Then for certain cases of the
functions a and k there exist sharper extensions from the point of view of the
regularized Cauchy problems. The following theorem gives us this sharp extension
for a class of (a, k)-regularized resolvent families. Although the idea of the proof
is similar to the proof of Theorem 4.3, we have included it to make easier the
reading because we use additional methods.

Theorem 4.6. Let n ∈ N, 0 < τ ≤ ∞, a, k ∈ L1
loc(R+) with k ∈ C(0,∞)

be Laplace-transformable functions such that there exist b, c ∈ L1
loc(R+) Laplace-

transformable satisfying the condition that c be absolutely continuous on (0,∞),
(c′)+ be 2-Laplace-transformable,

(a ∗ b)(t) = k(t), (a ∗ c)(t) = 1, t > 0,

and {S1(t)}t∈(0,τ) be a local (a, k)-regularized resolvent family generated by A.
Then the family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x := (b ∗ Sn)(t)x, x ∈ X,
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for t ∈ (0, nT ] and

Sn+1(t)x :=

∫ nT

0

b(t− r)Sn(r)x dr +

∫ t−nT

0

b∗n(t− r)S1(r)x dr

−
(
(c′)+ ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x

for x ∈ X and t ∈ (nT, (n+1)T ] is a local (a, b∗n ∗k)-regularized resolvent family
generated by A for any T < τ . Then A generates a local (a, b∗n ∗ k)-regularized
resolvent family {Sn+1(t)}t∈(0,(n+1)τ).

Proof. Similarly to the proof of Theorem 4.3, limt→0+
Sn+1(t)x
(b∗n∗k)(t) = x for x ∈ X. Note

that {Sn+1(t)}t∈(0,nT ] is a local (a, b∗n ∗ k)-regularized resolvent family generated
by A (see again [16, Remark 2.4(4)]). Now let t ∈ (nT, (n + 1)T ] and let x ∈ X.
It is clear that Sn+1(t)A ⊂ ASn+1(t), and, following the proof of Theorem 4.3, it
is easy to see that (a ∗ Sn+1)(t)x ∈ D(A).

Now we prove that for t ∈ (nT, (n + 1)T ] and x ∈ X, the equality (4.1) is
satisfied. First observe that

A(a ∗ Sn+1)(t)x = A

∫ nT

0

a(t− s)(b ∗ Sn)(s)x ds+ A

∫ t

nT

a(t− s)Sn+1(s)x ds.

Note that∫ t

nT

a(t− s)Sn+1(s)x ds

=

∫ t

nT

a(t− s)
(∫ nT

0

b(s− r)Sn(r)x dr

+

∫ s−nT

0

b∗n(s− r)S1(r)x dr
)
ds

−
∫ t

nT

a(t− s)

∫ s−nT

0

∫ nT

0

c′(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2 ds.

(4.3)

We apply the operator A to the third summand of (4.3), and we obtain

−A

∫ nT

0

Sn(r1)

∫ t

nT

a(t− s)

∫ s−nT

0

c′(s− r1 − r2)S1(r2)x dr2 ds dr1

= −A

∫ nT

0

Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

c′(u− r1)S1(s− u)x du ds dr1

= −A

∫ nT

0

Sn(r1)

∫ t

nT

c′(u− r1)

∫ t

u

a(t− s)S1(s− u)x ds du dr1

= −A

∫ nT

0

Sn(r1)

∫ t

nT

c′(u− r1)

∫ t−u

0

a(t− u− v)S1(v)x dv du dr1

= −
∫ nT

0

Sn(r1)

∫ t

nT

c′(u− r1)
(
S1(t− u)− k(t− u)

)
x du dr1

= −
∫ nT

0

Sn(r1)

∫ t−nT

0

c′(t− r1 − r2)
(
S1(r2)− k(r2)

)
x dr2 dr1.
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In the first summand of (4.3), we write∫ nT

0

Sn(r)x

∫ t

nT

a(t− s)b(s− r) ds dr

=

∫ nT

0

Sn(r)x

∫ t−r

0

a(t− r − u)b(u) du dr

−
∫ nT

0

Sn(r)x

∫ nT−r

0

a(t− r − u)b(u) du dr.

We apply the operator A to each of the above terms to get

A

∫ nT

0

Sn(r)x

∫ t−r

0

a(t− r − u)b(u) du dr

= A

∫ t−nT

0

b(u)

∫ nT

0

a(t− u− r)Sn(r)x dr du

+ A

∫ t

t−nT

b(u)

∫ t−u

0

a(t− u− r)Sn(r)x dr du

= A

∫ t−nT

0

b(u)

∫ nT

0

a(t− u− r)Sn(r)x dr du

+

∫ t

t−nT

b(u)
(
Sn(t− u)x− (b∗(n−1) ∗ k)(t− u)x

)
du

= A

∫ t−nT

0

b(u)

∫ nT

0

a(t− u− r)Sn(r)x dr du

+

∫ nT

0

b(t− r)
(
Sn(r)x− (b∗(n−1) ∗ k)(r)x

)
dr,

and ∫ nT

0

Sn(r)x

∫ nT−r

0

a(t− r − u)b(u) du dr

=

∫ nT

0

b(u)

∫ nT−u

0

a(t− u− r)Sn(r)x dr du.

In the second summand of (4.3), we write∫ t−nT

0

S1(r)x

∫ t

r+nT

a(t− s)b∗n(s− r) ds dr

=

∫ t−nT

0

S1(r)x
(∫ t

r

a(t− s)b∗n(s− r) ds−
∫ r+nT

r

a(t− s)b∗n(s− r) ds
)
dr.

We apply the operator A to each of the above terms to obtain

A

∫ t−nT

0

S1(r)x

∫ t

r

a(t− s)b∗n(s− r) ds dr

= A

∫ t−nT

0

S1(r)x

∫ t−r

0

a(t− r − u)b∗n(u) du dr
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= A

∫ nT

0

b∗n(u)

∫ t−nT

0

a(t− u− r)S1(r)x dr du

+ A

∫ t

nT

b∗n(u)

∫ t−u

0

a(t− u− r)S1(r)x dr du

= A

∫ nT

0

b∗n(u)

∫ t−nT

0

a(t− u− r)S1(r)x dr du

+

∫ t

nT

b∗n(u)
(
S1(t− u)x− k(t− u)x

)
du

= A

∫ nT

0

b∗n(u)

∫ t−nT

0

a(t− u− r)S1(r)x dr du

+

∫ t−nT

0

b∗n(t− s)
(
S1(s)x− k(s)x

)
ds

and ∫ t−nT

0

S1(r)x

∫ r+nT

r

a(t− s)b∗n(s− r) ds dr

=

∫ nT

0

b∗n(u)

∫ t−nT

0

a(t− u− r)S1(r)x dr du.

