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Reducts of the Random Bipartite Graph

Yun Lu

Abstract Let � be the random bipartite graph, a countable graph with two
infinite sides, edges randomly distributed between the sides, but no edges within
a side. In this paper, we investigate the reducts of � that preserve sides. We
classify the closed permutation subgroups containing the group Aut.�/�, where
Aut.�/� is the group of all isomorphisms and anti-isomorphisms of � preserving
the two sides. Our results rely on a combinatorial theorem of Nešetřil and Rödl
and a strong finite submodel property for � .

1 Introduction

As in Thomas [10], a reduct of a structure � is a structure with the same underlying
set as � , for some relational language, each of whose relations is ;-definable in the
original structure. If � is !-categorical, then a reduct of � corresponds to a closed
permutation subgroup in Sym.�/ (the full symmetric group on the underlying set of
�) that contains Aut.�/ (the automorphism group of �). Two interdefinable reducts
are considered to be equivalent. That is, two reducts of a structure � are equivalent if
they have the same ;-definable sets or, equivalently, if they have the same automor-
phism groups. There is a one-to-one correspondence between equivalence classes of
reducts N and closed subgroups of Sym.�/ containing Aut.�/ via N 7! Aut.N /
(see [10]).

There are currently a few !-categorical structures whose reducts have been ex-
plicitly classified. In 1977, Higman [5] classified the reducts of the structure .Q; </.
In 2008, Markus Junker andMartin Ziegler [7] classified the reducts of expansions of
.Q; </ by constants and unary predicates. In 2010, Manuel Bodirsky, Hubie Chen,
and Michael Pinsker [4] provided a classification of the reducts of the logic of equal-
ity. Simon Thomas [9] showed that there are finitely many reducts of the random
graph in 1991, and of the random hypergraphs (see [10]) in 1996. In 1996, James
Bennett [2] proved similar results for the random tournament and for the random
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k-edge coloring graphs. In this paper, we investigate the reducts of the random bi-
partite graph that preserve sides. We find it convenient to consider a bipartite graph
in a language with two unary predicates (one side Rl , the other side Rr ) and two
binary predicates (edge P1, not edge P2). Equivalently, we analyze the closed sub-
groups of Sym.Rl / � Sym.Rr / containing Aut.�/, where Rl , Rr denote the two
sides of the random bipartite graph. Let Aut.�/� be a group of all isomorphisms and
anti-isomorphisms preserving the two sides. We classified all the closed subgroup
of Sym.Rl /� Sym.Rr / containing Aut.�/�. We have analyzed some closed groups
between Aut.�/ and Sym.�/ but do not describe the results here since we do not
have a classification of all such groups.

Definition 1.1 A structureG D .V G ; RG
l
; RG

r ; P
G
1 ; P

G
2 /, where RG

l
; RG

r � V
G

and PG
1 ; P

G
2 � RG

l
� RG

r , is a bipartite graph if it satisfies the following set of
axioms:

9xRl .x/ ^ 9xRr .x/,
8x.Rl .x/ _Rr .x//,
8x
�
.Rl .x/ �! :Rr .x// ^ .Rr .x/ �! :Rl .x//

�
,

8x8y
�
.Rl .x/ ^Rr .y// �! .P1.x; y/ _ P2.x; y//

�
,

8x8y
�
.P1.x; y/ �! .Rl .x/^Rr .y///^.P2.x; y/ �! .Rl .x/^Rr .y///

�
,

8x8y
�
.Rl .x/ ^ Rr .y// �! ..P1.x; y/ �! :P2.x; y// ^ .P2.x; y/ �!

:P1.x; y///
�
.

In the rest of the paper, we will use the following notation: if E D .a; b/ 2 Rl �Rr ,
then we call .a; b/ a cross-edge, and we say that E has cross-type Pi if Pi holds for
the pair .a; b/ for i D 1; 2. Furthermore, if g 2 Sym.�/ and E D .a; b/ 2 Rl �Rr ,
then we denote .g.a/; g.b// by gŒE�. An .m � n/-subgraph is a bipartite graph
with m vertices in Rl and n vertices in Rr . Sym¹l;rº.�/ denotes the group
Sym.Rl / � Sym.Rr /.

Definition 1.2 Let n 2 N. A bipartite graph satisfies the extension property ‚n

if for any two disjoint subsets Xl1, Xl2 2 ŒRl �
�n, and any two disjoint subsets Xr1,

Xr2 2 ŒRr �
�n,

(a) there exists a vertex v 2 Rr such that Pi .x; v/ for every x 2 Xli for i D 1; 2;
and

(b) there exists a vertexw 2 Rl such thatPi .w; x/ for every x 2 Xri for i D 1; 2.

Definition 1.3 A countable bipartite graph, denoted by � , is random if it satisfies
the extension property ‚n for every n 2 N.

The‚n’s are first-order sentences, and the axioms in Definition 1.1 together with the
¹‚nºn2N form a complete and !-categorical theory. A random bipartite graph can
be built by Fraïssé construction for bipartite graphs (see Hodges [6]). It is countable
and unique up to isomorphism. It is also easy to show that the random bipartite graph
is homogeneous by a back-and-forth argument. In the rest of paper, we denote by �
the random bipartite graph.

Definition 1.4 Let � be the random bipartite graph, and let A be a subset of � .
A bijection � W � �! � is a switch with respect to A if the following conditions are
satisfied: for all .a; b/ 2 Rl �Rr and i D 1; 2, Pi .a; b/ ! Pi .�.a/; �.b// if and
only if j¹a; bº \ Aj ¤ 1.
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Note that a switch on any finite set of vertices can be obtained by composing single-
vertex switches.

