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Abstract. The aim of this paper is to describe the operators between spaces
of continuously differentiable functions whose adjoint preserves extreme points.
It is important to mention that no condition regarding injectivity or surjectivity
of the operators is assumed. Previously known results characterizing surjective
isometries can be immediately derived from such descriptions.

1. Introduction and preliminaries

Let K1 be a compact Hausdorff space, and let C(K1) be the space of scalar-
valued continuous functions defined on K1 endowed with the uniform norm.
A well-known result of Arens and Kelley [3] describes the extreme points of the
closed unit ball of the dual of C(K1) as the functions of the form αδs, where α
is a scalar with |α| = 1 and δs is the evaluation functional at an arbitrary point
s ∈ K1.

The scalar field (R or C) is denoted hereafter by K.
If K is identified with the space of continuous functions defined on a com-

pact Hausdorff space K2, reduced to a point, then the mappings αδs match the
weighted composition operators T : C(K1) → C(K2) given by

(Tf)(t) = e(t)f
(
ϕ(t)

)
, for any f ∈ C(K1) and t ∈ K2, (1.1)

Copyright 2016 by the Tusi Mathematical Research Group.
Received Mar. 21, 2015; Accepted Apr. 15, 2015.
*Corresponding author.
2010 Mathematics Subject Classification. Primary 46B20; Secondary 46E15.
Keywords. linear isometry, nice operator, continuously differentiable function space.

96

http://dx.doi.org/10.1215/17358787-3319442
http://projecteuclid.org/bjma
http://projecteuclid.org/publisher/euclid.publisher.tmrg


DIFFERENTIABLE FUNCTIONS AND NICE OPERATORS 97

where e : K2 → K and ϕ : K2 → K1 are (continuous) functions with |e(t)| = 1,
for every t ∈ K2.

If K1 and K2 are arbitrary compact Hausdorff spaces, then a linear and con-
tinuous operator T : C(K1) → C(K2) is of the form of (1.1) if and only if the
adjoint of T maps every extreme point of the closed unit ball of C(K2)

∗, the dual
of C(K2), to an extreme point of the closed unit ball of C(K1)

∗. This kind of
behavior leads to the concept of nice operators.

Given a normed space X, the symbols BX and SX stand for the closed unit
ball and the unit sphere of X, respectively:

BX =
{
x ∈ X : ‖x‖ ≤ 1

}
, SX =

{
x ∈ X : ‖x‖ = 1

}
.

We use the abbreviation EX to refer to the set of extreme points of BX . As usual,
if A ⊂ X, then the linear span of the set A will be written in the form spanA.
By means of X∗ we will express the dual Banach space of X.

If Y is also a normed space over the same field K, then L(X,Y ) will denote
the space of linear and continuous mappings from X into Y , provided with the
operator norm. According to custom, we write L(X) instead of L(X,X). For each
T ∈ L(X,Y ), the adjoint of T is denoted by T ∗.

An operator T ∈ L(X,Y ) is said to be nice if T ∗(EY ∗) ⊂ EX∗ . This notion
first appeared in [16]. But, without an explicit designation, such operators had
been considered previously in [5].

Any surjective linear isometry (and in particular the identity mapping on every
normed space) is a nice operator. Moreover, each nice operator T : X → Y is
an extreme point of BL(X,Y ). Regarding this last comment, it should be noted
that the elements of the set EL(X,Y ) are known as extreme operators or extreme
contractions.

The two important references already mentioned—[5] and [16]—later gave rise
to remarkable contributions to deepen the study of extreme operators and their
connection with nice operators. Early works on this subject include results as in-
teresting as those obtained by Sharir in [21] and the references therein. Originally,
extreme operators emerged within the context of continuous function spaces, but
they have also been studied in L1(µ)-spaces (see [20]), lp-spaces (see [4], [12], [13]),
and some other structures (see [10], [22], [14]). Some spaces of vector-valued func-
tions have also been considered (see [1], [2]). More recent contributions can be
found in [7], [6], [15], [17], and [8]. The survey [19] deserves special mention by
virtue of its excellent exposition.