Then we have that

A

∫ t−nT

0

S1(r)x

∫ t

r+nT

a(t− s)b∗n(s− r) ds dr

=

∫ t−nT

0

b∗n(t− s)
(
S1(s)x− k(s)x

)
ds.

Furthermore note that

A

∫ nT

0

a(t− s)(b ∗ Sn)(s)x ds = A

∫ nT

0

Sn(r)x

∫ nT

r

a(t− s)b(s− r) ds dr

= A

∫ nT

0

Sn(r)x

∫ nT−r

0

a(t− r − u)b(u) du dr

= A

∫ nT

0

b(u)

∫ nT−u

0

a(t− u− r)Sn(r)x dr du.

We join together all summands to conclude that

A(a ∗ Sn+1)(t)x = Sn+1(t)x+ A

∫ t−nT

0

b(u)

∫ nT

0

a(t− u− r)Sn(r)x dr du

−
∫ nT

0

b(t− r)(b∗(n−1) ∗ k)(r)x dr −
∫ t−nT

0

b∗n(t− r)k(r)x dr

+

∫ nT

0

Sn(r1)x

∫ t−nT

0

c′(t− r1 − r2)k(r2) dr2 dr1.
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Now we use induction. As {Sn(t)}t∈(0,nT ] is a local (a, b∗(n−1) ∗ k)-regularized
resolvent family generated by A, then

Sn(r1)x = A(a ∗ Sn)(r1)x+ (b∗(n−1) ∗ k)(r1)x = A(a ∗ Sn)(r1)x+ (b∗n ∗ a)(r1)x,

and so ∫ nT

0

Sn(r1)x

∫ t−nT

0

c′(t− r1 − r2)k(r2) dr2 dr1

= A

∫ nT

0

(a ∗ Sn)(r1)x

∫ t−nT

0

c′(t− r1 − r2)(a ∗ b)(r2) dr2 dr1

+

∫ nT

0

(b∗n ∗ a)(r1)x
∫ t−nT

0

c′(t− r1 − r2)(a ∗ b)(r2) dr2 dr1.

On the one hand,

A

∫ nT

0

(a ∗ Sn)(r1)x

∫ t−nT

0

c′(t− r1 − r2)(a ∗ b)(r2) dr2 dr1

= A

∫ nT

0

Sn(u)x

∫ t−nT

0

b(v)

×
∫ nT

u

∫ t−nT

v

a(r1 − u)a(r2 − v)c′(t− r1 − r2) dr2 dr1 dv du

= −A

∫ nT

0

Sn(u)x

∫ t−nT

0

a(t− u− v)b(v) dv du

and, on the other hand,∫ nT

0

(b∗n ∗ a)(r1)x
∫ t−nT

0

c′(t− r1 − r2)(a ∗ b)(r2) dr2 dr1

=

∫ nT

0

b∗n(u)x

∫ t−nT

0

b(v)

×
∫ nT

u

∫ t−nT

v

a(r1 − u)a(r2 − v)c′(t− r1 − r2) dr2 dr1 dv du

= −
∫ nT

0

b∗n(u)x

∫ t−nT

0

a(t− u− v)b(v) dv du,

where we have applied Theorem 3.4(i). Applying Lemma 2.3, we get

A(a ∗ Sn+1)(t)x = Sn+1(t)x−
∫ nT

0

b(t− r)(b∗(n−1) ∗ k)(r)x dr

−
∫ t−nT

0

b∗n(t− r)k(r)x dr

−
∫ nT

0

b∗n(u)x

∫ t−nT

0

a(t− u− v)b(v) dv du

= Sn+1(t)x−
∫ nT

0

b(t− r)(b∗n ∗ a)(r)x dr
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−
∫ t−nT

0

b∗n(t− r)(a ∗ b)(r)x dr

−
∫ nT

0

b∗n(u)x

∫ t−nT

0

a(t− u− v)b(v) dv du

= Sn+1(t)x− (b∗(n+1) ∗ a)(t)x = Sn+1(t)x− (b∗n ∗ k)(t)x.
Finally we check that the family {Sn+1(t)}t∈(0,(n+1)T ] is strongly continuous. It

is direct to check that {Sn+1(t)}t∈(0,(n+1)T ] is uniformly bounded on [nT−ε, nT+ε]
for all 0 < ε < T , and strongly continuous on (0, nT )∪ (nT, (n+ 1)T ]. Note that
for t → (nT )+, we have that

Sn+1(t)x− (b∗n ∗ k)(t)x = A
(∫ nT

0

a(t− s)Sn+1(s)x ds
)

+ A
(∫ t

nT

a(t− s)Sn+1(s)x ds
)

→ A
(∫ nT

0

a(nT − s)Sn+1(s)x ds
)

= Sn+1(nT )x− (b∗n ∗ k)(nT )x, x ∈ X,

and we conclude that the family {Sn+1(t)}t∈[0,(n+1)T ] is strongly continuous. �

The following result extends [22, Theorem 2] because we obtain the sharp ex-
tension of (gα, gβ+1)-regularized resolvent families when 0 < α < 1 and β − α >
−1, and when α → 1− we recover the α-times integrated semigroup case, consid-
ered in [22]. More generally one could consider the case of K-convoluted resolvent
families, that is (gα, (1 ∗ K))-regularized resolvent families for 0 < α < 1, and
compare it to the limit case when α → 1− (see [8, Theorem 4.4]).

Corollary 4.7. Let n ∈ N, let 0 < τ ≤ ∞, and let {S1(t)}t∈(0,τ) be a lo-
cal (gα, gβ+1)-regularized resolvent family generated by A with 0 < α < 1 and
β − α > −1. Then the family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x := (gβ−α+1 ∗ Sn)(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x :=

∫ nT

0

gβ−α+1(t− r)Sn(r)x dr +

∫ t−nT

0

gn(β−α+1)(t− r)S1(r)x dr

−
(
(g−α)

+ ∗ (Sn ⊗ S1)
)
(nT, t− nT )x,

for x ∈ X and t ∈ (nT, (n+1)T ] is a local (gα, gn(β−α+1)+β+1)-regularized resolvent
family generated by A for any T < τ . Then A generates a local
(gα, gn(β−α+1)+β+1)-regularized resolvent family {Sn+1(t)}t∈(0,(n+1)τ).

5. Solutions of evolutionary problems
without jumps of regularity

In this section, we identify a wide class of evolution equations where no loss of
regularity happens. It is interesting to note that it was not known until now if this
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property goes beyond the cases of the heat and wave equations (i.e., the semigroup
and cosine cases). We begin with the following result, which is subordinated
to the semigroup case in the sense that we cannot go beyond α > 1 when we
restrict to the particular case of (gα, gα)-regularized resolvent families (see the
next corollary).

