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Abstract. We prove that, for any p ∈ (1,∞), the second-order Cesàro se-
quence space Ces2(p) has the (β)-property and the k-NUC property for k ≥ 2.
In addition, we show that Ces2(p) has the Kadec–Klee, rotundity, and uniform
convexity properties. For any positive integer k, we also investigate the uniform
Opial and (L) properties of the sequence space. We also establish that Ces2(p)
is reflexive and has the fixed-point property. Finally, we calculate the packing
constant (C) of the space.

1. Introduction and preliminaries

Let ω denote the space of all real-valued sequences. Any vector subspace of ω is
called a sequence space. We write l∞, c, and c0 for the spaces of all bounded, con-
vergent, and null sequences, respectively. Let bs, cs, l1, and lp (1 < p < ∞) denote
the spaces of all bounded, convergent, absolutely convergent, and p-absolutely
convergent series, respectively. Throughout the paper, we assume that (pk) is a
bounded sequence of strictly positive real numbers with sup{pk} = H, and we
set M = max{1, H}. The linear space l(p) was defined by Maddox [10] (see also
Simons [15] and Nakano [11]) as

l(p) =
{
x = (xk) ∈ ω :

∑
k

|xk|pk < ∞
}

(0 < pk ≤ H < ∞).
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It is a complete paranormed space via the paranorm

g(x) =
(∑

k

|xk|pk
) 1

M
.

For simplicity of the notation, in what follows, a summation without limits always
runs from 1 to ∞.

Next we define the second-order Cesàro sequence space by

Ces2(p) =
{
x ∈ ω :

∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

< ∞
}
,

for 1 ≤ p < ∞, and for p = ∞ by

Ces2(∞) =
{
x ∈ ω : sup

n

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣) < ∞

}
.

These spaces generalize the Cesàro sequence spaces, as shown in the following
theorem.

Theorem 1.1. The following proper inclusions hold:

(1) lp ⊂ Ces(p), for p > 1;
(2) lp ⊂ Ces2(p), for p > 1;
(3) Ces(p) ⊂ Ces2(p), for p > 1.

Proof. It is enough to prove the last inclusion, because (1) and (2) were proved
in [16]. Let x = (xn) ∈ Ces(p). Then[ ∞∑

n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p] 1

p

≤
[ ∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1)
∣∣x(k)∣∣)p] 1

p

=
[ ∞∑
n=1

( 1

n+ 2

n∑
k=0

∣∣x(k)∣∣)p] 1
p
< ∞.

On the other hand, let us consider the following sequence:

(xn) = (0, 0, . . . , 0, n︸︷︷︸
nth position

, 0, 0, . . .).

Then it follows that[ ∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p] 1

p
=

∞∑
n=1

( n

(n+ 1)(n+ 2)

)p

< ∞

for every p > 1, but

∞∑
n=1

( 1
n

n∑
k=0

∣∣x(k)∣∣) =
∞∑
n=1

1 = ∞.
�
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A Banach space X is said to be k-nearly uniformly convex (k-NUC) if, for any
ε > 0, there exists a number δ > 0 such that, for any sequence (xn) ⊂ B(X) with
sep(xn) ≥ ε, there are n1, n2, . . . , nk ∈ N such that∥∥∥xn1 + xn2 + · · ·+ xnk

k

∥∥∥ < 1− δ,

whenever sep(xn) := inf{‖xn − xm‖ : n 6= m} > ε.
A Banach space X has property (β) if, for each r > 0 and ε > 0, there exists

δ > 0 such that, for each element x ∈ B(X) and each sequence (xn) in B(X)
with sep(xn) ≥ ε, there is an index k such that∥∥∥x+ xk

2

∥∥∥ ≤ δ.

A Banach space X is said to have the Banach–Saks property of type p if every
weakly null sequence (xk) has a subsequence (xkl) such that, for some C > 0,∥∥∥ n∑

l=0

xkl

∥∥∥ < C(n+ 1)
1
p

for all n ∈ N.
A point x0 ∈ S(X) is called

(1) an extreme point if, for every x, y ∈ S(X), the equality 2x0 = x+y implies
x = y;

(2) a locally uniformly rotund point (LUR-point) if, for any sequence (xn) in
B(X) such that ‖xn + x‖ → 2 as n → ∞, there holds ‖xn − x‖ → 0 as
n → ∞.