The study of the interplay between nice operators and isometric isomorphisms
is the goal of [17]. In particular, it is shown that there exist of infinite-dimensional
Banach spaces X such that any nice operator T ∈ L(X) is an isometric isomor-
phism. The reference [17] also contains a description of the nice operators between
spaces of continuously differentiable functions with respect to two natural norms.

Now let K be a compact interval of R, and let C1(K) be the vector space
of scalar-valued continuously differentiable functions defined on K. Given x ∈
C1(K), by putting

p(x) = max
{
‖x‖∞, ‖x′‖∞

}
,
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q(x) = max
{∣∣x(t)∣∣+ ∣∣x′(t)∣∣ : t ∈ K

}
,

r(x) = ‖x‖∞ + ‖x′‖∞,

three equivalent norms on C1(K) are obtained which make this space into a
Banach algebra. The study of nice operators between continuously differentiable
function spaces performed in [17] specifically contemplates the norms p and q.

As we have already suggested, from the topological point of view, there is no
distinction between norms p, q, and r. However, their geometrical behavior differs
markedly.

The main purpose of this paper is to describe nice operators between spaces of
continuously differentiable functions endowed with norms of type r. The results
are formally similar to those obtained previously for the norms p and q, but
the proofs must overcome many additional hurdles of considerable difficulty. The
operators we are going to examine need not be injective or surjective. Therefore,
our results contain, as a particular case, the description of surjective isometries
between C1(K)-spaces, which can be found in [9], [11], and [18].

Below we will make some additional comments on the notation to be used. As
is customary, we will write

T =
{
α ∈ K : |α| = 1

}
.

The length of a compact interval K of R will be denoted by l(K). On the other
hand, uK and iK will stand for the elements of C1(K) defined by

uK(t) = 1, iK(t) = t, for every t ∈ K.

If t ∈ K, we will also consider the functions δt and δ
′
t, from C1(K) into K, defined

by

δt(x) = x(t), δ′t(x) = x′(t), for every x ∈ C1(K).

Concerning these functionals, we define the following sets:

∇K = {δt : t ∈ K} and ∇′
K = {δ′t : t ∈ K}.

The next basic result contains Proposition 1 of [17] as a special case.

Proposition 1.1. The set ∇K ∪∇′
K is linearly independent and, in particular,

span∇K ∩ span∇′
K = {0}. (1.2)

Consequently, given n ∈ N, αi, βi ∈ T, and ti, si ∈ K, for every i ∈ {1, . . . , n},
the vectors

α1δt1 + β1δ
′
s1
, . . . , αnδtn + βnδ

′
sn

are linearly independent if t1, . . . , tn, or s1, . . . , sn, are pairwise different.

Proof. Let us see first that span∇K ∩ span∇′
K = {0}. To this end, consider

n,m ∈ N, α1, . . . , αn, β1, . . . , βm ∈ K and t1, . . . , tn, s1, . . . , sm ∈ K such that

α1δt1 + · · ·+ αnδtn = β1δ
′
s1
+ · · ·+ βmδ

′
sm . (1.3)
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One can assume that ti 6= tj and si 6= sj, for any i, j ∈ {1, . . . ,m} with i 6= j. Fix
a natural number j0 ≤ m. If sj0 /∈ {t1, . . . , tn}, then define η ∈ C1(K) as follows:

η(t) =
n∏
j=1

(t− tj)
∏
j 6=j0

(t− sj)
2.

On the contrary, if sj0 ∈ {t1, . . . , tn}, then η will be the function given by

η(t) =
∏
tj 6=sj0

(t− tj)
∏
j 6=j0

(t− sj)
2.

In addition, let x ∈ C1(K) be defined by x(t) = (t − sj0)η(t), for every t ∈ K.
In any of the above cases, x(tj) = 0, for every j ∈ {1, . . . , n}, and x′(sj) = 0, for
every j ∈ {1, . . . ,m}\{j0}. It is also clear that x′(sj0) = η(sj0) 6= 0. By virtue
of (1.3), βj0x

′(sj0) = 0 and hence βj0 = 0. This concludes the proof of (1.2) and
shows the linear independence of the (pairwise different) functionals δ′s1 , . . . , δ

′
sm .

