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ABSTRACT. In this paper, we give the generalizations of Jessen’s inequality,
Holder’s inequality, the converse Jessen inequality, and the Jessen—Mercer in-
equality for superquadratic functions of several variables. We also give appli-
cations of the obtained inequalities to time-scale integrals.

1. INTRODUCTION

Recently, the concept of superquadratic functions in one variable was intro-
duced by S. Abramovich, G. Jameson, and G. Sinnamon in [3], and in several
variables by S. Abramovich, S. Bani¢, and M. Matié in [1].

Let R™ be the Euclidean space, x,y € R™, and let f be the function defined
on X C R™. Throughout the paper, we use the following notation:

X:<I1,Jf2,...7$m), y:(yl)y27“'7ym)7

Xy = (T1Y1, TaY2y - -+ » TenYm)s |x| = (\;1:1\, |zal, ..., |:1:m\),

(x,y) = ny VE = (0if(x), Dof (%), - .., Onf(x)).
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Also, x <y (x < y) means that z; < y; (z; <y;) forall j =1,2,...,m. The
null vector is denoted by 0. The subsets K, and K, in R™ are defined by

Kn=10,00)" ={x € R":0 < x}, K} =(0,00)" ={x€R":0 < x}.

Definition 1.1 (see [1, Definition 1]). A function ¢ : K,, — R is said to be
superquadratic if, for every x € K,,, there exists a vector c¢(x) € R™ such that

oly) > o(x) + (c(x),y = x) + ¢(ly — x]) (1.1)

holds for all y € K,,. The function f is said to be strictly superquadratic if (1.1)
is strict for all x # y.

p

For example, the function ¢(x) = > ", 2% is superquadratic on K, for all

p > 2 (see [1, Example 1]), and ¢(x) = —(>_1", xf)% is superquadratic on K,
for all p > 1 (see [, Example 3]). A superquadratic function may or may not be
convex. In the case of nonnegative functions, Definition 1.1 is a refinement of the

definition of convex functions.

Lemma 1.2 ([1, Lemma 1]). Let ¢ be a superquadratic function with c(x) =
(c1(x), ca(X), ..., cm(x)) as in Definition 1.1. Then we have the following:

(i) ¢(0) < 0;
(ii) if ¢(0) = V(0) = 0, then cj(x) = 0;f(x) whenever 0;f(x) exists for
some index j =1,2,....,m, at X € K,;;;

(iii) of ¢ > 0, then ¢ is convex and p(0) = V(0) = 0.

Jessen’s inequality (1931) is a generalization of the well-known Jensen’s inequal-
ity for positive linear functionals. There are many improvements and variants of
Jensen’s inequality and Jessen’s inequality in the literature. In this paper, we
give generalizations of the following Jessen-type inequalities for superquadratic
functions. For this, first we give the definition of positive linear functionals.

Definition 1.3. Let E be a nonempty set, and let L be a linear class of real-valued
functions f : E — R having the following properties:

(Ly) If f,g € L and a,b € R, then (af + bg) € L.
(Ly) 1 € L; that is, if f(t) =1forallt € E, then f € L.

A positive linear functional is a functional A : L. — R having the following
properties (see [11, p. 47]):

(A1) If f,g € L and a,b € R, then A(af + bg) = aA(f) + bA(g).

(Ay) If f € L and f(t) > 0 for all t € E, then A(f) > 0.

If, additionally, the condition A(1) = 1 is satisfied, then we say that A is a positive
normalized linear functional.

Sums and Lebesgue integrals are the most familiar examples of positive linear
functionals. In [4] it is shown that time-scale integrals, including the Cauchy, Rie-
mann, Lebesgue, multiple Riemann, multiple Lebesgue delta, nabla, and
diamond-« time-scale integrals also satisfy the properties of positive linear func-
tionals.
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Theorem 1.4 ([6, Theorem 10]). Let L satisfy conditions (Ly), (La), and let A
satisfy conditions (Ay) and (Ay) on a nonempty set E. Suppose that w € L with
w > 0 and A(w) > 0 and that ¢ : [0,00) — R is a continuous superquadratic

function. Then, for all nonnegative f € L such that wf,we(f), we(|f — A(wf)
1|) € L, we have