Theorem 5.1. Let n ∈ N, 0 < τ ≤ ∞, a ∈ L1
loc(R+) with a ∈ C(0,∞) be

a Laplace-transformable function such that there exists c ∈ L1
loc(R+) Laplace-

transformable satisfying the condition that c is absolutely continuous on (0,∞),
(c′)+ is 2-Laplace-transformable, and (a∗c)(t) = 1 for all t > 0, and let {S1(t)}t∈(0,τ)
be a local (a, a)-regularized resolvent family generated by A. Then the family of
operators {Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x := Sn(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x := −
(
(c′)+ ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x, x ∈ X,

and t ∈ (nT, (n + 1)T ] is a local (a, a)-regularized resolvent family generated by
A for any T < τ . Then A generates a global (a, a)-regularized resolvent family
{S(t)}t∈(0,∞).

Proof. Let us note here that limt→0+
Sn+1(t)x

a(t)
= x for x ∈ X and the family

{Sn+1(t)}t∈(0,(n+1)T ] is strongly continuous. The proof of this fact is similar to
Theorem 4.6. Obviously, {Sn+1(t)}t∈(0,nT ] is a local (a, a)-regularized resolvent
family generated by A. Now let t ∈ (nT, (n + 1)T ] and x ∈ X. It is clear that
Sn+1(t)A ⊂ ASn+1(t). We show that (a ∗ Sn+1)(t)x ∈ D(A). Note that

(a ∗ Sn+1)(t)x =

∫ nT

0

a(t− s)Sn(s)x ds+

∫ t

nT

a(t− s)Sn+1(s)x ds, x ∈ X.

On the one hand, note that
∫ nT

0
a(t− s)Sn(s)x ds ∈ D(A) (see (5.1) at the end

of the proof). On the other hand,∫ t

nT

a(t− s)Sn+1(s)x ds

= −
∫ t

nT

a(t− s)

∫ s−nT

0

∫ nT

0

c′(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2 ds

= −
∫ nT

0

Sn(r1)

∫ t

nT

a(t− s)

∫ s−nT

0

c′(s− r1 − r2)S1(r2)x dr2 ds dr1

= −
∫ nT

0

Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

c′(u− r1)S1(s− u)x du ds dr1

= −
∫ nT

0

Sn(r1)

∫ t

nT

c′(u− r1)

∫ t

u

a(t− s)S1(s− u)x ds du dr1

= −
∫ nT

0

Sn(r1)

∫ t

nT

c′(u− r1)

∫ t−u

0

a(t− u− v)S1(v)x dv du dr1 ∈ D(A)
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since (a∗S1)(t−u) ∈ D(A). To finish the proof, we prove that for t ∈ (nT, (n+1)T ]
and x ∈ X the equality

A
(
a ∗ Sn+1(t)

)
x = Sn+1(t)x− a(t)x,

is verified. First observe that

A(a ∗ Sn+1)(t)x = A

∫ nT

0

a(t− s)Sn(s)x ds+ A

∫ t

nT

a(t− s)Sn+1(s)x ds.

Now, we develop the second term applying change of variables and Fubini’s the-
orem:

A

∫ t

nT

a(t− s)Sn+1(s)x ds

= −A

∫ t

nT

a(t− s)

∫ s−nT

0

∫ nT

0

c′(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2 ds

= −A

∫ nT

0

Sn(r1)

∫ t

nT

a(t− s)

∫ s−nT

0

c′(s− r1 − r2)S1(r2)x dr2 ds dr1

= −A

∫ nT

0

Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

c′(u− r1)S1(s− u)x du ds dr1

= −A

∫ nT

0

Sn(r1)

∫ t

nT

c′(u− r1)

∫ t

u

a(t− s)S1(s− u)x ds du dr1

= −A

∫ nT

0

Sn(r1)

∫ t

nT

c′(u− r1)

∫ t−u

0

a(t− u− v)S1(v)x dv du dr1

= −
∫ nT

0

Sn(r1)

∫ t

nT

c′(u− r1)
(
S1(t− u)− a(t− u)

)
x du dr1

= −
∫ nT

0

Sn(r1)

∫ t−nT

0

c′(t− r1 − r2)
(
S1(r2)− a(r2)

)
x dr2 dr1,

where we have used the fact that {S1(t)}t∈(0,T ] is a local (a, a)-regularized resol-
vent family generated by A. Then

A(a ∗ Sn+1)(t) = A

∫ nT

0

a(t− s)Sn(s)x ds+ Sn+1(t)x

+

∫ nT

0

Sn(r1)x

∫ t−nT

0

c′(t− r1 − r2)a(r2) dr2 dr1.

As {Sn(t)}t∈(0,nT ] is a local (a, a)-regularized resolvent family generated by A,
then

Sn(r1)x = A(a ∗ Sn)(r1)x+ a(r1)x,

and ∫ nT

0

Sn(r1)x

∫ t−nT

0

c′(t− r1 − r2)a(r2) dr2 dr1

=

∫ nT

0

(
A(a ∗ Sn)(r1) + a(r1)

)
x

∫ t−nT

0

c′(t− r1 − r2)a(r2) dr2 dr1.
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On the one hand, we obtain the following identity by change of variables and
Fubini’s theorem,

A

∫ nT

0

(a ∗ Sn)(r1)x

∫ t−nT

0

c′(t− r1 − r2)a(r2) dr2 dr1

= A

∫ nT

0

(∫ r1

0

a(r1 − u)Sn(u)x du
)∫ t−nT

0

c′(t− r1 − r2)a(r2) dr2 dr1

= A

∫ nT

0

Sn(u)x

∫ nT

u

a(r1 − u)

∫ t−nT

0

c′(t− r1 − r2)a(r2) dr2 dr1 du

= A

∫ nT

0

Sn(u)x

∫ nT−u

0

∫ t−nT

0

c′(t− u− v − r2)a(v)a(r2) dr2 dv du

= A

∫ nT

0

Sn(u)x
(
(c′)+ ∗2 (a⊗ a)

)
(nT − u, t− nT ) du

= −A

∫ nT

0

a(t− u)Sn(u)x du,

(5.1)

where we have used Theorem 3.4. On the other hand, we use Theorem 3.4 again
to get∫ nT

0

a(r1)x

∫ t−nT

0

c′(t− r1 − r2)a(r2) dr2 dr1 = −
(
(c′)+ ∗2 (a⊗ a)

)
(t− nT, nT )x

= −a(t)x.