(Note that, in the above argument, we could have considered α1 = · · · = αn = 0.)
Moreover, the linear independence of the functionals δt1 , . . . , δtn (where ti 6= tj,

for any i, j ∈ {1, . . . , n}, with i 6= j) is immediate simply by using, for each
j0 ∈ {1, . . . , n}, the function x ∈ C1(K) given by

x(t) =
∏
j 6=j0

(t− tj).

It is thus clear that the set ∇K ∪∇′
K is linearly independent.

Finally, consider α1, . . . , αn, β1, . . . , βn ∈ T and t1, . . . , tn, s1, . . . , sn ∈ K such
that ti 6= tj, for any i, j ∈ {1, . . . , n}, with i 6= j. Given λ1, . . . , λn ∈ K such that

n∑
j=1

λj(αjδtj + βjδ
′
sj
) = 0,

it must be that
∑n

j=1 λjαjδtj = −
∑n

j=1 βjδ
′
sj
. Therefore, taking into account that

span∇K ∩ span∇′
K = {0}, we have

∑n
j=1 λjαjδtj = 0. The linear independence

of the functionals δt1 , . . . , δtn ensures that λjαj = 0, and thus

λj = 0, for every j ∈ {1, . . . , n}.

In the remaining situation (si 6= sj, for any i, j ∈ {1, . . . , n}, with i 6= j), we
proceed analogously. �

Later we shall use the following consequence of the previous result.

Corollary 1.2. Consider α1, α2, β1, β2 ∈ K and t1, t2, s1, s2 ∈ K such that

α1δt1 + β1δ
′
s1
= α2δt2 + β2δ

′
s2
.

Then α1 = α2 and β1 = β2. In particular, α1 6= 0 if and only if α2 6= 0. Moreover,
in the latter case, it holds also that t1 = t2. Similarly, β1 6= 0 if and only if β2 6= 0
and, in such a case, s1 = s2.
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Proof. According to the hypothesis, α1δt1 −α2δt2 = β2δ
′
s2
−β1δ

′
s1

and, taking into
account Proposition 1.1, α1δt1 − α2δt2 = 0 = β2δ

′
s2

− β1δ
′
s1
. The first equality

implies either α1 = α2 = 0 or t1 = t2 and α1 = α2. The second one only holds if
either β1 = β2 = 0 or s1 = s2 and β1 = β2. �

It is worth mentioning that if C1(K) is provided with any one of the aforemen-
tioned norms, then, with respect to the weak-∗ topology of its dual space, the
following is true: given two sequences {tn} and {sn} in K and a sequence {βn} in
T such that, for certain t, s ∈ K and β ∈ T, the sequence {δtn +βnδ

′
sn} converges

to δt + βδ′s, it must be that {tn} → t, {sn} → s and {βn} → β.
To check the preceding statement, assume for a moment that the sequences

{tn}, {sn}, and {βn} are convergent. Thus let t′, s′ ∈ K and β′ ∈ T be their
respective limits. Obviously, the sequence {δtn + βnδ

′
sn} converges in the weak-∗

topology to δt′+β
′δ′s′ and consequently δt′+β

′δ′s′ = δt+βδ
′
s. By virtue of Corollary

1.2, t′ = t, s′ = s, and β′ = β. It is clear in view of the above that all the
convergent subsequences of {(tn, sn, βn)} have the same limit, namely, (t, s, β).
Equivalently, the sequence {(tn, sn, βn)} converges to (t, s, β).

For later use we state a last basic fact, whose (elementary) proof can be con-
sulted, if desired, in [17, Proposition 3].

Proposition 1.3. Let I and J be two intervals of R with nonempty interior, and
let ϕ : J → I be a function such that x′ ◦ϕ belongs to C1(J) for every x ∈ C1(I).
Then ϕ is a constant function.

Finally, letK1 andK2 be compact intervals of R. It is evident that the existence
of isometries from K2 into K1 is equivalent to the condition l(K2) ≤ l(K1).
Furthermore, in this case, there is c ∈ R such that either

ϕ(t) = t+ c, for every t ∈ K2, or ϕ(t) = −t+ c, for every t ∈ K2.