(Aeply _ Aws(s) = A - Awl) q)))
A(w) / — A(w) '

Theorem 1.5 ([6, Theorem 15]). Let L satisfy conditions (Ly), (Ls), and let A
satisfy conditions (A1) and (As) on a nonempty set E. Let w € L be a nonnegative

function. Suppose that ¢ : [0,00) — R is a superquadratic function. Then, for
every f € L, f: E — [m, M] C [0,00) such that wf,w(po f) € L, we have

Afwe(n) + A, < LA Z2WI) ) | AWDZMAW
where

L A((Mw — wf)plf 1)+ (f (M -1~ )

Theorem 1.6 ([2, Theorem 2.3]). Let L satisfy properties (Ly), (Ls) on a non-
empty set E; let ¢ : [0,00) — R be a continuous superquadratic function; and
let 0 <m < M < oo. Assume that A is an isotonic linear functional on L with
A(l) =1. If g € L is such that m < g(t) < M for allt € E and such that

w(9), p(m+ M — g),(M — g)p(g —m), (g —m)e(M — g),¢(|lg — Alg)|) € L,
then we have
go(m—l—M—A(g))

< p(m) + (M) — A(e(g))
i i —A((g = m)e(M = g) + (M = g)p(g —m)) — A(#(|lg — Al9)]))-

A, =
M

2. (GENERALIZATION OF JESSEN’S INEQUALITY
Let L™ be the linear class of functions f : £ — R™ such that
f(t) = (f1(t),..., fm(t)), fi) e L,i=1,...,m

For a given linear functional A, we consider the linear operator A = (A, ..., A)
L™ — R™ defined by

A(F) = (AN, -, Alfm))- (2.1)
If A(1) =1 is satisfied, then using (A) we also have
A(@(F)) = o(A()) (2:2)

for every linear function ¢ on R™.
In the following theorem, we obtain the generalization of Jessen’s inequality
for superquadratic functions (Theorem 1.4).
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Theorem 2.1. Let L satisfy conditions (L) and (Lz) on a nonempty set E; let
A satisfy conditions (A1) and (As); and let A be defined as in (2.1). Assume that
¢ € C(K,, R) is superquadratic and that w € L with w > 0 and A( ) > 0. Then,

for all £ € L™ such that £(F) C K, and wf;, we(f), we(|f — A(w) -1]) € L, we
have i
A(wf)y _ Alwp(£)) = Alwp(|f — 555 - 11)
( A(w) )< A(w) ‘ (2:3)

Proof. Suppose that ¢ is continuous and superquadratic on K,,. Since (1.1) holds
for all x,y € K,,, by substituting
A(wf)

= = f
X Aw) and y

n (1.1), we get
o(f) > go(’if(‘fuf))) +<c(’il((fuf))),f wf)>+<p< £ wf) ) (2.4)

Now multiplying inequality (2.4) by the function w and then applylng the func-
tional A, we obtain

A(“’SO(f)) > A(w)¢<A(wf)> + A<w<c<;1<wf)>,f — A(wf) >>

A(w) ] A(w) A(w) (2.5)
wa(we(e -5 )
Let R
c(if&?) = (¢1,...,Cn) and f=(f1, -, fm)
Then ~ ] )
Ao G - S0) = Al (- 5 o
Now by dividing (2.5) with A(w), we get
w (wf)y | Alwe(f = 580)))
A(A(fu()f i “0<é1((wf))> - A(w)A( —
which is the required result. O

Remark 2.2. In Theorem 2.1, if ¢ is a nonnegative superquadratic function, then
it is convex and A(p(|f — A(f)|)) > 0. In this case, we get the refinement of
McShane’s inequality (see [11, Theorem 2.6]):

A(wf)y _ A(we(f))
( A(w) )< Aw)

As a consequence of Theorem 2.1, we obtain the following generalization of
Holder’s inequality for superquadratic functions.
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Corollary 2.3. Let L satisfy properties (Ly) and (Ly) on a nonempty set E, and
let A satisfy conditions (A1) and (As). Suppose g = (g1,...,9m) € L™ such that
g(FE) C K, and h € L such that h > 0 and A(h) > 0. If p > 2 and q is defined
by L +1=1, then
P
— ’ — Alhgi) |p
p , Py _

D] k. 20)

gi—ht!