A Banach space X is said to have the rotundity property if every point of S(X)
is an extreme point. A Banach space X is said to have the Opial property if every
sequence (xn) weakly convergent to x0 satisfies

lim inf
n→∞

‖xn − x0‖ ≤ lim inf
n→∞

‖xn − x‖,

for every x ∈ X.
A Banach space X is said to have the uniform Opial property if, for every

ε > 0, there exists τ > 0 such that, for each weakly null sequence (xn) ⊂ S(X)
and x ∈ X with ‖x‖ ≥ ε, we have

1 + τ ≤ lim inf
n→∞

‖xn + x‖

(see [13]).
For a sequence (xn) ⊂ X, the following notion was defined in [5],

A((xn)) = lim inf
n→∞

{
‖xi + xj‖ : i, j ≥ n, i 6= j

}
,

which is related to the packing constant (see [9]) and to the Banach–Saks property
as follows:

C(X) = sup
{
A((xn)) : (xn) is a weakly null sequence in S(X)

}
.

For each ε > 0, define ∆(ε) to be

inf
{
1− inf

[
‖x‖ : x ∈ A

]
: A is a closed convex subset of B(X) with β(A) ≥ ε

}
,
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where

β(A) = inf{ε > 0: A can be covered by finitely many balls of diameter ≤ ε}.

The function ∆ is called the modulus of noncompact convexity (see [7]). A Ba-
nach space X is said to have the property (L) if limε→1− ∆(ε) = 1. It was proved
in [13] that the property (L) is a useful tool in the fixed-point theory and that
a Banach space X has the property (L) if and only if it is reflexive and has the
uniform Opial property.

Gurarĭi’s modulus of convexity (see [8]) is defined by

βX(ε) = inf
{
1− inf

0≤α≤1

∥∥αx+ (1− α)y
∥∥;x, y ∈ S(X), ‖x− y‖ = ε

}
,

where 0 ≤ ε ≤ 2. Let X be a real vector space. A functional σ : X → [0,∞) is
called a modular if

(1) σ(x) = 0 if and only if x = θ,
(2) σ(αx) = σ(x) for all scalars α with |α| = 1,
(3) σ(αx+ βy) ≤ σ(x) + σ(y) for all x, y ∈ X and α, β > 0 with α + β = 1.

The modular σ is called convex if it satisfies the following:

(4) σ(αx+βy) ≤ ασ(x)+βσ(y) for all x, y ∈ X and α, β > 0 with α+β = 1.

A modular σ is called

(5) right continuous if limα→1+ σ(αx) = σ(x) for all x ∈ Xσ,
(6) left continuous if limα→1− σ(αx) = σ(x) for all x ∈ Xσ,
(7) continuous if it is both right and left continuous,

where Xσ = {x ∈ X : limα→0+ σ(αx) = 0}. We define the operator σp on Ces2(p)
by

σp(x) =
∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

.

If p ≥ 1, by convexity of the function t → |t|p, we conclude that σp is a convex
modular in Ces2(p).

The modular σp is said to satisfy the δ2-condition (see [3]) if, for every ε > 0,
there exists a constant M > 0 and m > 0 such that

σp(2t) ≤ Mσp(t) + ε (1.1)

for all t ∈ Xσp with σp(t) ≤ m.

2. Results

We start this section with the following lemma, whose proof is similar to that
of [3, Lemma 2.1].

Lemma 2.1 ([3, Lemma 2.1]). If σp satisfies the δ2-condition, then, for any A > 0
and ε > 0, there exists δ > 0 such that∣∣σp(t+ w)− σp(t)

∣∣ < ε (2.1)

whenever t, w ∈ Xσp with σp(t) ≤ A and σp(w) ≤ δ.
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Theorem 2.2 ([3, Lemma 2.1]). Suppose that σp satisfies the δ2-condition.

(1) For any x ∈ Xσp, ‖x‖ = 1 if and only if σp(x) = 1.
(2) For any sequence (xn) ∈ Xσp, ‖xn‖ → 0 if and only if σp(xn) → 0.

Theorem 2.3. If σp satisfies the δ2-condition, then, for any ε ∈ (0, 1), there
exists δ ∈ (0, 1) such that σp(x) ≤ 1− ε implies ‖x‖ ≤ 1− δ.

Proof. The proof of the theorem follows directly from the above two facts (see [3]).
�

Theorem 2.4. For any x ∈ Ces2(p) and ε ∈ (0, 1), there exists δ ∈ (0, 1) such
that σp(x) ≤ 1− ε implies ‖x‖ ≤ 1− δ.