We join all the terms and we obtain the result. �

The next result considers the special case of (gα, gα)-regularized resolvent fam-
ilies. Here we have to restrict to the range 0 < α < 1 according to the given
hypothesis in the above theorem. We observe that this condition is optimal in the
following sense: when α = 1, we are treating with the parabolic case, that is, the
equation {

u′(t) = Au(t) + x, t ∈ [0, τ), x ∈ D(A),

u(0) = 0,

where A is the generator of a C0-semigroup, or, equivalently, a (1, 1)-regularized
resolvent family. We known that in this case no loss of regularity happens. Now,
for 0 < α < 1, we have to consider the fractional order differential equation{

RD
α
t u(t) = Au(t) + gα(t)x, t ∈ (0, τ), x ∈ D(A),

(g1−α ∗ u)(0) = 0,
(5.2)

where RDt denotes the fractional derivative in the Riemann–Liouville sense, and
A is the generator of a (gα, gα)-regularized resolvent family (see also [11, Exam-
ple 2.1.38] and the paragraph preceding it). The following corollary shows that
again no loss of regularity happens for equation (5.2). In passing, we conclude the
remarkable fact that equation (5.2) is at the basis of the process of regularization
for 0 < α < 1, where the solutions of the regularized problems correspond to the
families of Corollary 4.7.
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In the following picture we can see graphically the previous comments for
(gα, gβ+1)-regularized resolvent families with 0 < α < 1. Note that the straight
line formed by the points (α, α − 1) corresponds to (gα, gα)-regularized families,
which is the basis of the process of regularization for 0 < α < 1. For α = 1, the
point (1, 0) corresponds to a C0-semigroup, and the points (1, β) correspond to
β-times integrated semigroups for β > 0.

α

β

1

-1

0

1

β − α > −1

Corollary 5.2. Let n ∈ N, let 0 < τ ≤ ∞, let 0 < α < 1, and let {S1(t)}t∈(0,τ)
be a local (gα, gα)-regularized resolvent family generated by A. Then the family of
operators {Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x = Sn(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x =
α

Γ(1− α)

∫ t−nT

0

∫ nT

0

Sn(r1)S1(r2)x

(t− r1 − r2)1+α
dr1 dr2

for x ∈ X and t ∈ (nT, (n + 1)T ] is a local (gα, gα)-regularized resolvent family
generated by A for any T < τ . Then A generates a global (gα, gα)-regularized
resolvent family {S(t)}t∈(0,∞).

Now, we consider a different class of (a, k)-regularized resolvent families such
that we can solve the extension problem without loss of regularity.

Theorem 5.3. Let n ∈ N, let 0 < τ ≤ ∞, and let a ∈ L1
loc(R+) with a ∈

C(0,∞) be a Laplace-transformable function such that there exists c ∈ L1
loc(R+)

Laplace-transformable satisfying the condition that c is absolutely continuous,
differentiable a.e., c(0+) = 0, (c′)+ and (c′)− are 2-Laplace-transformable, and
(a ∗ c)(t) = 1 for all t > 0, and let {S1(t)}t∈(0,τ) be a local (a ∗ 1, a)-regularized
resolvent family generated by A. Then the family of operators {Sn+1(t)}t∈(0,(n+1)T ]

defined by

Sn+1(t)x := Sn(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x := −Sn(2nT − t)x+
(
(c′)− ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x
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−
(
(c′)+ ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x

for x ∈ X and t ∈ (nT, (n + 1)T ] is a local (a ∗ 1, a)-regularized resolvent family
generated by A for any T < τ . Then A generates a global (a ∗ 1, a)-regularized
resolvent family {S(t)}t∈(0,∞).

Proof. Note that limt→0+
Sn+1(t)x

a(t)
= x for x ∈ X and the family {Sn+1(t)}t∈(0,(n+1)T ]

is strongly continuous (see the proof inTheorem4.6); in particular, {Sn+1(t)}t∈(0,nT ]

is a local (a ∗ 1, a)-regularized resolvent family generated by A. Now let t ∈
(nT, (n + 1)T ] and x ∈ X. It is clear that Sn+1(t)A ⊂ ASn+1(t). Following the
same ideas as in the proofs of the previous theorems, we conclude that (a ∗ 1 ∗
Sn+1)(t)x ∈ D(A).

To finish the proof, it remains for us to prove that for t ∈ (nT, (n + 1)T ] and
x ∈ X the equality A(a∗1∗Sn+1(t))x = Sn+1(t)x−a(t)x is satisfied. First observe
that

A(a∗1∗Sn+1)(t)x = A

∫ nT

0

(a∗1)(t−s)Sn(s)x ds+A

∫ t

nT

(a∗1)(t−s)Sn+1(s)x ds.

Note that∫ t

nT

(a ∗ 1)(t− s)Sn+1(s)x ds

=

∫ t

nT

(a ∗ 1)(t− s)
(
−Sn(2nT − t)x

+

∫ s−nT

0

∫ nT

0

(c′)−(nT − r1, s− nT − r2)Sn(r1)S1(r2)x dr1 dr2

−
∫ s−nT

0

∫ nT

0

(c′)+(nT − r1, s− nT − r2)Sn(r1)S1(r2)x dr1 dr2

)
ds.

We take the second term and apply the operator A, to obtain, using change of
variables and Fubini’s theorem, that

A

∫ nT

0

Sn(r1)

∫ t

nT

(a ∗ 1)(t− s)

×
∫ s−nT

0

(c′)−(nT − r1, s− nT − r2)S1(r2)x dr2 ds dr1

= A

∫ nT

0

Sn(r1)

∫ t

nT

(a ∗ 1)(t− s)

×
∫ s

nT

(c′)−(nT − r1, u− nT )S1(s− u)x du ds dr1

= A

∫ nT

0

Sn(r1)

∫ t

nT

(c′)−(nT − r1, u− nT )

×
∫ t

u

(a ∗ 1)(t− s)S1(s− u)x ds du dr1
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= A

∫ nT

0

Sn(r1)

∫ t

nT

(c′)−(nT − r1, u− nT )

×
∫ t−u

0

(a ∗ 1)(t− u− v)S1(v)x dv du dr1

=

∫ nT

0

Sn(r1)

∫ t

nT

(c′)−(nT − r1, u− nT )
(
S1(t− u)− a(t− u)

)
x du dr1

=

∫ nT

0

Sn(r1)

∫ t−nT

0

(c′)−(nT − r1, t− nT − r2)
(
S1(r2)− a(r2)

)
x dr2 dr1

=
(
(c′)− ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x

−
∫ nT

0

∫ t−nT

0

(c′)−(nT − r1, t− nT − r2)a(r2)Sn(r1)x dr2 dr1,

where we have used the fact that {S1(t)}t∈(0,T ] is a local (a ∗ 1, a)-regularized
resolvent family generated by A. Now, observe that, because {Sn(t)}t∈(0,nT ] is
a local (a ∗ 1, a)-regularized resolvent family generated by A, then Sn(r1)x =
A(a ∗ 1 ∗ Sn)(r1)x+ a(r1)x, and

−
∫ nT

0

∫ t−nT

0

(c′)−(nT − r1, t− nT − r2)a(r2)Sn(r1)x dr2 dr1

= −
∫ nT

0

∫ t−nT

0

(c′)−(nT − r1, t− nT − r2)a(r2)

×
(
A(a ∗ 1 ∗ Sn)(r1) + a(r1)

)
x dr2 dr1.