In particular, if l(K2) = l(K1), there are exactly two isometries (in this case
surjectives) from K2 onto K1. It is also clear that a mapping ϕ : K2 → K1 is an
isometry if and only if ϕ is differentiable and |ϕ′(t)| = 1, for every t ∈ K2.

2. The results

As we indicated in the Introduction, our aim is to describe the nice operators
between continuously differentiable function spaces endowed with norms of type r.

LetK be a compact interval of R. From this point we will consider the following
norm on C1(K):

‖x‖ = ‖x‖∞ + ‖x′‖∞, for every x ∈ C1(K). (2.1)

If X = (C1(K), ‖ · ‖), it is known (see [18]) that the set of extreme points of
the closed unit ball of X∗ is given by

EX∗ = T∇K + T∇′
K .

First, we observe that the nice operators between spaces of continuously differ-
entiable functions preserve the constant functions. This is a property previously
known for isometric isomorphisms and also for nice operators between C1(K)
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spaces provided with norms of type q. The proof is similar to that of Lemma 6
of [17], but it will be included here for the sake of completeness.

Let K1 and K2 be compact intervals of R, X = C1(K1) and Y = C1(K2)
endowed with their corresponding type (2.1) norms. Furthermore, consider a nice
operator T : X → Y .

Lemma 2.1. The function TuK1 is constant. Indeed, there is α0 ∈ T such that

(TuK1)(t) = α0, for every t ∈ K2.

Proof. Let e = TuK1 , and pick t, s ∈ K2 and β ∈ T. Since T is nice, there are
α1, β1 ∈ T and t1, s1 ∈ K1 such that T ∗(δt + βδ′s) = α1δt1 + β1δ

′
s1
. Therefore,∣∣e(t) + βe′(s)

∣∣ = ∣∣α1uK1(t1) + β′
1u

′
K1
(s1)

∣∣ = |α1| = 1. (2.2)

In the real case, |e(t) ± e′(s)| = 1, and hence 2e(t) ∈ {−2, 0, 2}; that is to say,
e(t) ∈ {−1, 0, 1}, for every t ∈ K2. It is thus clear that e is a constant function,
and in view of (2.2), either e(t) = 1 for every t ∈ K2 or e(t) = −1 for every
t ∈ K2.

In the complex case, one can assign to β the values ±1 and ±i in order to
obtain that ∣∣e(t)∣∣2 + ∣∣e′(s)∣∣2 ± 2Re

(
e(t)e′(s)

)
= 1,∣∣e(t)∣∣2 + ∣∣e′(s)∣∣2 ∓ 2 Im

(
e(t)e′(s)

)
= 1.

It follows that e(t)e′(s) = 0, or, equivalently, e(t)e′(s) = 0. Therefore, the images
of the functions e and e′ are contained in {0} ∪ T. By virtue of (2.2), e(K2) ⊂ T
and, since ee′ = 0, necessarily e′(K2) ⊂ {0}. �

Assume, for a moment, that TuK1 = uK2 . Then, given t, s ∈ K2 and β ∈ T,
there are ϕ(t, β, s), ψ(t, β, s) ∈ K1 and η(t, β, s) ∈ T such that

T ∗(δt + βδ′s) = δϕ(t,β,s) + η(t, β, s)δ′ψ(t,β,s). (2.3)

Henceforth, we will use the notation

Q = K2 × T×K2.

Lemma 2.2. The mappings ϕ, ψ : Q→ K1 and η : Q→ T are continuous.