Proof. The proof of the theorem follows directly from Theorem 2.3. �

Proposition 2.5. If p ≥ 1, then the modular σp is continuous on Ces2(p), and
it also satisfies the following conditions:

(1) if 0 < α ≤ 1, then αMσp(
x
α
) ≤ σp(x) and σp(αx) ≤ ασp(x);

(2) if α ≥ 1, then σp(x) ≤ αMσp(
x
α
);

(3) if α ≥ 1, then σp(x) ≤ ασp(
x
α
).

Proof. It is similar to the proof of [12, Proposition 2.1]. �

Now we will define the following two norms (the first one is known as the
Luxemburg norm and the second one as the Amemiya norm) in Ces2(p):

‖x‖L = inf
{
α > 0 : σp

(x
α

)
≤ 1

}
(2.2)

and

‖x‖A = inf
α>0

1

α

{
1 + σp(α · x)

}
. (2.3)

Proposition 2.6. Let x ∈ Ces2(p). Then the following relations between σp and
‖ · ‖L are satisfied:

(1) if ‖x‖L < 1, then σp(x) ≤ ‖x‖L;
(2) if ‖x‖L > 1, then σp(x) ≥ ‖x‖L;
(3) ‖x‖L = 1 if and only if σp(x) = 1;
(4) ‖x‖L < 1 if and only if σp(x) < 1;
(5) ‖x‖L > 1 if and only if σp(x) > 1.

Proof. It is similar to the proof of [1, Proposition 3.10]. �

Theorem 2.7. The space Ces2(p) is a Banach space under the Luxemburg and
the Amemiya norm.

Proof. We will prove that Ces2(p) is a Banach space under the Luxemburg norm.
In what follows we need to show that every Cauchy sequence in Ces2(p) is con-
vergent according to the Luxemburg norm. Let {xn

k} be any Cauchy sequence in
Ces2(p) and ε ∈ (0, 1). Thus there exists a positive integer n0 such that, for any



6 N. L. BRAHA

n,m ≥ n0, we get ‖x(n) − x(m)‖L < ε. From Proposition 2.6 we obtain

σp(x
(n) − x(m)) ≤ ‖x(n) − x(m)‖L < ε, (2.4)

for all n,m ≥ n0. This implies that

∞∑
k=1

( 1

(k + 1)(k + 2)

k∑
i=0

(k + 1− i)|x(n)
i − x

(m)
i |

)p

< ε. (2.5)

For each fixed k and for all n,m ≥ n0,

1

(k + 1)(k + 2)

k∑
i=0

(k + 1− i)|x(n)
i − x

(m)
i | < ε.

Hence (y
(n)
k )k = ( 1

(k+1)(k+2)

∑k
i=0(k+1−i)|x(n)

i |)k is a Cauchy sequence in R. Since
R is a complete normed space, there exists

(yk)k =
( 1

(k + 1)(k + 2)

k∑
i=0

(k + 1− i)|xi|
)
k

in R such that (y
(n)
k ) → yk as n → ∞. Therefore, as n → ∞ by relation (2.4), we

have
∞∑
k=1

( 1

(k + 1)(k + 2)

k∑
i=0

(k + 1− i)|xi − x
(m)
i |

)p

< ε,

for all m ≥ n0. In the sequel, we will show that (yk) is a sequence from Ces2(p).
From Proposition 2.5 and relation (2.5) we have

lim
n→∞

σp(x
(n) − x(m)) = σp(x− x(m)) ≤ ‖x− x(m)‖L < ε,

for all m ≥ n0. This implies that (x(n)) → x as m → ∞. We therefore have
x = x(n) − (x(n) − x) ∈ Ces2(p). And this proves that Ces2(p) is a complete
normed space under the Luxemburg norm. �

In what follows, we will show some results related to the Luxemburg norm, and
due to this reason we will denote it by ‖ · ‖.

Theorem 2.8. The space Ces2(p) is rotund if and only if p > 1.

Proof. Let Ces2(p) be rotund, and choose p = 1. Consider the following two
sequences given by

x =
(
0, 0, . . . , 0,

(n+ 1)(n+ 2)

2n︸ ︷︷ ︸
nth term

, 0, 0, . . .
)

and

y =
(
0, 0, . . . , 0,

2(n+ 1)(n+ 2)

3n︸ ︷︷ ︸
nth term

, 0, 0, . . .
)
.