Definition 1.5 Let X � ¹l; rº. The switch group SX .�/ is the closed subgroup
of Sym¹l;rº.�/ generated as a topological group by

(1) Aut(�); and
(2) the set of all � 2 Sym¹l;rº.�/ such that � is a switch with respect to some

v 2 Ri , where i 2 X .

Since � satisfies the extension property ‚n for n 2 N and S¹l;rº.�/ is closed, we
can construct � 2 S¹l;rº.�/ which is a switch w.r.t. Rl . Observe that � 2 S¹lº.�/ \
S¹rº.�/. Let G� be the closed group generated by G and �. Then the group SX .�/

�

is the same as the group SX .�/ except when X D ;. Notice Aut.�/� D S;.�/
�,

which is a group of permutations that either preserve all cross-types on Rl � Rr , or
exchange all cross-types on Rl �Rr . Also notice that Aut.�/� D Sl .�/ \ Sr .�/.

We now state the main result of this paper.

Theorem 1.6 If G is a closed subgroup with Aut.�/� � G < Sym¹l;rº.�/, then
there exists a subset X � ¹l; rº such that G D SX .�/

�.

That is, there are only finitely many closed subgroups of Sym¹l;rº.�/ containing
Aut.�/�: Aut.�/�; S¹lº.�/; S¹rº.�/; S¹l;rº.�/, and Sym¹l;rº.�/. This theorem re-
lies on a combinatorial theorem of Nešetřil and Rödl [8] and the strong finite sub-
model property of the random bipartite graph. It is still an open question whether
there are finitely many closed subgroups between Aut.�/ and Sym.�/.

Here is how the rest of the paper is organized. In Section 2, we study the relations
preserved by the groups SX .�/, where X � ¹l; rº. In Section 3, we show that the
random bipartite graph has the strong finite bipartite submodel property. In Section 4,
we employ a technique called .m�n/-analysis for the random bipartite graph. These
prepare us to give an explicit classification of the closed subgroups of Sym¹;rº.�/
containing Aut.�/� in the rest of the paper. In Section 5, we prove the first part of
Theorem 1.6, which says that the closed subgroups of S¹l;rº.�/ containing Aut.�/�
are Aut.�/�; S¹lº.�/, S¹rº.�/, and S¹l;rº.�/. In Section 6, we prove the existence
of some special finite subgraphs of � , which will be used in Section 7. Then in
Section 7 we show that there is no other proper closed subgroup between S¹l;rº.�/

and Sym¹l;rº.�/, which completes the proof of Theorem 1.6.

2 Relations Preserved by Switch Groups

In this section, we identify the relations preserved by the switch groups S¹lº.�/,
S¹rº.�/, and S¹l;rº.�/. For convenience in discussing closures of G � Sym¹l;rº.�/,
we let F.G/ D ¹g � X j g 2 G;X 2 Œ��<!º.

Definition 2.1 Let f 2 Sym¹l;rº.�/, and let S be a finite bipartite subgraph of � .
We say f preserves the parity of cross-types on S if the number of P1 cross-types
in S is even if and only if the number of cross-types in f ŒS� is even.

Lemma 2.2 We have S¹l;rº.�/ D ¹� 2 Sym¹l;rº.�/ j � preserves the parity of
cross-types in every .2 � 2/-subgraph of �º.

Proof It is easy to show that any � 2 S¹l;rº.�/ preserves the parity of cross-types
in every .2 � 2/-subgraph of � . The other direction is proved as follows.
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Suppose � 2 Sym¹l;rº.�/ preserves the parity of cross-types in every .2 � 2/-
subgraph of � . Let B be an arbitrary .2 � 2/-subgraph of � . Since � preserves the
parity of the Pi ’s for i D l and r , only an even number of the cross-types can be
changed. That is, 0, 2, or 4 of the cross-types can be changed. We shall prove that in
each case, there exists � 2 S¹l;rº.�/ such that � � B D � � B .

Case 1. If none of the cross-types are changed, then there exists � 2 Aut.�/ such
that � � B D � � B .

Case 2. If two of the cross-types are changed, then there exists � which is either a
switch with respect to one vertex or a switch with respect to two vertices of B such
that � � B D � � B .

Case 3. If four of the cross-types are changed, then there exists � which is a switch
with respect to Rl of � (i.e., � 2 Aut.�/�) such that � � B D � � B .

We then choose a vertex v 2 �nB and let ' D ��1 ı � � B [ ¹vº. We may
assume v 2 Rl . Note that if E is a cross-edge in B[¹vº and ' does not preserve the
cross-type on E, then E D .v; u/ for some u 2 Rr . Also notice that � and � both
preserve the parity of cross-types in .2 � 2/-subgraphs of �; hence so does '. Then
it is easy to check that either for every w 2 B \ Rr , Pi .v; w/ �! Pi .'.v/; '.w//,
or for every w 2 B \ Rr , Pi .v; w/ �! :Pi .'.v/; '.w//, where i D 1 and 2.
Therefore ' 2 F.S¹l;rº.�//, and so � � B [ ¹vº 2 F.S¹l;rº.�//. Continuing in
this manner for the vertices in �nB [ ¹vº, we see that for any finite bipartite graph
S � � , there exists an element �S 2 F.S¹l;rº.�// such that � � S D �S . Thus
� 2 S¹l;rº.�/, since S¹l;rº.�/ is closed. This complete the proof of Lemma 2.2.

Similarly, we can prove the following results.

Lemma 2.3 We have S¹lº.�/ D ¹� 2 Sym¹l;rº.�/ j � preserves the parity of
cross-types in every .1 � 2/-subgraph of �º.

Lemma 2.4 We have S¹rº.�/ D ¹� 2 Sym¹l;rº.�/ j � preserves the parity of
cross-types in every .2 � 1/-subgraph of �º.