On the one hand,

−A

∫ nT

0

∫ t−nT

0

(c′)−(nT − r1, t− nT − r2)a(r2)(a ∗ 1 ∗ Sn)(r1)x dr2 dr1

= −A

∫ nT

0

(1 ∗ Sn)(u)x

×
∫ nT−u

0

∫ t−nT

0

(c′)−(nT − u− v, t− nT − r2)a(v)a(r2) dr2 dv du

= −A

∫ nT

0

(
(c′)− ∗2 (a⊗ a)

)
(nT − u, t− nT )(1 ∗ Sn)(u)x du

= −A

∫ nT

0

a−(nT − u, t− nT )(1 ∗ Sn)(u)x du

= −A
(∫ 2nT−t

0

a(2nT − t− u)(1 ∗ Sn)(u)x du

+

∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du
)
,
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and, on the other hand,

−
∫ nT

0

∫ t−nT

0

(c′)−(nT − r1, t− nT − r2)a(r1)a(r2)x dr2 dr1

= −
(
(c′)− ∗2 (a⊗ a)

)
(nT, t− nT )x = −a−(nT, t− nT )x

= −a(2nT − t)x = A(a ∗ 1 ∗ Sn)(2nT − t)x− Sn(2T − t)x,

where we have applied Theorem 3.4(ii) and the fact that {Sn(t)}t∈(0,nT ] is a local
(a ∗ 1, a)-regularized resolvent family generated by A. Then the second term is
equal to

A

∫ nT

0

Sn(r1)

∫ t

nT

(a ∗ 1)(t− s)

×
∫ s−nT

0

(c′)−(nT − r1, s− nT − r2)S1(r2)x dr2 ds dr1

=
(
(c′)− ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x− Sn(2T − t)x

− A

∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du.

Similarly, we repeat the process for the third term, and we get

−A

∫ nT

0

Sn(r1)

∫ t

nT

(a ∗ 1)(t− s)

×
∫ s−nT

0

(c′)+(nT − r1, s− nT − r2)S1(r2)x dr2 ds dr1

= −
(
(c′)+ ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x− a(t)x

− A

∫ nT

0

a(t− u)(1 ∗ Sn)(u)x du,

where we have applied Theorem 3.4(i). We join all the terms and we get

A(a ∗ 1 ∗ Sn+1)(t)x = Sn+1(t)x− a(t)x+ A
(∫ nT

0

(a ∗ 1)(t− s)Sn(s)x ds

−
∫ t

nT

(a ∗ 1)(t− s)Sn(2T − s)x ds

−
∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du

−
∫ nT

0

a(t− u)(1 ∗ Sn)(u)x du
)
.

Note that∫ nT

0

(a ∗ 1)(t− s)Sn(s)x ds−
∫ nT

0

a(t− u)(1 ∗ Sn)(u)x du

=

∫ t

t−nT

(a ∗ 1)(u)Sn(t− u)x du−
∫ nT

0

a(t− u)(1 ∗ Sn)(u)x du
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= (1 ∗ a)(t− nT )(1 ∗ Sn)(nT )x

=

∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du−
∫ t−nT

0

(a ∗ 1)(u)Sn(2T − t+ u)x du

=

∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du−
∫ t

nT

(a ∗ 1)(t− s)Sn(2T − s)x ds,

where we have used a change of variables and [23, Lemma 2.2] (note that this
lemma is true when one of the two functions is a vector valued function). Then
we conclude the result. �

6. Algebraic time translation identities for
(a, k)-regularized resolvent families

In this section, applying Laplace transform methods, we solve the problem
of time translation in case of global (a, k)-regularized resolvent families. Under
certain conditions on the kernels (a, k), we know that Definition 4.1 of (a, k)-
regularized resolvent families is equivalent to the existence of a commutative
and strongly continuous family of bounded and linear operators that satisfy

limt→0+
S(t)x
k(t)

= x for all x ∈ X and the functional equation

S(s)

∫ t

0

a(t− τ)S(τ)x dτ − S(t)

∫ s

0

a(s− τ)S(τ)x dτ

= k(s)

∫ t

0

a(t− τ)S(τ)x dτ − k(t)

∫ s

0

a(s− τ)S(τ)x dτ,

(6.1)

for t, s ∈ (0, τ) (see [17, Theorem 3.1]).
Let S(t) be an (a, k)-regularized resolvent family in a Banach space X. In

what follows, we will suppose that the commutative and locally integrable family
{S(t)}t>0 as well as the kernels a, k ∈ L1

loc(R+) are Laplace-transformable, with
k ∈ C(0,∞). We note that an application of the double Laplace transform to
(6.1) gives the following identity which appears in [17, Remark 3.2]:

Ŝ(λ)Ŝ(µ)x =
k̂(λ)

â(λ)

1
1

â(λ)
− 1

â(µ)

Ŝ(µ)x− k̂(µ)

â(µ)

1
1

â(λ)
− 1

â(µ)

Ŝ(λ)x, (6.2)

valid for all sufficiently large <µ,<λ, and x ∈ X. Using the notation in the
preceding section, and the above identity, we arrive at the following notable char-
acterization.

Theorem 6.1. A Laplace-transformable and strongly continuous family of
bounded and linear operators {S(t)}t>0 is an (a, k)-regularized resolvent family

if and only if limt→0+
S(t)x
k(t)

= x for all x ∈ X and the following functional equa-

tion holds:(
a+ ∗2 (S⊗S)

)
(t, s)x = k ∗ (a∗S)t(s)x−kt ∗ (a∗S)(s)x, t, s > 0, x ∈ X. (6.3)

Proof. From (6.2) we get the equivalent identity(
â(µ)−â(λ)

)
Ŝ(λ)Ŝ(µ)x = k̂(λ)

[
â(µ)Ŝ(µ)x−â(λ)Ŝ(λ)x

]
+â(λ)

[
k̂(λ)−k̂(µ)

]
Ŝ(λ)x
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valid for all <λ,<µ sufficiently large. In turn, the above identity is equivalent to

1

λ− µ

(
â(µ)− â(λ)

)
Ŝ(λ)Ŝ(µ)x =

1

λ− µ
k̂(λ)

[
(̂a ∗ S)(µ)x− (̂a ∗ S)(λ)x

]
+

1

λ− µ

[
k̂(λ)− k̂(µ)

]
(̂a ∗ S)(λ)x.