Proof. Let {(tn, βn, sn)} be a sequence in Q, and let (t, β, s) be an element of this
last set such that {(tn, βn, sn)} → (t, β, s). Then, the sequence {T ∗(δtn + βnδ

′
sn)}

converges in the weak-∗ topology to T ∗(δt + βδ′s). That is, the sequence{
δϕ(tn,βn,sn) + η(tn, βn, sn)δ

′
ψ(tn,βn,sn)

}
converges in such topology to δϕ(t,β,s) + η(t, β, s)δ′ψ(t,β,s). In accordance with the

comment subsequent to Corollary 1.2, the sequences {ϕ(tn, βn, sn)}, {η(tn,
βn, sn)}, and {ψ(tn, βn, sn)} converge to ϕ(t, β, s), η(t, β, s), and ψ(t, β, s), re-
spectively. �

Theorem 2.3. Let K1 and K2 be compact intervals of R, X = C1(K1) and
Y = C1(K2) provided with their respective type (2.1) norms. Let T ∈ L(X,Y ).
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(i) Suppose that l(K1) < l(K2). Then T is nice if and only if there are t0, s0 ∈
K1 and α0, β0 ∈ T such that

(Tx)(t) = α0x(t0) + β0x
′(s0), for any x ∈ X and t ∈ K2. (2.4)

(ii) Assume now that l(K1) ≥ l(K2). Then T is nice if and only if one of the
following two claims holds:
(a) T is of the form (2.4);
(b) there is a scalar α0 ∈ T and an isometry ϕ : K2 → K1 such that

(Tx)(t) = α0x
(
ϕ(t)

)
, for any x ∈ X and t ∈ K2. (2.5)

Proof. Let us first make some preliminary comments.
Obviously the operators described by (2.4) and (2.5) are nice. Therefore, it

suffices to show that any nice operator from X into Y can be expressed in one of
the two ways mentioned.

From now on, T will be a nice operator. By virtue of Lemma 2.1, there is
α0 ∈ T such that (TuK1)(t) = α0, for every t ∈ K2. Since T = α0(α

−1
0 T ) and

α−1
0 T is a nice operator which maps uK1 to uK2 , also assume from this point

that T itself sends uK1 to uK2 . Consequently, T can be expressed as indicated in
(2.3) for certain functions ϕ, ψ : Q → K1 and η : Q → T. To reach the general
description of the nice operators it is sufficient to multiply by α0 the expression
of T we are going to obtain under the assumed hypothesis.

To get a clearer proof, we will address separately the cases K = R and K = C.
Complex case. We first observe that the functions ϕ and ψ do not depend

on β. To this end, fix t and s in K2. If some of the functions β 7→ ϕ(t, β, s) or
β 7→ ψ(t, β, s), from T into K1, were nonconstant, then the right side of equa-
tion (2.3) would contain infinite linearly independent vectors of X∗ (see Propo-
sition 1.1). This is not possible since the left side of this equation is included in
a two-dimensional subspace of X∗. Therefore, we can write the referred equation
in the form

T ∗(δt) + βT ∗(δ′s) = δϕ(t,s) + η(t, β, s)δ′ψ(t,s), for every (t, β, s) ∈ Q. (2.6)

Define y = TiK1 . According to the above equality,

y(t) + βy′(s) = ϕ(t, s) + η(t, β, s).

By fixing t and s again we see that there are only two possibilities:

(1) y′(s) = 0, for every s ∈ K2, or
(2) |y′(s)| = 1, for every s ∈ K2.

In the first case, y is constant and obviously

y(t) = ϕ(t, s) + η(t, β, s). (2.7)

Consequently, there is a real number c such that

c = Im
(
y(t)

)
= Im

(
η(t, β, s)

)
.

This means that η(t, β, s) is contained in the intersection of a line and the cir-
cumference T. Since η(Q) is connected, η is necessarily constant. From (2.7) it
also follows that ϕ is constant. In this way, equation (2.6) is expressed in the form

T ∗(δt) + βT ∗(δ′s) = δt0 + λ0δ
′
ψ(t,s),



DIFFERENTIABLE FUNCTIONS AND NICE OPERATORS 103

for appropriate t0 ∈ K1 and λ0 ∈ T. If we now fix t and s, from this latter equality
it readily follows that T ∗(δ′s) = 0, for every s ∈ K2. Therefore,

T ∗(δt) = δt0 + λ0δ
′
ψ(t,s),

and consequently ψ does not depend on s (thus, we write ψ(t) instead of ψ(t, s)).
Nor does it depend on t, as we shall see immediately.