3 The Strong Finite Bipartite Submodel Property

In this section, we define the strong finite bipartite submodel property (SFBSP),
inspired by the strong finite submodel property introduced by Thomas in [10], and
we prove that the random bipartite graph has the SFBSP. This result will be used in
the proof of Lemma 5.4 in Section 5.

Definition 3.1 A countable infinite bipartite graph � has the strong finite bipartite
submodel property (SFBSP) if � D

S
i2N �i is a union of an increasing chain of

substructures �i such that
(1) �i � �iC1 and j�i j D i for each i 2 N; in particular,

� if i is even, then j�i \Rl j D j�i \Rr j;
� otherwise, j�i \Rl j D j�i \Rr j C 1;

(2) for any sentence ' with � ˆ ', there exists N 2 N such that �i ˆ ' for all
i � N .

Theorem 3.2 The countable random bipartite graph � has the SFBSP.

Theorem 3.2 is a consequence of the Borel–Cantelli lemma, as below.



Reducts of the Random Bipartite Graph 37

Definition 3.3 (see [10]) If ¹Anºn2N is a sequence of events in a probability space,
then

T
n2N

�S
n�k2NAk

�
is the event that consists of realization of infinitely many

of An, denoted by limAn.

Lemma 3.4 (Borel and Cantelli; see Billingsley [3]) Let ¹Anºn2N be a sequence of
events in a probability space. If

P1
nD0 P.An/ <1, then P.limAn/ D 0.

Proof of Theorem 3.2 Since the extension properties ‚n’s axiomatize the random
bipartite graph � and ‚i implies ‚i�1 for all i 2 N, for every sentence ' true
in � , there exists some k 2 N such that ‚k holds if and only if ' holds. Let �
be the probability space of all countable bipartite graphs .S;Rl ; Rr ; P1; P2/, where
jRl j D jRr j D ! and every cross-edge E 2 Rl � Rr has cross-type P1 with
probability 1

2
. For each n 2 N with n � k, let Sn 2 ŒS�

n such that if n is even, then
jSn\Rl j D

n
2
; otherwise jSn\Rl j D jSn\Rr jC 1. Let An be the event for which

the induced graph on Sn does not satisfy the extension property‚k . Then by simple
computation,

1X
nD0

P.An/ D

1X
mD0

P.A2m/C

1X
mD0

P.A2mC1/

� 4

1X
mD0

�
mC 1

k

��
mC 1 � k

k

��
1 �

�1
4

�k
�m�2k

; (1)

where
�

n
i

�
is the number of combinations of n objects taken i at a time. Let

Cm D
�

mC1
k

��
mC1�k

k

��
1 �

�
1
4

�k�m�2k . Then limm!C1
CmC1

Cm
D 1 �

�
1
4

�k
< 1.

By the ratio test for infinite series, we have that
P1

mD0 Cm converges, and so doesP1
nD0 P.An/. Thus by Lemma 3.4, P.limAn/ D 0. So there exists a bipartite

graph S 2 � and an integer N such that for all n � N , the subgraph on Sn 2 ŒS�
n

satisfies the extension property ‚k , and so '. Notice that the choice of S ensures
that S is countable and satisfies all the axioms for the random bipartite graph.
Hence S is isomorphic to � . Then � has the SFBSP, which completes the proof of
Theorem 3.2.

4 .m � n/-Analysis

In [10], Thomas used a helpful tool called “m-analysis” to classify the reducts of the
random hypergraphs. Using a similar approach, we give the definition of .m � n/-
analysis in this section, and we prove that if f 2 F.S¹l;rº.�// and if j dom f j is
sufficiently large, then f has an .m � n/-analysis. This rather technical concept will
be used in the proof of Theorem 1.6.

Definition 4.1 Let m; n > 2. Suppose f 2 F.S¹l;rº.�// and Z D dom f
satisfies jZ \ Rl j � m and jZ \ Rr j � n. An .m � n/-analysis of f consists of
a finite sequence of elements f0; f1; : : : ; fs 2 F.S¹l;rº.�// satisfying the following
conditions:

(1) f0 D � ı f where � 2 F.Aut.�/�/.
(2) For each 0 � j � s � 1, there exist a finite .m � n/-subgraph Yj in Z, and

an element �j 2 S¹l;rº.�/ such that
(a) �j is either an automorphism or a switch with respect to some vertex

vj 2 Yj \Rij where ij 2 ¹l; rº;
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(b) �j � Yj D .fj ı fj�1 ı � � � ı f0/ � Yj ;
(c) fjC1 D �

�1
j � ran.fj ı � � � ı f0/.

(3) fs ı � � � ı f0 W Z �! � is an isomorphic embedding.

We now prove the existence of an .m � n/-analysis for a given f .

Theorem 4.2 Let m; n 2 N and m; n > 2. For every f 2 F.S¹l;rº.�//, there
exists an integer s.m; n/ such that if j dom f \ Ri j � s.m; n/ for i D l and r , then
there exists an .m � n/-analysis of f .

Proof Let f 2 F.S¹l;rº.�// be such that Z D dom f is a very large subset of � .
By Ramsey’s theorem, there exists a large subset S of Z such that S satisfies one of
the following two conditions for every cross-edge E in S , where i D 1; 2:

(a) Pi .E/ implies Pi .f ŒE�/;
(b) Pi .E/ implies :Pi .f ŒE�/.
We will construct a sequence of fi ’s as follows.
If (a) holds, then we let f0 D � ı f where � 2 F.Aut.�/�/ is the identity map

on dom f . Let Y0 be an arbitrary .m � n/-subgraph in S , and choose �0 2 Aut.�/
such that �0 � S D f0 � S . Define f1 D �

�1
0 � ran.f0/.