Using the identities (3.5) and (3.6), Proposition 3.6(i) and uniqueness of the
Laplace transform, we have the result. �

An interesting particular case is the following corollary, which we quote here
for further reference.

Corollary 6.2. A Laplace-transformable and strongly continuous family of
bounded and linear operators {S(t)}t>0 is an (a, a)-regularized resolvent family

if and only if limt→0+
S(t)x
a(t)

= x for all x ∈ X and the following functional equa-

tion holds: ∫ t

0

∫ s

0

a(t+ s− r1 − r2)S(r1)S(r2)x dr2 dr2

=

∫ t

0

∫ s

0

a(r1)a(r2)S(t+ s− r1 − r2)x dr1 dr2

for all t, s > 0 and x ∈ X.

Proof. We use Corollary 2.2 in Theorem 6.1 and the result is obtained directly. �

Our next results have the objective of extending and recovering some of the
results mentioned in the Introduction. We will see that in order to do that, we
need to impose regularity conditions on the kernels a and k, and therefore, the
results are less general than our Theorem 6.1 above.

Theorem 6.3. Let a, k ∈ L1
loc(R+) be given, with k ∈ C(0,∞). Suppose there

exist functions b, c ∈ L1
loc(R+) Laplace-transformable such that c is absolutely

continuous on (0,∞) and (c′)+ is 2-Laplace-transformable, satisfying

(a ∗ b)(t) = k(t), (a ∗ c)(t) = 1, t > 0.

A Laplace-transformable and strongly continuous family of bounded and linear op-
erators {S(t)}t>0 is an (a, k)-regularized resolvent family if and only if

limt→0+
S(t)x
k(t)

= x for all x ∈ X and the following functional equation holds:(
(c′)+ ∗2 (S ⊗ S)

)
(t, s)x = bt ∗ S(s)x− b ∗ St(s)x, t, s > 0, x ∈ X.

Proof. From (6.2) we obtain the equivalent identity

1

µ− λ

(
λĉ(λ)− µĉ(µ)

)
Ŝ(λ)Ŝ(µ)x

=
1

µ− λ
b̂(λ)Ŝ(µ)x− 1

µ− λ
b̂(µ)Ŝ(λ)x

=
1

µ− λ
b̂(λ)

[
Ŝ(µ)x− Ŝ(λ)x

]
+

1

µ− λ

[̂
b(λ)− b̂(µ)

]
Ŝ(λ)x.
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Hence, the result follows from Corollary 3.7(i) and formulas (3.5) and (3.6). �

Example 6.4. We set a := gα for 0 < α < 1 and k(t) :=
∫ t

0
K(s) ds for t > 0.

In this case we can choose c = g1−α and b = g1−α ∗K satisfying the hypothesis.
Therefore, we recover the functional equation(∫ t+s

t

−
∫ s

0

)
(g1−α ∗K)(t+ s− σ)S(σ)x dσ

= α

∫ t

0

∫ s

0

S(r1)S(r2)x

(t+ s− r1 − r2)1+α
dr1 dr2,

(6.4)

which appeared in [18, Theorem 8] and was mentioned in the Introduction. Here,
we include as particular case the identity(∫ t+s

t

−
∫ s

0

) S(τ)x

(t+ s− τ)α
dτ = α

∫ t

0

∫ s

0

S(r1)S(r2)x

(t+ s− r1 − r2)1+α
dr1 dr2 (6.5)

(see [13, Definition 3] and the more general identity developed in [15, Theorem 5]).

Example 6.5. Let a := gα and k := gβ+1 where α > 0, β > −1. This choosing of
the pair (a, k) produces the theory of (α, β)-ROF families introduced in [4] (see
also [17, Example 3.10] for a more general approach in terms of (a, k)-regularized
resolvent families). As mentioned in the introduction, a time translation formula
for (α, β)-ROF families was developed recently in [15]. Now observe that for a
and k as before, we can choose c = g1−α whenever 0 < α < 1, and b = gβ−α+1

whenever β − α > −1 to obtain

a ∗ c = gα ∗ g1−α = 1 and a ∗ b = gα ∗ gβ−α+1 = gβ+1.

Therefore, the hypothesis of Theorem 6.3 are satisfied and, in consequence, we
recover the formula(∫ t+s

t

∫ s

0

)
(s+ t− r)β−αS(r)x dr

= α
Γ(β − α + 1)

Γ(1− α)

∫ t

0

∫ s

0

S(r1)S(r2)x

(t+ s− r1 − r2)1+α
dr1 dr2,

(6.6)

whenever α ∈ R+ \ N0, β ∈ R+ and β − α > −1 discovered in [15, Theorem 5],
but now under the restrictions 0 < α < 1 and β − α > −1. We observe that our
result correct the above formula where a more relaxed condition on α is assumed,
namely α ∈ R+ \N0. However, we note that for α ≥ 1 the double integral on the
right hand side of (6.6) diverges, as can be easily seen.

Our next result widely extends the well known semigroup functional equation
to a more general class of strongly continuous families of operators. They are
connected with integral equations of Volterra-type, as we will see in the next
section.

Theorem 6.6. Let a ∈ L1
loc(R+) be given, with a ∈ C(0,∞). Suppose there exists

c ∈ L1
loc(R+) Laplace-transformable function such that c is absolutely continuous

on (0,∞) and such that (c′)+ is 2-Laplace-transformable, satisfying (a ∗ c)(t) = 1
for all t > 0. A Laplace-transformable and strongly continuous family of bounded
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and linear operators {S(t)}t>0 is an (a, a)-regularized resolvent family if and only

if limt→0+
S(t)x
a(t)

= x for all x ∈ X and the following functional equation holds:

S(t+ s)x = −
(
(c′)+ ∗2 (S ⊗ S)

)
(t, s)x, t, s > 0, x ∈ X.

Proof. From (6.2) we get the equivalent identity

1

λ− µ

(
λĉ(λ)− µĉ(µ)

)
Ŝ(λ)Ŝ(µ)x =

1

λ− µ

(
Ŝ(µ)x− Ŝ(λ)x

)
.

Hence, the result follows from Corollary 3.7(i) and formula (3.4). �

Example 6.7. If a = gα, then â(λ) = 1
λα and hence we can choose c = g1−α

with 0 < α < 1 satisfying the hypothesis. Note that this example recovers the
functional equation

S(t+ s)x =
α

Γ(1− α)

∫ t

0

∫ s

0

S(r1)S(r2)x

(t+ s− r1 − r2)1+α
dr1 dr2, (6.7)

for 0 < α < 1 as stated in [20, Definition 2.1(ii)].