Given x ∈ C1(K1), it is clear that

(Tx)(t) = x(t0) + λ0x
′(ψ(t)),

and consequently x′◦ψ is continuously differentiable. By Lemma 1.3 the mapping
ψ is constant. Thus, for some s0 ∈ K1,

(Tx)(t) = x(t0) + λ0x
′(s0), for any t ∈ K2 and x ∈ X.

We turn now to the second alternative: |y′(s)| = 1, for every s ∈ K2. In this
case, y(t) = ϕ(t, s) and βy′(s) = η(t, β, s), for every (t, β, s) ∈ Q. Therefore, ϕ
depends only on t (which allows us to write ϕ(t) instead of ϕ(t, s)) and, since it
coincides with y, ϕ is continuously differentiable on K2 with |ϕ′(t)| = |y′(t)| = 1,
for every t ∈ K2. In consequence, ϕ is an isometry from K2 into K1 and, as a
result, l(K2) ≤ l(K1). Furthermore, the equality y = ϕ tells us that y is actually
a real function and, hence, there exists ξ0 ∈ {−1, 1} such that y′(s) = ξ0, for
every s ∈ K2. Thus, equation (2.6) becomes

T ∗(δt) + βT ∗(δ′s) = δϕ(t) + ξ0βδ
′
ψ(t,s).

By evaluating such functionals at the point x = (iK1)
2, we find that

(Tx)(t) + β(Tx)′(s) = ϕ(t)2 + 2ξ0βψ(t, s)

and, leaving fixed β and s, we note that the function t 7→ ψ(t, s) (henceforth
denoted by ψs) is continuously differentiable on K2 and

(Tx)′(t) = 2ξ0ϕ(t) + 2ξ0βψ
′
s(t).

As the above is valid for all β ∈ T, necessarily ψ′
s = 0 and consequently ψ depends

only on the variable s. Then, for every x ∈ X,

(Tx)(t) + β(Tx)′(s) = x
(
ϕ(t)

)
+ ξ0βx

′(ψ(s)),
and it follows easily that (Tx)(t) = x(ϕ(t)), for every t ∈ K2.

This completes the proof if K = C.
As we have just seen in the complex case, each of the functions ϕ, η, and ψ

appearing in (2.3) depends on at most one of the variables involved—to be more
precise, on t, β, and s, respectively. The same is true in the real case, and the
verification of this fact will serve as a guideline for the rest of the proof.

Given t, s ∈ K2 it is easy to check that ‖δt − δs‖ ≤ |t − s| and, if t 6= s,
‖δ′t − δ′s‖ = 2.

Real case. Obviously, given β ∈ T, the mapping (t, s) 7→ η(t, β, s), fromK2×K2

into T, is constant and consequently η depends only on β. Thus, we will write
η(β) instead of η(t, β, s).

Fix β0 ∈ T, ω0 ∈ K2, and let ϕ0, ψ0 : K2 → K1 be the mappings given by

ϕ0(t) = ϕ(t, β0, ω0), ψ0(t) = ψ(t, β0, ω0), for every t ∈ K2.
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First, assume that ϕ0 is constant on some open interval contained in K2. Then,
there are θ0 ∈ K2, t0 ∈ K1, and an open interval V such that θ0 ∈ V ⊂ K2 and
ϕ0(t) = t0, for every t ∈ V . By (2.3), for any x ∈ X,

(Tx)(t) + β0(Tx)
′(ω0) = x(t0) + η(β0)x

′(ψ0(t)
)
, for every t ∈ V.

In particular, the function t 7→ x′(ψ0(t)), from K2 into R, is continuously dif-
ferentiable on V . This implies, by virtue of Lemma 1.3, the existence of a point
s0 ∈ K1 such that ψ0(t) = s0, for every t ∈ V . Therefore, given x ∈ X,

(Tx)(t) + β0(Tx)
′(ω0) = x(t0) + η(β0)x

′(s0), for every t ∈ V.