Proof. Let ¢(x) = >.i* 2%, where p > 2 and x = (z1,22,...,2,) € K, in
Theorem 2.1. Then inequality (2.3) becomes

?)

L A(wfi)\P Aw ™ P — Aw " |fi_A(wu{i)
Z( - ) < - ! Aw)

A(w) A(w)
m D A(wf;) (27)
B Zz’:l(A(wfi ) - A(w|fi ~ TA(w) p))
B A(w) '

Now, by applying the substitution f; = h_%gi and w = h? in (2.7), we get

™ A(hg)\e . o (AlgD) — A((lg: — hit A% |yr))
;(A(hq)) = A(h) B

By multiplying this inequality with AP(h?) and then taking the power 1/p, we
get (2.6). O

Remark 2.4. If we take m = 1 in Corollary 2.3, then inequality (2.7) is equivalent
to the functional Holder inequality given in [6, Theorem 13].
3. GENERALIZATION OF THE CONVERSE JESSEN INEQUALITY

In this section, we give the generalization of the converse Jessen inequality for
superquadratic functions (Theorem 1.5) on convex hulls in K,,, C R and analogue
results for k-simplices in K,,. The convex hull of vectors xi,...,x, € R¥ is the

set
n n
{Zaixi (IZ‘GR,OéiZO,ZCYZ‘:l}
i=1 i=1

and it is represented by K = co({xy,...,x,}). Barycentric coordinates over K
are continuous real functions Ay,..., A\, on K with the following properties:

Ai(x) >0,i€{1,...,n}, Z Ai(x) =1 and x= Z/\i(x)xi. (3.1)

If xo — x1,...,x, — x; are linearly independent vectors, then each x € K can
be written in a unique way as a convex combination of x;,...,X, in the form
(3.1). We also consider the k-simplex S = co({vy,...,Vvgy1}) in R, which is a
convex hull of its vertices vi,...,vgy1 € R¥, where vertices Vo — Vi,..., Vi1 —
vi € R¥ are linearly independent. In this case, we denote a k-simplex by S =
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[Vi,...,Viy1]. The barycentric coordinates A, ..., Agy1 over S are nonnegative
linear polynomials that satisfy Lagrange’s property:

1 =7,

Therefore, it is known that, for each x € S, the barycentric coordinates \;(x),
-« vy Akt1(x) have the form

Vol o
)\1(X) _ o k([xa V2, 7Vk+1])’
Vol o
)\Q(X) _ O k([VbXa 7Vk+l])’
' Vol ([v1, va, . .., Vi, X])
A —
(%) Vol (S) ’
where Vol, denotes the k-dimensional Lebesgue measure on S. Here, for example,
[V1,X,..., Vg1 denotes the subsimplex obtained by replacing v by x.
In other words, we see that the barycentric coordinates \q, ..., \xy1 for each

x € S can be presented as the ratios of the volume of the subsimplex with one
vertex in x and the volume of S.
The signed volume Vol (S) is given by the (k+ 1) x (k4 1) determinant

1 1 . 1
1 V11 V21 Uk+1,1
Vol (S) = ] U.12 0?2 Uk—&‘-l,Q 7
Uik U2k cee U1k
where vi = (v11, V12, -+ -, V1k), - - - Vier1 = (Ukt1,15 Vk1,25 - - -, U1k ) - Since the vec-
tors vo — vy,..., Vi1 — vy are linearly independent, each x € S can be written
in a unique way as a convex combination of vy,..., vy in the form
_ Vol ([x, v, . .. avk-i-l])w Voli([vi,x, ... ,Vk+1])v
Vol (S) ! Vol (S) ?
Voli([v1, va, - . . ,Vk,X])V
Voly,(S) i
Theorem 3.1. Let L satisfy conditions (L) and (Ly) on a nonempty set E,
and let A be a positive normalized linear functional. Let Xq,...,x, € K,,, K =
co({X1,...,Xn}), and Ay, ..., A, be barycentric coordinates over K. Assume that

¢ € C(K,,R) is superquadratic. Then, for all f € L™ such that £(E) C K, and
ef), () e L (i=1,...,n), we have
)) (3.2)

Alp(0) < 3 ANMDR) = > A(M(E)e(

i=1
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Proof. By using the properties of barycentric coordinates, we have

n

N(F() > 0,5 € {1,...,n}, Z/\i(f(t))zl and  f(t) =Y N (£(t))x:.