Now we consider more relaxed assumptions on the functions a and k than
the previous theorems. In contrast, the obtained functional equations are more
involved and difficult to handle. The advantage is that it permits us to extend
the range from 0 < α < 1 to 1 < α < 2, extending recent results and producing
new formulas in cases where they were not known.

Theorem 6.8. Let a, k ∈ L1
loc(R+) be given, with k ∈ C(0,∞). Suppose there

exist b, c ∈ L1
loc(R+) Laplace-transformable functions satisfying (a ∗ c)(t) = t and

(a∗b)(t) = (1∗k)(t) for all t > 0. A Laplace-transformable and strongly continuous
family of bounded and linear operators {S(t)}t>0 is an (a, k)-regularized resolvent

family if and only if limt→0+
S(t)x
k(t)

= x for all x ∈ X and the following functional

equation holds:

b ∗ (1 ∗ S)t(s)x− bt ∗ (1 ∗ S)(s)x
= (c ∗ S)(t)(1 ∗ S)(s)x

+ (1 ∗ S)(t)(c ∗ S)(s)x−
(
c+ ∗2 (S ⊗ S)

)
(t, s)x,

for t, s > 0, and x ∈ X.

Proof. From (6.2) we obtain the equivalent identity

k̂(λ)

â(λ)
Ŝ(µ)x− k̂(µ)

â(µ)
Ŝ(λ)x =

( 1

â(λ)
− 1

â(µ)

)
Ŝ(λ)Ŝ(µ)x.

We multiply the identity by 1
(λ−µ)λµ

, and we obtain that

1

λ− µ

( b̂(λ)
µ

Ŝ(µ)x− b̂(µ)

λ
Ŝ(λ)x

)
=

( ĉ(λ)
µ

+
ĉ(µ)

λ

)
Ŝ(λ)Ŝ(µ)x

− 1

λ− µ

(
ĉ(µ)− ĉ(λ)

)
Ŝ(λ)Ŝ(µ)x.
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Note that

1

λ− µ

( b̂(λ)
µ

Ŝ(µ)x− b̂(µ)

λ
Ŝ(λ)x

)
=

1

λ− µ

(
b̂(λ)

(
(̂1 ∗ S)(µ)x− (̂1 ∗ S)(λ)x

)
−
(
b̂(µ)− b̂(λ)

)
(̂1 ∗ S)(λ)x

)
.

The result follows from Proposition 3.6(i) and formulas (3.5) and (3.6). �

Example 6.9. Set a = gα, with 1 < α < 2 and k = g1. In this case, we can choose
b = c = g2−α to satisfy a ∗ c = g2 and a ∗ b = 1 ∗ k. Therefore we recover the
functional equation(∫ t+s

t

−
∫ s

0

)∫ σ

0

S(τ)x

(t+ s− σ)α−1
dτ dσ

=

∫ t

0

∫ s

0

S(σ)S(τ)x

(t− σ)α−1
dτ dσ

+

∫ t

0

∫ s

0

S(σ)S(τ)x

(s− τ)α−1
dτ dσ−

∫ t

0

∫ s

0

S(σ)S(τ)x

(t+ s− σ − τ)α−1
dτ dσ

(6.8)

developed in [19, Definition 3.1] and cited in the introduction.

Example 6.10. Let a = gα and k = gβ+1 where α > 0, β > −1. In this case we
obtain a new functional equation for (α, β)-ROF families (introduced in [4]) in
contrast with those developed in [15]. See also Example 6.5 for a correction on
the assumptions on α and β. Indeed, we can choose c = g2−α and b = gβ−α+2

under the assumptions 0 < α < 2 and β − α > −2.

7. Examples, applications, and final comments

7.1. Multiplication local regularized families in Lp(R). We consider the
Lebesgue space Lp(R), 1 ≤ p ≤ ∞, and a = gα with α ∈ (0, 2). Define the
multiplication operator

Af(x) := (1 + x+ ix2)α, x ∈ R, f ∈ Lp(R),

withmaximal domain inLp(R). Assume s ∈ (1, 2), δ = 1
s
andKδ(t) = L−1(e−λδ

)(t),
t > 0, where L−1 is the inverse Laplace transform. Then A generates a global
(a,Kδ)-regularized resolvent family in Lp(R). Furthermore, when s = 2 there ex-
ists τ > 0 such that A generates a local (a,K 1

2
)-regularized resolvent family on

[0, τ) (see [9, Example 2.31]). Then we can apply Theorem 4.3, and conclude that
A generates a local (a, (K 1

2
∗a)∗n∗K 1

2
)-regularized resolvent family on (0, (n+1)τ),

for all n ∈ N.

7.2. Local regularized families in sequence spaces. Let l2(N) = {x =
(xm)

∞
m=1 ⊂ C :

∑∞
n=1 |xm|2 < ∞} be the Hilbert space of all square-summable

sequences with the norm ‖x‖ = (
∑∞

n=1 |xm|2)
1
2 . We take τ > 0, and

am =
m

τ
+ i

((em
m

)2

−
(m
τ

)2) 1
2
, m ∈ N,



204 L. ABADIAS, C. LIZAMA, and P. J. MIANA

where i is the imaginary identity. We note that for all n ∈ N, the sequence
(am)

∞
m=1 generates a local n-times integrated semigroup on l2(N) for t ∈ [0, nτ),

see [28, pp. 75–76].
The Mittag–Leffler functions are defined by

Eα,β(z) :=
∞∑
n=0

zn

Γ(αn+ β)
, α, β > 0, z ∈ C.

For short, Eα := Eα,1. We take 0 < α < 2. Observe that the function Eα is a
(gα, 1)-regularized resolvent family.

For any β ∈ R+, (Tα,β(t))t∈(0,βτ), defined by

Tα,β(t)x =
( 1

Γ(β)

∫ t

0

(t− s)β−1Eα

(
(ams)

α
)
xm ds

)∞

m=1
, for x ∈ l2(N),

is a local (gα, gβ+1)-regularized resolvent family on l2(N):
Note that am ∈ C+, the set of imaginary numbers with positive real part. Then

for all s ≥ 0 and 0 < α < 2, | arg(ams)α| ≤ απ
2
. So, the asymptotic expansion in

[3, (1.27)] and the continuity of the Mittag–Leffler function imply that there are
constants c, C such that ceams ≤ Eα((ams)

α) ≤ Ceams. Observe that∥∥Tα,β(t)
∥∥ = sup

m∈N

∣∣∣ 1

Γ(β)

∫ t

0

(t− s)β−1Eα

(
(ams)

α
)
ds
∣∣∣ < ∞

if and only if

sup
m∈N

∣∣∣ 1

Γ(β)

∫ t

0

(t− s)β−1eams ds
∣∣∣ < ∞,

which happens if only if 0 ≤ t < βτ (see [22, Example 1]). It is clear that
{Tα,β(t)}t∈(0,βτ) is strongly continuous and verifies any functional equation asso-
ciated to (gα, gβ+1)-regularized families. The case α = 1 is made in [22].