Hence, the function Tx is constant on V and T ∗(δ′s) = 0, for each s ∈ V . In this
way, equation (2.3) ensures that

T ∗(δt) = δϕ(t,β,s) + η(β)δ′ψ(t,β,s), for every (t, β, s) ∈ K2 × T× V,

and thus T ∗(δt) = δϕ(t,β0,θ0) + η(β0)δ
′
ψ(t,β0,θ0)

, for every t ∈ K2. Accordingly, given

(t, β, s) ∈ Q,

δϕ(t,β0,θ0) + η(β0)δ
′
ψ(t,β0,θ0)

+ βT ∗(δ′s) = T ∗(δt + βδ′s).

In consequence, δϕ(t,β0,θ0) + η(β0)δ
′
ψ(t,β0,θ0)

± T ∗(δ′s) ∈ BX∗ and, since

δϕ(t,β0,θ0) + η(β0)δ
′
ψ(t,β0,θ0)

∈ EX∗ ,

it holds that T ∗(δ′s) = 0, for each s ∈ K2. Therefore,

T ∗(δt) = δϕ(t,β,s) + η(β)δ′ψ(t,β,s), for every (t, β, s) ∈ Q.

By Corollary 1.2, the mappings ϕ, η, and ψ are independent of the variables β
and s. In particular, η is constant. On the other hand, the condition T ∗(δ′s) = 0,
for every s ∈ K2, is equivalent to saying that Tx is a constant function for every
x ∈ X. Consider x1 = iK1 and x2 = x21. Given (t, β, s) ∈ Q,

(Tx1)(t) = ϕ(t, β, s) + η(β), (Tx2)(t) = ϕ(t, β, s)2 + 2η(β)ψ(t, β, s).

The first equality implies that ϕ is constant and, according to the second one,
the same is true for ψ. Therefore, there is λ0 ∈ T such that

T ∗δt = δt0 + λ0δ
′
s0
.

We conclude that (Tx)(t) = x(t0) + λ0x
′(s0), for any x ∈ X and t ∈ K2.

Now suppose that ϕ0 is not constant on any open interval contained in K2, and
let θ0 be an arbitrary point of K2.

Evidently, there is a sequence {θn} in K2 such that {θn} → θ0 and {ϕ0(θn)} is
strictly monotonic. Pick (β, s) ∈ T×K2 and define, for every integer n ≥ 0,

u∗n = δθn + β0δ
′
ω0
, v∗n = δθn + βδ′s,

ξn = ϕ(θn, β0, ω0), ξ′n = ϕ(θn, β, s),

τn = ψ(θn, β0, ω0), τ ′n = ψ(θn, β, s).

Obviously, {ξn} → ξ0 and {ξ′n} → ξ′0. Moreover,

T ∗u∗n = δξn + η(β0)δ
′
τn and

T ∗v∗n = δξ′n + η(β)δ′τ ′n .
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Since {‖u∗n − u∗0‖} → 0 and {‖v∗n − v∗0‖} → 0, the sequences {T ∗u∗n} and {T ∗v∗n}
converge in norm to T ∗u∗0 and T

∗v∗0, respectively. Thus, for every natural number
n large enough, each of the following real numbers

|ξn − ξ0|, |ξ′n − ξ′0|, ‖T ∗u∗n − T ∗u∗0‖, and ‖T ∗v∗n − T ∗v∗0‖

is less than 1
2
. It follows that

‖δ′τn − δ′τ0‖ =
∥∥(δξn + η(β0)δ

′
τn

)
−

(
δξ0 + η(β0)δ

′
τ0

)
+ δξ0 − δξn

∥∥
≤ ‖T ∗u∗n − T ∗u∗0‖+ ‖δξn − δξ0‖
< 1.

Analogously, ‖δ′τ ′n − δ′τ ′0
‖ < 1 and, in consequence, τn = τ0 and τ ′n = τ ′0. Taking

into account that

T ∗(u∗0 − v∗0) = T ∗(u∗n − v∗n) = δξn + η(β0)δ
′
τn − δξ′n − η(β)δ′τ ′n , for every n ∈ N,

the sequence {δξn − δξ′n} is constant for n large enough. Assume, without loss
of generality, that {δξn − δξ′n} is constant. In this manner, ξn − ξ′n = a and
(ξn)

2 − (ξ′n)
2 = b, for each n ∈ N and suitable real numbers a and b. If a 6= 0, it

would follow that

ξn =
a+ ξn + ξ′n

2
=
a2 + b

2a
, for every n ∈ N,

contrary to the strict monotony of {ξn}. Therefore, a = 0 and ξn = ξ′n, for each
natural number n. Thus,

ϕ(θ0, β0, ω0) = lim ξn = lim ξ′n = ϕ(θ0, β, s).