Next we choose w1 2 Z n S if it exists and consider f1 ı f0 � S [ ¹w1º. Since
f1 ı f0 2 F.S¹l;rº.�// and f1 ı f0 � S is the identity map, f1 ı f0 � S [ ¹w1º

is either an isomorphism or a switch with respect to w1 by Lemma 2.2. Let Y1

be an arbitrary .m � n/-subgraph of S [ ¹w1º containing w1. Then there exists
�1 2 F.S¹l;rº.�// which is either an isomorphism or a switch with respect to w1

and �1 � S [ ¹w1º D f1 ı f0 � S [ ¹w1º. Define f2 D �
�1
1 � ran.f1 ı f0/.

Continuing in this manner, for 0 � j < s D jZ=S j, we can find an .m � n/-
subgraph Yj of Z and �j 2 S¹l;rº.�/ such that

(1) �j is either an isomorphism or a switch with respect to some vertex
wj 2 Yj \Rij where ij 2 ¹l; rº;

(2) �j � Yj D .fj ı fj�1 ı � � � ı f0/ � Yj ;
(3) fjC1 D �

�1
j � ran.fj ı � � � ı f0/.

Also fs ı � � � ı f0 W Z �! � is an isomorphic embedding.
If (b) holds, then there exists � 2 F.Aut.�/�/ with dom.�/ D ran.f /, which ex-

changes all the cross-types on � . Let f0 D � ı f . Hence f0 � S is an isomorphism.
The rest of the proof will be the same as in (a).

Hence f0; f1; : : : ; fs is an .m � n/-analysis of f . This completes the proof of
Theorem 4.2.

5 Closed Subgroups of S¹l;rº.�/ Containing Aut.�/�

In this section, we prove the first part of Theorem 1.6, which says that the closed
subgroups of S¹l;rº.�/ containing Aut.�/� are Aut.�/�, S¹lº.�/, S¹rº.�/, and
S¹l;rº.�/. Notice that in the rest of the paper, we only consider maps in Sym¹l;rº.�/.
Hence from now on, we call f � E an isomorphism ifE D .a; b/ is a cross-edge and
Pi .a; b/ implies Pi .f .a/; f .b// for i D 1; 2. We call f � E an anti-isomorphism
if E D .a; b/ is a cross-edge and Pi .a; b/ implies :Pi .f .a/; f .b// for i D 1; 2.

Theorem 5.1 Suppose thatG is a closed subgroup withAut.�/� � G � S¹l;rº.�/.
Let X be the largest subset of ¹l; rº such that SX .�/

� � G. ThenG � SX .�/
�, and

so G D SX .�/
�.
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In the rest of this section, we let G be a closed subgroup with Aut.�/� � G �

S¹l;rº.�/ and let X be the largest subset of ¹l; rº such that SX .�/
� � G.

Lemma 5.2 Suppose that g 2 G is a bijection such that for every finite T � �

with jT \Ri j � 2 for i D l and r , we have g � T 2 F.SX .�/
�/. Then g 2 SX .�/

�.

Proof IfX ¤ ;, from Lemmas 2.2, 2.3, and 2.4, we know that g � T 2 F.SX .�//

implies g 2 SX .�/. Then we are done. If X D ;, then S;.�/� D Aut.�/�. If
g � T 2 F.Aut.�/�/, then Aut.�/� D S¹lº.�/\S¹rº.�/ implies g � T 2 F.Sl .�//

and g � T 2 F.Sr .�//. Thus g 2 S¹lº.�/ \ S¹rº.�/, and so g 2 Aut.�/�. This
completes the proof of Lemma 5.2.

Now let g 2 G. Let T � � be an arbitrary finite bipartite graph with jT \Ri j � 2 for
i D l and r . Then it will be sufficient to show that g � T 2 F.SX .�/

�/. To achieve
this, we adjust g repeatedly via composition with elements of SX .�/

� until we even-
tually obtain an element h 2 F.S¹l;rº.�// such that h � T is an isomorphism. Our
strategy is based upon the following lemma.

Lemma 5.3 Suppose that h 2 F.S¹l;rº.�// and that U , T � dom.h/ are two
disjoint bipartite subgraphs such that for every cross-edge E in .T [ U/nT , h � E
is an isomorphism. Then h � T is an isomorphism.

Proof We prove this by contradiction. Suppose h � T is not an isomorphism; then
there exists a cross-edge A 2 ŒT �2 such that h � A is not an isomorphism. LetW be
a .2 � 2/-subgraph of T [ U such that W \ T D A. By assumption, h � E is an
isomorphism for every cross-edge E 2 ŒW �2nA. Thus h does not preserve the parity
of the cross-types on the .2 � 2/-subgraph W , which contradicts Lemma 2.2. This
completes the proof of Lemma 5.3.

We shall make use of the following property of X .

Lemma 5.4 Let X be the largest subset of ¹l; rº such that SX .�/
� � G. There

exists a nonempty finite bipartite subgraphH of � satisfying the following.
For any i 2 ¹l; rº, if there exists some vertex vi 2 H \ Ri and g 2 G such that

g � H is a switch w.r.t. vi , then i 2 X .

Proof We prove the equivalent statement: there exists a nonempty finite bipartite
subgraph H of � satisfying the following. If i 2 ¹l; rº and i … X , then for every
vi 2 H \Ri and every g 2 G, g � H is not a switch w.r.t. vi .

Since i 2 ¹l; rº and i … X , there exists a map f which is a switch with respect to
some vertex ai 2 Ri , but not in G. Otherwise the closed group generated by Aut.�/
and f is S¹iº.�/, and so S¹iº.�/ D S¹iº.�/

� is a subgroup of G, a contradiction
with the definition of X . Then f … G implies that for every g 2 G, g is not a switch
with respect to ai . So there exists a finite set A � � containing ai such that for every
g 2 G, g � A is not a switch with respect to ai .