=1

Suppose that ¢ is superquadratic on K,,. Then

o) = (3 At

. . . (3.3)
< SN pxi) = DM (EB) o (|xi = 3o A(E®)xi)).
i=1 i=1 i=1
Now, by applying the functional A, we get (3.2). O

In next result, we give an analogue of the Theorem 3.1 for superquadratic
functions defined on k-simplices.

Corollary 3.2. Let L satisfy conditions (L) and (Ly) on a nonempty set E;
let A be a positive normalized linear functional; and let A be defined as in (2.1).
Let S = [vi,..., V1] be a k-simplex in K,,, and let Ay, ..., A\pr1 be barycentric
coordinates over S. Assume that ¢ € C(S,R) is superquadratic. Then, for all
f e L™ such that £(E) C S, and p(f),\(f) e L (i=1,...,k+ 1), we have

)

k+1 k+1 k+1

A(@(f)) < Z A()\i(f)@(vz‘)) - ZA<)\i(f)90< Vi — Z Ai(£) v

Vol ([A(F), var ... Vi)

Vol (S) plna) - (3.4)
Volu([v, Va, ..., vis AE)) |
Voln(S) (Vi)

=SS a(u o )).

Proof. The proof is analogous to the proof of Theorem 3.1 with

k+1
i=1

1 1 ... 1

1 fi(t) var  wgyin

k!

A (f(t)) _ Vol ([£(t), va, ..., Vii1]) _ Folt) vak e Vks1
1 VOlk(S) Uil v; vk+11 1 ’
1 | v12 v22 Vkt1,2
k!

Uik V2k -+ Vk+1,k
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1 1 .. 1
L | v v f1(t)
T :
Vol ([v1, va, . .., vk, £(1)]) v1k Vo oo fi(t)
Akt (f(t)) = Vol (S) - 1 1 .. 1
V11 V21 Vk41,1

V12 V22 Vk+41,2

=[=

Uik V2k -+ Vk+1,k

and

1 1 ... 1
A(f1) v21 Vk41.1

=[=

AC) vop o vnarn | Vola([A(F), va, - .., Vied])
AMD) = —7T T = Vol (S) ’
V11 V21 Vk+1,1
1 V12 V22 Vk+41,2

Vik V2k - Vk+41,k

1 1 ... 1
vir va1  A(f1)

[

Uik U;k A(:fk) VOlk([Vh Vo, ..., Vg, /I(f)])
A (f)) = 11 .. 1| Vol,(S) '

V11 V21 Vk+1,1
1 | V12 V22 Ug41,2

O

Uik V2k - Vk+41,k

Remark 3.3. Let f € L be such that f(F) C I = [m, M]. Since the interval [ is
a 1-simplex with vertices m and M, the barycentric coordinates have the special
form

Al(f(t)):%%]ig) and M(f(t)):%. (3.5)

In this case, Corollary 3.2 is equivalent to Theorem 1.5.

4. GENERALIZATION OF THE JESSEN—MERCER INEQUALITY

In this section, we give the generalization of the Jessen—Mercer inequality for
superquadratic functions (Theorem 1.6) on convex hulls in K,,, C R¥ and analogue
results for k-simplices in K,, C R*.

Theorem 4.1. Let L satisfy conditions (L) and (Ly) on a nonempty set E; let
A be a positive normalized linear functional; and let A be defined as in (2.1).
Let x1,...,%x, € K, K = co({x1,...,X,}), and let \y,..., A\, be barycentric
coordinates over K. Suppose that ¢ € C(K,,,R) is superquadratic and f € L™
such that £(E) C K and o(f),\;(f) € L (i =1,...,n). If p1,...,p, are positive
real numbers with P, = Y, p;, satisfying the condition

pi>1 foralli=1,...,n,
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then we have

@(Z?:l PiXi — A(ﬂ) < > i Pip(xi) = Do A(E))p(xi)
P, -1 - P, -1

S (s — AQ(E)) (i — ZimipesA))

P,—1

Proof. By using the properties of barycentric coordinates, we have

MED) > 00 (Lo}, SONED) =1 and (1) = YA

Suppose that ¢ is superquadratic on K,,. Then

1) = (3 A0

X; — Z Ai(£())x;

=1

).