Then obviously x 6= y and

σp(x) = σp(y) = σp

(x+ y

2

)
= 1.
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Then it follows from Proposition 2.6(3) that x, y, x+y
2

∈ S[Ces2(p)], which leads

to the conclusion that the sequence space Ces2(p) is not rotund. Hence p > 1.
Conversely, let x ∈ S[Ces2(p)], where 1 < p < ∞ and y, z ∈ S[Ces2(p)] such

that x = y+z
2
. By convexity of σp and property (3) from Proposition 2.6, we have

1 = σp(x) ≤
σp(y) + σp(z)

2
≤ 1

2
+

1

2
= 1,

which gives that σp(y) = σp(z) = 1 and

σp(x) =
σp(y) + σp(z)

2
. (2.6)

From the last relation we obtain that
∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

=
1

2

{ ∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣y(k)∣∣)p

+
∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣z(k)∣∣)p}

.

Since x = y+z
2
, we get

∞∑
k=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣y(k) + z(k)

∣∣)p

=
1

2

( ∞∑
k=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣y(k)∣∣)p

+
∞∑
k=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣z(k)∣∣)p)

.

This implies that( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣y(k) + z(k)

∣∣)p

=
1

2

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣y(k)∣∣)p

+
1

2

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

.

From the last relation we get that yi = zi for all i ∈ N, whence z = y. It means
that the sequence space Ces2(p) is rotund. �

In what follows we will give two facts without proof, because their proofs follow
directly from Propositions 2.5 and 2.6.
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Theorem 2.9. Let x ∈ Ces2(p). Then the following statements hold:

(i) if 0 < α < 1 and ‖x‖ > α, then σp(x) > αM ;
(ii) if α ≥ 1 and ‖x‖ < α, then σp(x) < αM .

Theorem 2.10. Let (xn) be a sequence in Ces2(p). Then the following statements
hold:

(i) limn→∞ ‖xn‖ = 1 implies limn→∞ σp(xn) = 1.
(ii) limn→∞ σp(xn) = 0 implies limn→∞ ‖xn‖ = 0.

Theorem 2.11. Let x ∈ Ces2(p), and let (x(n)) ⊂ Ces2(p). If σp(x
(n)) → σp(x)

and x
(n)
k → xk as n → ∞ for all k ∈ N, then ‖x(n) − x‖ → 0 as n → ∞.

Proof. The proof of the theorem is similar to Theorem 2.9 in [12]. �

Theorem 2.12. The Banach space Ces2(p) has the (β)-property.

Proof. Let us suppose for the contrary that Ces2(p) does not have the (β)-
property. Then there exists ε > 0 such that, for any δ ∈ (0, ε

1+21+p ), there is

a sequence (xn) ⊂ S(Ces2 p) with sep(xn) > ε
1
p and an element x0 ∈ S(Ces2(p))

such that ∥∥∥xn + x0

2

∥∥∥p

Ces2(p)
> 1− δ,

for every n ∈ N. Let us consider δ as a fixed value from (0, ε
1+21+p ). We claim that

lim
j→∞

sup
k

∞∑
n=j+1

( 1

(n+ 1)(n+ 2)

n∑
i=1

(n+ 1− i)
∣∣x(i)∣∣)p

≤ 2p+1δ

2p − 1
. (2.7)

Otherwise, we can assume that there exists a sequence (jk) such that jk → ∞ as
k → ∞ and

∞∑
n=jk+1

( 1

(n+ 1)(n+ 2)

n∑
i=1

(n+ 1− i)
∣∣x(i)∣∣)p

>
2p+1δ

2p − 1
, (2.8)

for every k ∈ N. Let δ1 > 0 be a real number corresponding to ε = δ and A = 1
in Lemma 2.1. Then there exists n1 such that

‖x0 · χ{n1,n1+1,...}‖pCes2(p)
=

∞∑
n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣x0(i)

∣∣)p

< δ1.
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Take k large enough such that jk > n1. Then from Lemma 2.1, the convexity
of the function | · |p, and relation (2.8), we have

1− δ <
∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣∣xk(i) + x0(i)

2

∣∣∣)p

=

n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣∣xk(i) + x0(i)

2

∣∣∣)p

+
∞∑

n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣∣xk(i) + x0(i)

2

∣∣∣)p

≤ 1

2

n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣x0(i)

∣∣)p

+
1

2

n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣xk(i)

∣∣)p

+
∞∑

n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣∣xk(i)

2

∣∣∣)p

+ δ

≤ 1

2
+

1

2

n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣xk(i)

∣∣)p

+
1

2p

∞∑
n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣xk(i)

∣∣)p

+ δ

≤ 1

2
+

1

2

∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣xk(i)

∣∣)p

− 2p − 1

2p

∞∑
n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣xk(i)

∣∣)p

+ δ

< 1− 2δ + δ = 1− δ.