Since � has the extension property, the following holds.
For every vertex vi 2 Ri , there exists a bipartite graph A0 � � containing vi

which is isomorphic to A mapping vi to ai . This can be expressed by the first-order
sentence �i . If � is the sentence

V
i…X �i , then � ˆ � . Hence by Theorem 3.2, there

exists a nonempty finite bipartite H of � such that H ˆ � . This H satisfies our
requirement, which completes the proof of Lemma 5.4.
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We shall also make use of a combinatorial theorem of Nešetřil and Rödl, which is a
generalization of Ramsey’s theorem. The following formulation, convenient for our
use, is due to Abramson and Harrington [1].

Definition 5.5 (see [10]) A system of colors of length n, ˛ D .˛1; : : : ; ˛n/ is an
n-sequence of finite nonempty sets. An ˛-colored set consists of a finite ordered set
X and a function � W ŒX��n �! ˛1[� � �[˛n such that �.A/ 2 ˛k for each A 2 ŒX�k
where 1 � k � n. For each A 2 ŒX��n, �.A/ is called the color of A. An ˛-pattern
is an ˛-colored set whose underlying ordered set is an integer.

Theorem 5.6 (see Abramson and Harrington [1]) Given n, e,M 2 N, a system ˛
of colors of length n and an ˛-pattern P , there exists an ˛-pattern Q with the fol-
lowing property. For any ˛-colored set .X; �/ with ˛-patternQ and for any function
F W ŒX�e �! M , there exists Y � X such that .Y; � � Y / has an ˛-pattern P and
such that for any A 2 ŒY �e , F.A/ depends only on the ˛-pattern of .A; � � A/. (We
say that such a Y is F -homogeneous.)

Proof of Theorem 5.1 LetX be the largest subset of ¹l; rº such that SX .�/
� � G.

Suppose g 2 G, and let T � � be finite with jT \ Rl j > 2 and jT \ Rr j > 2.
By Lemma 5.2, it is enough to show now that g � T 2 F.SX .�/

�/. The proof of
Theorem 5.1 proceeds via a sequence of claims.

Fix an ordering� of vertices in � such that T is an initial segment of this ordering
of � . For a suitable system of colors ˛, we define an ˛-coloring � of Œ�nT ��2 by
setting �.A/ D �.B/ if and only if jAj D jBj and the order-preserving bijection
T [ A �! T [ B is an isomorphism.

Now we define the partition function Fg W Œ�nT �
2 �! 2 such that for

E 2 Œ�nT �2,
� Fg.E/ D 1 if E 2 ŒRi �

2 for i D 1; 2; or if E 2 Rl � Rr with g � E is an
isomorphism;
� Fg.E/ D 0 otherwise.

Let H be the finite bipartite graph given by Lemma 5.4, and let m D jH \ Rl j,
n D jH \ Rr j. Since � satisfies the extension properties, the following conditions
hold:

(a) j� \Ri j � s.m; n/CjT j for i D l and r , where s.m; n/ is as in Lemma 4.2;
(b) � contains all different copies of .2 � 2/-graphs, each connecting to T in all

possible ways;
(c) � contains isomorphic copies of an .m � n/-subgraph H connecting to T in

all possible ways;
(d) for every v 2 T , there exists a finite bipartite subgraph V � .�nT / [ ¹vº

containing v such that V is isomorphic to the .m � n/-subgraphH .
Since � has the extension property, there exists a finite subgraph U � �nT such
that the conditions (a)–(d) hold in U . Now let the ˛-pattern P be the one derived
from .U; � � U/. By Theorem 5.6 there exists U 0 � �nT such that U 0 is Fg -
homogeneous and has the ˛-pattern P . Thus T [U 0 is isomorphic to T [U sending
T to T . Without loss of generality, we assume U D U 0 in the rest of this section.
Now we will use the following claims.

Claim A Suppose that X1, X2 � U and that jX1 \ Ri j D jX2 \ Ri j for i D l

and r . Let ' W T [X1 �! T [X2 be an order-preserving bijection such that ' � E
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is an isomorphism for all E 2 ŒT [X1�
2nŒX1�

2. Then for all E 2 ŒX1�
2,

g � E is an isomorphism if and only if g � '.E/ is an isomorphism.

Proof We prove this by contradiction. We may assume that there exists some
E 2 ŒX1�

2 such that g � E is an isomorphism while g � 'ŒE� is not. Since U satis-
fies condition (b), there exist .2�2/-subgraphs V ,W � U and F 2 ŒV �2, F 0 2 ŒW �2
with �.E/ D �.F / and �.'ŒE�/ D �.F 0/ satisfying the following condition.

There exists an order-preserving bijection ˛ W T [ V �! T [W mapping F to
F 0 such that for every A 2 ŒT [ V �2nF , ˛ � A is an isomorphism.

In particular, �.A/ D �.˛.A// for all A 2 ŒV �2nF . Since U is Fg -homogeneous,
it follows that for all A 2 ŒV �2nF , g � A is an isomorphism if and only if g � ˛.A/
is an isomorphism. Since �.E/ D �.F / and �.'ŒE�/ D �.F 0/, we have g � F is
an isomorphism but g � F 0 is not an isomorphism. Let P D j¹A 2 ŒV �2 j g � A
is not an isomorphismºj, and letQ D j¹A 2 ŒW �2 j g � A is not an isomorphismºj.
Then Q D P C 1 because of the effect of g on F and F 0. But by Lemma 2.2,
g 2 S¹l;rº.�/ implies that g preserves the parity of cross-types in V and W . Thus
P andQ must be even, which contradictsQ D P C 1. This completes the proof of
Claim A.

Claim B We have g � U 2 F.SX .�/
�/.