< DN(ED)px) — Do) o

Now, by applying the functional A, we get

Ap(f)) < Z AN (£(1))o(x)

- Z A(Ai (f(t))so( X; — i X (F(1))x;

=1

))

where

iA(Ai(f@))) = A(i M) =1 and A((E®)) <1

Also, we have

Now we can write

Y pxi— A) YL pixi — 3 ANE®)x

P, -1 P, -1

_ i = ANE))x
P,—1 :

Since

Zﬁ:l(pl;)nf(i\l(f@)))) =1 and  p; > 1> A(N(F(1))),

the expression
> i1 (pi — AN(E(2)))
P,—1

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)
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is a convex combination of x5, ...,x, and belongs to K. Since ¢ is superquadratic
on K, we have

¢(2?1 DiX; — A(f))

¥

(Z? 1 (pi — A(/\i<f(t))>>xi>

P,—1 P, -1
= 2= ANEM))p(x)
- P,—1 ]
S (g — ANE)))p(|x; — Zi=pxA@))
B P, —1 U

Corollary 4.2. Let L satisfy conditions (L) and (Lz) on a nonempty set E;
let A be a positive normalized linear functional; and let A be defined as in (2.1).
Let S = [vy,...,Vki1] be a k-simplex in K,,, and let Ay, ..., \py1 be barycentric
coordinates over S. Assume that ¢ € C(S,R) is superquadratic. Then, for all
f e L™ such that £(E) C K and o(f),\;(f) e L (i =1,...,k+ 1), we have

S0<(l~f+ DY vi - fl(f)>

k
k+1 k+1 ,
< (k+1) > e(vi) kZ L A(E))p(x4) (4.7)
L,
X = Aty — E=A0))
k
Proof. By considering x; = v, and p;, = 1,4 = 1,...,k + 1, in Theorem 4.1,
inequality (4.7) easily follows from (4.1). O

5. APPLICATIONS ON TIME-SCALE INTEGRALS

A time scale T is an arbitrary closed subset of R. Time-scale calculus provides
unification and extension of discrete and continuous analysis. For example, when
T = R, the time-scale integral is an ordinary integral, and when T = Z, the
time-scale integral becomes a sum. Here, we give a brief introduction of time-scale
integrals; for a detailed introduction we refer the reader to [7], [8], [9] and [10].
In [8], the multiple Lebesgue delta integral is defined in the following way.

Let T;,s = 1,...,n, be time scales, and let

A”:']I‘lxX']I‘n:{t:(tl,,tn)tze'ﬂ'z,lgzgn}

be an n-dimensional time scale. Let f: E — R be a A-measurable function, where
E C A" is A-measurable. Then the corresponding A-integral, called the Lebesgue
A-integral, is denoted by

/ftl,..., VAL At /Ef(t)At
[raws o[ fOaus

where pa is a o-additive Lebesgue A-measure on A™. By [8, Section 3|, all the-
orems of the general Lebesgue integration theory hold also for the Lebesgue
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A-integral on A™. Throughout this section, we consider E to be a A-measurable
subset of A™. Also, if f(t) = (f1(t),..., fu(t)) is an n-tuple of functions such that
the fi,..., f, are Lebesgue A-integrable on E, then [ 5 fdua denotes the n-tuple

(/Efld,uAa--'a/EfndﬂA)§

that is, the A-integral acts on each component of f.

The following results easily follow from the results given in Sections 2, 3, and 4,
respectively, by using the fact that the multiple Lebesgue A-integral is a positive
linear functional.