7.3. A new class of regularized families without jumps of regularity. Let
0 < τ ≤ ∞ and b ∈ L1

loc(R+). We define a = b ∗ b. Suppose that {R1(t)}t∈(0,τ)
is a local (a, a)-regularized resolvent family generated by A, such that A verifies
condition (H5) of [9] (e.g., A densely defined). Then, by [9, Theorem 2.34], we
have that

A ≡
(
0 I
A 0

)
is the generator of a local (b, b∗3)-regularized resolvent family {S1(t)}t∈(0,τ) given
explicitly by

S1(t) =

(
(b ∗R1)(t) (a ∗R1)(t)

R1(t)− a(t)I (b ∗R1)(t)

)
, 0 < t < τ.

Now, we suppose that there is a c ∈ L1
loc(R+) Laplace-transformable such that

c is absolutely continuous, differentiable a.e., and such that (c′)+ is 2-Laplace-
transformable, and satisfying (a∗c)(t) = 1 for all t > 0. Then we conclude that A
generates a global (a, a)-regularized resolvent family {R(t)}t∈(0,∞) which extends
{R1(t)}t∈(0,τ), see Theorem 5.1. Then, we can extend {S1(t)}t∈(0,τ) without loss
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of regularity; that is, A generates a global (b, b∗3)-regularized resolvent family
{S(t)}t∈(0,∞) given by

S(t) =

(
(b ∗R(t) (a ∗R)(t)

R(t)− a(t)I (b ∗R)(t)

)
, 0 < t.

In the particular, case b = gα
2
with 0 < α < 1, a = gα and {R1(t)}t∈(0,τ) be a local

(gα, gα)-regularized resolvent family generated by A, we can extend {S1(t)}t∈(0,τ)
without loss of regularity; that is, A generates a global (gα

2
, g 3α

2
)-regularized

resolvent family {S(t)}t>0 such that S(t) = S1(t) for 0 < t < τ .

7.4. Applications to obtain new functional equations. We give several ex-
amples of the abstract results in Section 6. They show that we can recover, extend
and produce new functional equations that in some cases are interesting for their
own nature.

Example 7.1 (C0-semigroups). Choose a(t) = 1 and k(t) = 1 for t > 0. Then, for
x ∈ X, we obtain∫ t

0

∫ s

0

S(τ1)S(τ2)x dτ2 dτ2

=

∫ t+s

t

∫ r

0

S(τ)x dτ dr −
∫ s

0

∫ r

0

S(τ)x dτ dr, t, s > 0.

Taking the derivative one time with respect to the variable t we obtain

S(t)

∫ s

0

S(τ2)x dτ2 =

∫ t+s

0

S(τ)x dτ −
∫ t

0

S(τ)x dτ, t, s > 0,

which was introduced in [17, Example 3.4]. Hence taking the derivative with
respect to the variable s we get the Cauchy formula S(s)S(t) = S(t+s). Observe
that in this way we deduce easily Cauchy’s functional equation from the formula
in Theorem 6.1.

Example 7.2 (Cosine families). Choose a(t) = t and k(t) = 1 for t > 0. Then, for
x ∈ X and t, s > 0 we have∫ t

0

∫ s

0

(t+ s− r1 − r2)S(r1)S(r2)x dr2 dr1 =
(∫ t+s

t

−
∫ s

0

)∫ r

0

(r− τ)S(τ)x dτ dr.

To see directly why the above formula is equivalent to the D’Alembert functional
equation S(t + s) + S(|t − s|) = 2S(t)S(s) we proceed as in the above example,
first taking derivative with respect to the variable t, to obtain

S(t)

∫ s

0

(s− r2)S(r2)x dr2 +

∫ t

0

S(r1)

∫ s

0

S(r2)x dr2 dr1

=

∫ t+s

0

(t+ s− τ)S(τ)x dτ −
∫ t

0

(t− τ)S(τ)x dτ,

and then taking derivative with respect to the variable s, to have

S(t)

∫ s

0

S(r2)x dr2 +

∫ t

0

S(r1)S(s)x dr1 =

∫ t+s

0

S(τ)x dτ, t, s > 0.
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By [21, Theorem 2], the above functional equation is equivalent to the cosine
functional equation.

Example 7.3 (Convoluted semigroups). Choosing a(t) = 1 for t > 0 and k ∈
C2(R+) and proceeding as in the above examples, we obtain a new functional
equation for convoluted semigroups:

S(t)S(s)x = k(0)S(t+ s)x+ k′(0)

∫ t+s

0

S(τ)x dτ − k′(s)

∫ t

0

S(τ)x dτ

− k′(t)

∫ s

0

S(τ)x dτ +

∫ t+s

t

k′′(t+ s− r)

∫ r

0

S(τ)x dτ dr

−
∫ s

0

k′′(t+ s− r)

∫ r

0

S(τ)x dτ dr,

for t, s > 0 and x ∈ X. Setting k(t) := (1 − ε) + εt for 0 ≤ ε ≤ 1, and t ≥ 0,
this formula shows an interesting fact: How continuously moves the functional
equation from the case of semigroups to the case of 1-times integrated semigroup
as ε varies from 0 to 1:

S(t)S(s)x = (1− ε)S(t+ s)x+ ε
((∫ t+s

t

−
∫ s

0

)
S(τ)x dτ

)
, t, s > 0, x ∈ X.

Example 7.4 (Resolvent families). Now we take k(t) = 1 for t > 0; a ∈ C2(R+)
and we proceed as above. We get this (new) functional equation:

a(0)S(t)S(s)x+ S(t)

∫ s

0

a′(s− τ)S(τ)x dτ + S(s)

∫ t

0

a′(t− τ)S(τ)x dτ

+ 2

∫ t

0

∫ s

0

a′′(t+ s− r1 − r2)S(r1)S(r2)x dr2 dr1

= a(0)S(t+ s)x+

∫ s

0

a′(t+ s− τ)S(τ)x dτ,

for x ∈ X. For 0 ≤ ε ≤ 1, we set a(t) := (1− ε) + εt, and we see how the formula
continuously moves from the semigroup to the cosine family cases when ε goes
from 0 to 1:

(1− ε)
[
S(t)S(s)x−S(t+ s)x

]
= ε

[∫ t+s

0

S(τ)x dτ −
∫ s

0

S(τ)x dτ −
∫ t

0

S(τ)x dτ
]
,

for x ∈ X. Note the intriguing case ε = 1/2 where the difference between both
functional equations is the same, which indicates that in some suitable norm the
study of the topology of the set of all functional equations satisfying (1.4) should
be relevant.
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