Hence, relation (2.8) is valid. Now, from the inequality( 1

(n1 + 1)(n2 + 2)

n∑
i=0

(i+ 1− k)
∣∣xk(i)

∣∣)p

≤
n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣xk(i)

∣∣)p

,

it follows that ∣∣xk(i)
∣∣ ≤ (n1 + 1)(n1 + 2)

n1 + 1− i
,

for every k ∈ N and i = 1, 2, . . . , n1. It means that there exists a subsequence
(yn) of (xn) and numerical sequence (an) such that limk→∞ yk(i) = ak, for i =
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1, 2, . . . , n1. Therefore

n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣yk(i)− ym(i)

∣∣)p

< δ

for sufficiently large n and m. Consequently,

‖yk − ym‖pCes2(p)
=

∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣yk(i)− ym(i)

∣∣)p

=

n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣yk(i)− ym(i)

∣∣)p

+
∞∑

n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣yk(i)− ym(i)

∣∣)p

≤
n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣yk(i)− ym(i)

∣∣)p

+ 2p
∞∑

n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣yk(i)∣∣)p

+ 2p
∞∑

n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
i=0

(i+ 1− k)
∣∣ym(i)∣∣)p

≤ δ + 2p+1δ

< ε0,

whence sep(xn) ≤ sep(yn) < (ε0)
1
p . This contradiction shows that Ces2(p) has the

property (β). �

Corollary 2.13. The space Ces2(p) has the Kadec–Klee property.

Corollary 2.14. The space Ces2(p) has the k-NUC property for every k ≥ 2.

Corollary 2.15. The spaces Ces2(p) and (Ces2(p))∗ have the Banach–Saks prop-
erty.

The proof of Corollary 2.15 follows from [4, Theorem 1].

Theorem 2.16. For any 1 < p < ∞, the space Ces2(p) has the uniform Opial
property.

Proof. Let ε > 0, and let x ∈ Ces2(p). Then there exists n1 ∈ N such that

∞∑
n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

<
(ε0
4

)p

,
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for ε0 ∈ (0, ε) and 1 + εp

2
≥ (1 + ε0)

p. On the other hand, from ‖x‖Ces2(p) ≥ ε, we
obtain that

εp ≤
n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

+
∞∑

n=n1+1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

<

n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

+
(ε0
4

)p

<

n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

+
εp

4
,

whence
n1∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

≥ 3εp

4
.

Let (xm) ⊂ S(Ces2(p)) be any weakly null sequence. From xm(i) → 0, for i =
1, 2, . . . , it follows that there exists m0 ∈ N such that∥∥∥ n1∑

i=1

xm(i)ei

∥∥∥
Ces2(p)

<
ε0
4
,

for every m > m0. Therefore,

‖xm + x‖Ces2(p) =
∥∥∥ n1∑

i=1

(
xm(i) + x(i)

)
ei +

∞∑
i=n1+1

(
xm(i) + x(i)

)
ei

∥∥∥
Ces2(p)

≥
∥∥∥ n1∑

i=1

x(i)ei +
∞∑

i=n1+1

xm(i)ei

∥∥∥
Ces2(p)

−
∥∥∥ n1∑

i=1

xm(i)ei

∥∥∥
Ces2(p)

−
∥∥∥ ∞∑
i=n1+1

x(i)ei

∥∥∥
Ces2(p)

≥
∥∥∥ n1∑

i=1

x(i)ei +
∞∑

i=n1+1

xm(i)ei

∥∥∥
Ces2(p)

− ε0
2
, (2.9)

for every m > m0. Moreover,∥∥∥ n1∑
i=1

x(i)ei +
∞∑

i=n1+1

xm(i)ei

∥∥∥p

Ces2(p)

=
∥∥(x(1), x(2), . . . , x(n1), xm(n1 + 1), . . .