Proof Since U satisfies condition (a), by Theorem 4.2 there exists an .m � n/-
analysis of g � U : g0; g1; : : : ; gt 2 F.S¹l;rº.�//. That is, for each 0 � j � t � 1,
there exists a finite .m�n/-subgraph Yj inU and an element �j 2 S¹l;rº.�/ such that

(1) g0 D � ı g � U where � 2 F.Aut.�/�/;
(2) �j is either an isomorphism or a switch with respect to some vertex

aj 2 Yj \Rij where ij 2 ¹l; rº;
(3) �j � Yj D .gj ı gj�1 ı � � � ı g0/ � Yj ;
(4) gjC1 D �

�1
j � ran.gj ı � � � ı g0/;

(5) .gt ı � � � ı g0/ W U �! � is an isomorphic embedding.

If all ¹i0; : : : ; it�1º � X , then g0 � U 2 F.SX .�/
�/, and so g � U 2

F.SX .�/
�/. Otherwise, let j be the least integer such that ij … X and the corre-

sponding �j is a switch with respect to aj 2 Rij \Yj . Note �0; : : : ; �j�1 2 SX .�/
�,

which implies g1; : : : ; gj 2 F.SX .�/
�/. We prove that this situation cannot occur.

Note that .gj ı � � � ı g0/ � Yj D �j � Yj is a switch with respect to a vertex
aj 2 Rij \ Yj .

Since U satisfies condition (c), there exist an .m � n/-subgraph H 0 � U which
is an isomorphic copy of H, and a map ' satisfying that ' W T [ Yj �! T [ H 0

is an order-preserving bijection such that ' � E is an isomorphism for all
E 2 ŒT [ Yj �

2nŒYj �
2.

By Claim A, for every E 2 ŒYj �
2, g � E is an isomorphism if and only

if g � 'ŒE� is an isomorphism. Next wewill show there exist g�1 ; : : : ; g�j 2 F.SX .�/
�/

such that g�j ı � � � ı g
�
1 ı g0 � H 0 is a switch with respect to '.aj / of H 0 in Rij .

But then Lemma 5.4 implies that ij 2 X , contrary to our assumption. We define
g�

l
inductively for 1 � l � j such that for all E 2 ŒYj �

2; gl ı � � � ı g0 � E is an
isomorphism if and only if g�

l
ı � � � ı g�1 ı g0 � 'ŒE� is an isomorphism.

Suppose g�1 ; : : : ; g�l�1
have been defined; we now define g�

l
for 1 � l � j .
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(a) If �l�1 is an isomorphism, or if �l�1 is a switch w.r.t. al�1 2 Ril�1
but

al�1 … Yj , then gl is an isomorphism on gl�1 ı � � � ı g0ŒYj �, which is in
F.SX .�//. We define g�

l
as the identity map on ran.g�

l�1
ı � � � ı g�1 ı g0/.

(b) Otherwise, �l�1 is a switch w.r.t. al�1 2 Ril�1
and al�1 2 Yj ; then gl is a

switch with respect to gl�1 ı � � � ı g0.al�1/ 2 Ril�1
\ gl�1 ı � � � ı g0ŒYj �.

Then gl 2 F.SX .�//. Let �� 2 SX .�/ be a switch with respect to
g�

l�1
ı � � � ıg�1 ıg0.'.al�1//, and define g�l as �� � ran.g�

l�1
ı � � � ıg�1 ıg0/.

This completes the proof of Claim B.

Now choose  0 2 SX .�/
� such that  0 � U D g � U , and let h1 D  �1

0 ı g �
T [ U . Then h1 � E is the identity for every E 2 ŒU �2.

Next, we choose a vertex v1 in T . Without loss of generality, we let v1 2 Rl and
consider h1 � U [ ¹v1º. Notice that if E 2 ŒU [ ¹v1º�

2 and h1 � E is not an
isomorphism, then v1 2 E.
Claim C We have h1 � U [ ¹v1º 2 F.SX .�/

�/.
Proof Since h1 � U D id and h1 2 F.S¹l;rº.�//, by Lemma 2.2, h1 preserves
the parity of cross-types in every .2� 2/-subgraph of U [¹v1º. So h1 � U [¹v1º is
either an isomorphism or a switch with respect to v1. We may assume h1 � U [¹v1º

is a switch with respect to v1. Then there exists a switch  1 2 S¹lº.�/ such that
h1 � U [ ¹v1º D  1 � U [ ¹v1º, and for all E 2 ŒT [ U �2 with v1 … E,  1 � E
is an isomorphism.

If l 2 X , then  1 2 SX .�/ and so  1 2 SX .�/
�; then we are done. Otherwise,

we show that there will be contradiction. Since U satisfies condition (d), there exists
an .m � n/-subgraph V in U [ ¹vº such that v 2 V and V ' H . Then h1 � V is a
switch with respect to v1 2 Rl . By Lemma 5.4, we have l 2 X , a contradiction with
our assumption. This completes the proof of Claim C.

By Claim C, there exists  1 2 SX .�/
� that is either an isomorphism or a switch

w.r.t. v1 2 Ri for i 2 X such that
(a)  1 � U [ ¹v1º D h1 � U [ ¹v1º;
(b) for all E 2 ŒT [ U �2, if v1 … E, then  1 � E is an isomorphism.

Let h2 D  
�1
1 ıh1 � T [U ; then for allE 2 ŒT [¹v1º�

2, h2 � E is an isomorphism.
Now choose a second vertex v2 2 T n¹v1º. Arguing similarly as in Claim C, there

exists  2 2 SX .�/
� which is either an isomorphism or a switch w.r.t. v2 2 Ri for

i 2 X such that
(a)  2 � U [ ¹v2º D h2 � U [ ¹v2º;
(b) for all E 2 ŒT [ U �2, if v2 … E, then  2 � E is an isomorphism.