We just proved that ϕ does not depend on β or s. From this moment, we will
write ϕ(t) instead of ϕ(t, β, s). In this way, equation (2.3) can be expressed in the
form

T ∗δt + βT ∗δ′s = δϕ(t) + η(β)δ′ψ(t,β,s), for every (t, β, s) ∈ Q.

Consequently,

(Tx)(t) + β(Tx)′(s) = x
(
ϕ(t)

)
+ η(β)x′

(
ψ(t, β, s)

)
, (2.8)

for any (t, β, s) ∈ Q and x ∈ X. From the above equality, it can be deduced,
by fixing the variables β and s, that ϕ is continuously differentiable. It is thus
clear that, for any x ∈ X, the function t 7→ x′(ψ(t, β, s)), from K2 into R, is also
continuously differentiable. According to Lemma 1.3, the mapping t 7→ ψ(t, β, s)
is constant. Therefore, ψ does not depend on t, and we can write ψ(β, s) instead
of ψ(t, β, s):

(Tx)(t) + β(Tx)′(s) = x
(
ϕ(t)

)
+ η(β)x′

(
ψ(β, s)

)
.

From this equation we deduce, again by fixing β and s, that

(Tx)′(t) = ϕ′(t)x′
(
ϕ(t)

)
, ∀t ∈ K2, ∀x ∈ X.

Equation (2.8) can thus be expressed as

(Tx)(t) + βϕ′(s)x′
(
ϕ(s)

)
= x

(
ϕ(t)

)
+ η(β)x′

(
ψ(β, s)

)
. (2.9)
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As a result, (TiK1)(t) + βϕ′(s) = ϕ(t) + η(β) and, by subtracting the equations
corresponding to β = 1 and β = −1,

ϕ′(s) =
η(1)− η(−1)

2
, for every s ∈ K2.

Under the hypothesis previously assumed, ϕ is not constant and therefore η(1) 6=
η(−1). This condition is equivalent to saying that η(−1) = −η(1). Consequently,
ϕ′(s) = η(1), for every s ∈ K2, and ϕ is an isometry from K2 into K1. It is also
clear that η(β) = βη(1), for every β ∈ T. These facts and equation (2.9) ensure
that

T ∗δt + βη(1)δ′ϕ(s) = δϕ(t) + βη(1)δ′ψ(β,s), for every (t, β, s) ∈ Q. (2.10)

Fix t and s in K2 and give to β the values 1 and −1. The subtraction of the
resulting equations yields

2δ′ϕ(s) = δ′ψ(1,s) + δ′ψ(−1,s)

and, according to Proposition 1.1, the real numbers ϕ(s), ψ(1, s), and ψ(−1, s)
cannot be pairwise different. It follows that, indeed, ϕ(s) = ψ(1, s) = ψ(−1, s)
(and, in particular, ψ does not depend on β). Equality (2.10) then allows us to
conclude that T ∗δt = δϕ(t), for every t ∈ K2. In other words,

(Tx)(t) = x
(
ϕ(t)

)
, for any t ∈ K2 and x ∈ X. �

In particular, the previous result describes the linear isometries from X onto Y .

Corollary 2.4. Let X and Y be as in the above theorem. Then X and Y are
isometrically isomorphic if and only if l(K1) = l(K2). Furthermore, in this case,
an operator T : X → Y is an isometric isomorphism if and only if there is α0 ∈ T
and an isometric bijection ϕ : K2 → K1 such that

(Tx)(t) = α0x
(
ϕ(t)

)
, for any t ∈ K2 and x ∈ X.

This last result was known before, as it can be seen in [11, Example 4].
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