)∥∥
Ces2(p)
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=
∞∑
n=1

( 1

(n+ 1)(n+ 2)

n1∑
i=0

(n+ 1− i)
∣∣x(i)∣∣

+
1

(n+ 1)(n+ 2)

∞∑
i=n1+1

(n+ 1− i)
∣∣xm(i)

∣∣)p

≥
∞∑
n=1

( 1

(n+ 1)(n+ 2)

n1∑
i=0

(n+ 1− i)
∣∣x(i)∣∣)p

+
∞∑
n=1

( 1

(n+ 1)(n+ 2)

∞∑
i=n1+1

(n+ 1− i)
∣∣xm(i)

∣∣)p

(2.10)

≥ 3εp

4
+
(
1− εp

4

)
= 1 +

εp

2
> (1 + ε0)

p. (2.11)

Now, from equations (2.9) and (2.10), we get

‖xm + x‖ ≥ 1 +
ε0
2
.

This means that Ces2(p) has the uniform Opial property. �

Corollary 2.17. For 1 < p < ∞, the space Ces2(p) has the property (L) and the
fixed-point property.

Theorem 2.18. The equality C(Ces2(p)) = 2
1
p holds for any p ≥ 1.

The technique of the proof is similar to that of [5, Theorem 3], and so we omit
it.

Theorem 2.19. The Gurarĭi modulus of convexity for the sequence space Ces2(p)
(1 ≤ p < ∞) is

βCes2(p) ≤ 1−
(
1−

( ε
2

)p) 1
p
,

for every ε > 0.

Proof. We follow some techniques given in [14]. Let x ∈ Ces2(p). Then

∞∑
n=1

( 1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)
∣∣x(k)∣∣)p

< ∞.

If we denote by A the matrix which represents the sequence space defined by the
above relation, then it can be expressed in the following form:

A = (ank) =

{
(n+1−k)

(n+1)(n+2)
for 0 ≤ k ≤ n;n, k ∈ {0, 1, 2, 3, 4, . . .},

0 for k > n.
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Let ε > 0. From the definition of matrix A, it follows that there exists the inverse
matrix B. We define the following two sequences:

x = (xn) =
(
B
(
1−

( ε
2

)p) 1
p
, B

( ε
2

)
, 0, . . .

)
,

y = (yn) =
(
B
(
1−

( ε
2

)p) 1
p
, B

(
− ε

2

)
, 0, . . .

)
.

The norms of the above sequences are

‖x‖p
Ces2(p)

=
∥∥A(x)∥∥p

lp
=

∣∣∣(1− ( ε
2

)p) 1
p
∣∣∣p + ∣∣∣ ε

2

∣∣∣p = 1,

‖y‖p
Ces2(p)

=
∥∥A(y)∥∥p

lp
=

∣∣∣(1− ( ε
2

)p) 1
p
∣∣∣p + ∣∣∣− ε

2

∣∣∣p = 1,

and

‖x− y‖Ces2(p) =
∥∥A(x− y)

∥∥
lp

=
(∣∣∣(1− ( ε

2

)p) 1
p −

(
1−

( ε
2

)p) 1
p
∣∣∣p + ∣∣∣ ε

2
−
(
− ε

2

)∣∣∣p) 1
p
= ε.

Now we will estimate the infimum of the expression

inf
0≤α≤1

∥∥α · x+ (1− α) · y
∥∥
Ces2(p)

,

for every x, y ∈ S(Ces2(p)). We have

inf
0≤α≤1

∥∥α · x+ (1− α) · y
∥∥
Ces2(p)

= inf
0≤α≤1

∥∥α · A(x) + (1− α) · A(y)
∥∥
lp

= inf
0≤α≤1

{∣∣∣α(1− ( ε
2

)p) 1
p
+ (1− α)

(
1−

( ε
2

)p) 1
p
∣∣∣p

+
∣∣∣α( ε

2

)
+ (1− α)

(
− ε

2

)∣∣∣p} 1
p

= inf
0≤α≤1

{
1−

( ε
2

)p

+ (2α− 1)
( ε
2

)p} 1
p

=
(
1−

( ε
2

)p) 1
p
.

Hence, for every p ≥ 1, we get the estimate

βCes2(p) ≤ 1−
(
1−

( ε
2

)p) 1
p
. �

Corollary 2.20.

(1) If ε = 2, then βCes2(p) ≤ 1 and Ces2(p) is strictly convex.

(2) If 0 < ε < 2, then 0 < βCes2(p) < 1 and Ces2(p) is uniformly convex.

(3) Under conditions from (2), Ces2(p) is reflexive.

Acknowledgments. The author expresses his sincere thanks to the referees for
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