Note that such  2 is an isomorphism for all the cross-edges E such that E � U or
E \ T D ¹v1º. Thus when we next adjust h2 to h3 D  �1

2 ı h2 � T [ U , we
do not spoil the progress which we make with our earlier adjustments. Hence for all
E 2 ŒT [ ¹v1; v2º�

2n¹v1; v2º, h3 � E is an isomorphism.
By continuing in this fashion, we can deal with the other vertices in T n¹v1; v2º.

After jT j-1 steps, we obtain a map h� W T [ U �! T [ U such that
(a) there exists  � 2 SX .�/

� such that h� D  � ı g � T [ U ;
(b) for all E 2 ŒT [ U �2nŒT �2, h� � E is an isomorphism.
Now Lemma 5.3 implies h� � T is an isomorphism; hence g � T D  ��1

ıh� �
T 2 F.SX .�/

�/. This completes the proof of Theorem 5.1.
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6 Some Special Finite Subgraphs of �

In the rest of paper, we express � as a union of an increasing chain of substructures
�i as mentioned in Theorem 3.2. That is, � D

S
i2N �i where �i � �iC1 and

j�i j D i for each i 2 N. In particular, if i is even, then j�i \ Rl j D j�i \ Rr j;
otherwise, j�i \Rl j D j�i \Rr j C 1. In this section we show the existence of some
special finite bipartite subgraphs �NG

andZ. We will use the following two lemmas,
each of which witnesses the fact that G is a nontrivial reduct.

Lemma 6.1 Let G be a proper closed subgroup of Sym¹l;rº.�/. There exists a
finite bipartite subgraph B0 of � such that for every g 2 G, there exist cross-edges
E1; E2 in B0 such that P1.gŒE1�/ and P2.gŒE2�/.

Proof Suppose no such B0 exists; then for every finite bipartite subgraph B of � ,
there exists some g 2 G such that either P1.gŒE�/ for every cross-edge E in B , or
P2.gŒE�/ for every cross-edge E in B .

Express � D
S

n2N �n as a union of an increasing chain of finite bipartite sub-
graphs �n. There exists an infinite subset I of N such that either for every n 2 I ,
there is gn 2 G such that P1.gnŒE�/ for every cross-edge E in �n; or for every
n 2 I , there is gn 2 G such that P2.gnŒE�/ for every cross-edge E in �n.

We may assume the first situation holds. For any .m � n/-subgraph C � �

where m; n 2 N, there exists N 2 I such that C � �N . Hence there exists some
gc 2 G such that P1.gc ŒE�/ for every cross-edge E in C . Then for any two .m�n/-
subgraphs A;B of � , we can find � 2 Aut.�/ sending gAŒA� to gB ŒB�. Then the
map f D g�1

B ı � ı gA 2 G, and f takes A to B . But A and B are arbitrary
.m�n/-subgraphs of � , and so such f ’s generate all of Sym¹l;rº.�/, a contradiction
with the fact that G is a proper subgroup of Sym¹l;rº.�/. This completes the proof
of Lemma 6.1.

Lemma 6.2 Let i 2 ¹l; rº and j 2 ¹1; 2º, and let G be as above. There exists
a nonempty finite bipartite subgraph B i

j of � satisfying the following property for
every g 2 G:
.�/ No vertex v 2 B i

j \ Ri has the property that for every cross-edge E in B i
j ,

:Pj .gŒE�/ if and only if Pj .E/ and v 2 E.

Proof Fix i and j . Let m D jB0 \ Rl j and n D jB0 \ Rr j for B0 in Lemma 6.1.
We prove this by contradiction. Suppose there is no nonempty finite bipartite graph
satisfying the property .�/ for every g 2 G. Then B0 does not satisfy the property
.�/ for all g 2 G, and then there exist some g0 2 G and v0 2 B0 such that g0

preserves the cross-types on all the cross-edges in B0 except those cross-edges E
where Pj .E/ and v0 2 E. Now compared with B0, g0ŒB0� has fewer cross-edges
with Pj holding on them. Note that g0ŒB0� is finite, so it does not satisfy the property
.�/ by assumption. Similarly, we can find g1 and v1 2 g0ŒB0� witnessing this failure,
and such that g1g0ŒB0� has even fewer cross-edges with Pj . Thus we can find a
sequence of elements of G successively reducing the number of instances of Pj ,
and finally we get their composite g which, when applied to B0, has eliminated all
instances of Pj . But this contradicts the property of B0 in Lemma 6.1. Thus some
.m � n/-subgraph must satisfy the requirement for B i

j :

Note that the following graphs exist in �:
(a) the finite bipartite subgraph B0 as in Lemma 6.1;
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(b) the finite bipartite subgraphBj
i for i 2 ¹l; rº and j 2 ¹1; 2º as in Lemma 6.2.

Then it follows that there exists NG 2 N such that �NG
contains subgraphs (a)

and (b).
In the rest of the section, we will prove the existence of a finite bipartite graph

Z � � which contains an isomorphic copy of B0 and also has the properties that
every f 2 G either preserves or interchanges cross-types on Z.

Theorem 6.3 Let G be a proper closed subgroup of Sym¹l;rº.�/. There exists
a finite bipartite subgraph Z � � containing an isomorphic copy of B0 such that
for every f 2 G and every cross-edge E in Z, either Pi .E/ implies Pi .f ŒE�/,
or Pi .E/ implies :Pi .f ŒE�/, where i D 1 and 2. That is, f either preserves or
interchanges cross-types on Z.

Proof Fix an ordering of the vertices of � . For a suitable system of colors ˛, define
an ˛-coloring � of Œ���2 by setting �.A/ D �.B/ if and only if A;B 2 Œ���2 and
the bijection A! B is an isomorphism.