Corollary 5.1. Assume that ¢ € C(K,,,R) is superquadratic and that w is
a A-integrable function such that w > 0 and wad,uA > 0. Then, for all
A-integrable functions £ such that £f(E) C K, and wf;, wp(f) are A-integrable,
we have

wf d
(wafd/LA> < wa@(f)dﬂA _waQO“f_ % : 1‘)d,UA.
Jpwdpa /7~ Jpwdpa

Remark 5.2. Corollary 5.1 gives a generalization of Jensen’s inequality on time
scales for superquadratic functions (see [5, Theorem 2.5]).

Corollary 5.3. Let g;, i = 1,...,m be A-integrable, and let g = (g1, -, 9m)
such that g(E) C K,,. Let h be A-integrable such that h >0 and [, hdpa > 0.
If p > 2 and q is defined by % +% =1, then

1

(35 )
< [g(égfdﬂa—/E deAﬂ;(/thdmf.

Remark 5.4. Corollary 5.3 gives a generalization of Holder’s inequality on time
scales for superquadratic functions (see [5, Theorem 3.2]).

_ A<hgi)
. pg—1I\IY
gi —h A

Corollary 5.5. Let x1,...,%X, € Kp,; let K =co({x1,...,X,}); let A\,..., \, be
barycentric coordinates over I ; and let [, 1dua = 1. Assume that € C(Kp,,R)
is superquadratic. Then, for all A-integrable functions f such that £(E) C K, and
o(f), \i(f) (1 =1,...,n) A-integrable, we have

/E p(f) dua < ; /E i (F) () dpa

- Zn:/E/\i(f)cp( X; — Zn:/\i(f)xi

Corollary 5.6. Let S = [vy,...,Vii1] be a k-simplex in K,,; let Ay, ..., A\py1 be
barycentric coordinates over S; and let [, 1dpa = 1. Assume that ¢ € C(S,R)

) dua.
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is superquadratic. Then, for all A-integrable functions f such that f(E) C S, and
o), N(f) t=1,...,k+ 1) A-integrable, we have

/ f)dua < %/ o(vi) d/M-%/ _g)\i(f)

~ Vol([[f5 fdpa, va, .., Viga]) (

\¢ ) dpa

Volk(S) V1) + .-

Vol ([v1,va, ..., Vi, [ fdual)
Volr(5) (Vi)
_ Z / vim Y M) ) dua.

Remark 5.7. Corollaries 5.5 and 5.6, gives generalizations of the converse Jensen
inequality on time scales for superquadratlc functions (see [5, Theorem 6.2]).

Corollary 5.8. Let x1,...,%X, € Kp,; let K =co({x1,...,X,}); let A\,..., \, be
barycentric coordinates over K ; and let fE Ldua = 1. Suppose that ¢ € C(K,,, R)
is superquadratic and that £ is A-integrable such that f(F) C K and o(f), A;(f)
(1=1,...,n) are A-integrable. If p1,...,p, are positive real numbers with P, =
> iy Di, satisfying the condition

pi>1 foralli=1,...,n,

then we have

(Z?:1pixi — fEfd,uA>

2 P 1
Zz lpzSO Xz - z le d,uA¢ Xz)
P,—1
i pixi— [ fd

fE d,uA) (|X7, — zlflppn_{E Ba D

P, -1 .

<

Corollary 5.9. Let S = [vy,..., V1] be a k-simplex in K,,; let Ay, ... Apy1 be
barycentric coordinates over S; and let [, 1dua = 1. Assume that ¢ € C(S,R) is
superquadratic. Then, for all A-integrable £ such that £f(E) C K and p(f), \;(f) €
L@G=1,....k+1), we have

( ) Z’L 1 Vi — fE fd:u
90( i A)
_ B DY o(vi) = S [ NlE) dpap(x)

k+1 1 - fE d,uA <|Vz . Zi‘:—f Vz;fE fdua |)
. .
Remark 5.10. Corollaries 5.8 and 5.9, gives generalizations of the Jensen—Mercer
inequality on time scales for superquadratlc functions (see [5, Theorem 5.2]).
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Remark 5.11. The above corollaries also hold for many other time-scale integrals,
such as Cauchy, Riemann, Lebesgue, multiple Riemann, multiple Lebesgue delta,
nabla, and diamond-a time-scale integrals, as we know that these integrals are
isotonic linear functionals.

10.

11.
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