Let P be the ˛-pattern such that if U is a finite bipartite U of � and .U; � � U/
has an ˛-pattern P , then .U; � � U/ Š �NG

. By Theorem 5.6 there exists an ˛-
pattern Q such that for any ˛-colored set .X; � � X/ with ˛-pattern Q and for any
partition F W ŒX�2 �! 2, there existsZ ofX such thatZ has the ˛-pattern P ; hence
Z Š �NG

, and .Z; � � Z/ is F -homogeneous.
We define a particular partition F W ŒX�2 �! 2 such that for every E 2 ŒX�2,
� F.E/ D 1 if E 2 ŒRi �

2 for i D l; r , or if E is a cross-edge and f preserves
Pj on E for j D 1; 2;
� F.E/ D 0 otherwise.

Then one of the following conditions must hold in Z for every cross-edge E where
i D 1; 2:

(1) Pi .E/ implies Pi .f ŒE�/;
(2) Pi .E/ implies :Pi .f ŒE�/;
(3) P1.f ŒE�/;
(4) P2.f ŒE�/.
Note that Z Š �NG

, which contains B0. This guarantees that only .1/ or .2/
holds for Z, as desired. This completes the proof of Theorem 6.3.

7 The Closed Groups between S¹l;rº.�/ and Sym¹l;rº.�/

In this section, we will prove the following theorem.

Theorem 7.1 If G is a closed subgroup such that Aut.�/� � G < Sym¹l;rº.�/,
then G � S¹l;rº.�/.

For the rest of this section, we fix G as a closed subgroup such that Aut.�/� � G <

Sym¹l;rº.�/. Let X be the largest subset of ¹l; rº such that SX .�/
� � G; and

so X is also the largest subset of ¹l; rº such that SX .�/
� � G \ S¹l;rº.�/. Note

that G \ S¹l;rº.�/ is a closed subgroup of S¹l;rº.�/ containing Aut.�/�, then by
Theorem 5.1, G \ S¹l;rº.�/ D SX .�/

�.

Proof We prove this by contradiction. Assume G is a closed subgroup with
Aut.�/ � G < Sym¹l;rº.�/ but G Š S¹l;rº.�/. Then there exist a map
f 2 GnS¹l;rº.�/ and a .2 � 2/-subgraph Y of � such that f � Y does not
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preserve the parity of cross-types in Y . Let Z � � be the finite bipartite sub-
graph as in Theorem 6.3. Since � is homogeneous, there is ' 2 Aut.�/ such
that '.Z/ D �NG

. Then there exists s 2 N such that '.Y [ Z/ � �s . Let
M D '�1Œ�s�. Then Y [ Z � M , and � D ' � M is an isomorphism from M

onto �s with �ŒZ� D �NG
.

For any m with NG � m � s, let Zm D ��1Œ�m� (note that ZNG
D Z). By

Theorem 6.3, f � ZNG
2 F.S¹l;rº.�//. Let a be the greatest integer such that

NG � a � s and f � Za 2 F.S¹l;rº.�//. By the definition of a, Theorem 5.1
implies that there exists a map � 2 SX .�/

� such that f � Za D � � Za. The
existence of Y � M ensures that a < s. Suppose ZaC1 D Za [ ¹vº. Without loss
of generality, let v 2 Rl . We let f1 D .��1 ı f ı ��1/ � �aC1 and w D �.v/. By
the maximality of a, f � ZaC1 … F.S¹l;rº.�//. Thus f1 2 F.G/nF.S¹l;rº.�//.

Fix an ordering� of �aC1 such thatw is the initial element. For a suitable system
of colors ˛, define an ˛-coloring � of Œ�n¹wº��2 by setting �.A/ D �.B/ if and only
if the order-preserving bijection ¹wº [ A �! ¹wº [ B is an isomorphism.

Let the ˛-pattern P be such that if .S; � � S/ has an ˛-pattern P , then S[¹wº '
�aC1. By Theorem 5.6 there exists a finite bipartite graph Q � �n¹wº such that
for any partition F W ŒQ�2 �! 2, there exists V of Q such that there exists an
isomorphism � W V [ ¹wº �! �aC1 sending w to w. Furthermore, .V; � � V /
is F -homogeneous. Now we define the partition function F W Q �! 2 for every
a 2 Q:
� F.a/ D 1 if a 2 Rr and f1 � .w; a/ is an anti-isomorphism;
� F.a/ D 0 if a 2 Rl , or a 2 Rr with f1 � .w; a/ is an isomorphism.

Let U D V [ ¹wº. Then one of the following conditions must hold on U :
(a) f1 ı � is an isomorphism;
(b) f1 ı � is a switch with respect to w;
(c) for all E 2 ŒU �2, f1 ı � � E is not an isomorphism if and only if P2.E/ and

w 2 E;
(d) for all E 2 ŒU �2, f1 ı � � E is not an isomorphism if and only if P1.E/ and

w 2 E.
Note that U Š �aC1 and �aC1 � �NG

, and that �NG
contains an isomorphic

copy of B l
1; B

l
2, so U contains isomorphic copies of B l

1 and of B l
2, which fail to obey

conditions .3/ and .4/. Thus only condition .1/ or .2/ holds in U , which implies that
f1 ı � � U 2 F.S¹l;rº.�//, and so f1 2 F.S¹l;rº.�//. This contradicts the fact that
f1 … F.S¹l;rº.�//. This completes the proof of Theorem 7.1.

The result of Theorem 7.1, together with Theorem 5.1, completes our proof of the
main result.

Proof of Theorem 1.6 Let G be a closed subgroup with Aut.�/� � G <

Sym¹l;rº.�/. Then by Theorem 7.1, G � S¹l;rº.�/. Using the result of Theo-
rem 5.1, we have G D SX .�/

� for some subset X � ¹l; rº. This completes the
proof of Theorem 1.6.
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