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Notes on the Model Theory
of DeMorgan Logics

Thomas Macaulay Ferguson

Abstract We here make preliminary investigations into the model theory of
DeMorgan logics. We demonstrate that Łoś’s Theorem holds with respect to
these logics and make some remarks about standard model-theoretic properties in
such contexts. More concretely, as a case study we examine the fate of Cantor’s
Theorem that the classical theory of dense linear orderings without endpoints
is @0-categorical, and we show that the taking of ultraproducts commutes with
respect to previously established methods of constructing nonclassical structures,
namely, Priest’s Collapsing Lemma and Dunn’s Theorem in 3-Valued Logic.

1 Semantics for DeMorgan Logics

We may suppose that the fundamental component to a logic � is the relation
�

that holds between sets of formulas and sets of formulas, indicating that the latter
is derivable from the former. As each logic � that we will be invoking is sound
and complete, we may consider the relation

�
associated with each � and define it

semantically. In so doing, we will sufficiently define the logic itself.
The logics upon which we herein focus are the classical predicate calculus CL,

the paraconsistent (inconsistency-tolerant) logics LP and RM3, the paracomplete
(incompleteness-tolerant) logics K3 and Ł3, and the paraconsistent and paracomplete
logic FDE. For a discussion of these logics’ origins and philosophical motivations,
we refer the reader to Priest [8]. These logics may be thought of as, to extend the
nomenclature of Field [2], DeMorgan logics, insofar as for each logic � in this class
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the DeMorgan Laws hold. This motivates our referencing the class of the aforemen-
tioned logics as Dem. Formally, the following conditions hold in each � 2Dem:

:.' ^  /
�
:' _ : ; and

:.' _  /
�
:' ^ : ;

where
�

represents interderivability with respect to logic �. It is our task in this

précis to provide an account of the relation
�

for the logics in Dem. We begin by
making syntactic considerations.

Definition 1.1 A signature is an ordered set � D .C;F;R; � 0/ of sets of symbols
C;F;R and a function � 0 W F [ R ! N mapping function and relation symbols to
their intended arity. In this paper, we include the identity symbol as a member of R
for any signature � .

Each signature determines a language, L� , built up recursively. First, a set of terms
may be constructed by the following procedure:

1. all variables x; y; : : : and constants c 2 C are terms;
2. for n > 0, if each ti of n-tuple Et is a term and � 0.f / D n for an f 2 F, then
f .Et / is a term.

With the terms recursively defined, we may construct L� .

Definition 1.2 A language L� is the smallest set such that for all n > 0, n-tuple
of terms Et , and all R 2 R such that � 0.R/ D n, R.Et / 2 L� and closed under the
following:

1. if ' 2 L� , then :' 2 L� ;
2. if '; 2 L� , then .' ı  / 2 L� , where ı 2 f_;^;!g;
3. if ' 2 L� and x is a variable, then Qx' 2 L� , where Q 2 f8; 9g.

We now give a characterization of each
�

. Following Mortensen [3], we’ll provide
for each logic (a) a Hasse diagram H� taking as nodes a set S� of truth values,
(b) definitions of the connectives and quantifiers with respect to the Hasse diagram,
(c) a set r� � S� of designated values, and (d) a function v W L ! S� mapping
formulas to truth values.

Let SCL D fT;Fg, SLP D SRM3
D fT;B;Fg, SŁ3

D SK3
D fT;N;Fg, and

SFDE D fT;N;B;Fg. We consider the following Hasse diagram H in Figure 1. Let
each H� D H � S� represent an ordering on the truth values associated with �. On
each of these lattices, let t denote join and u denote meet.

We may now give definitions for the connectives and quantifiers by means of their
associated truth functions f �ı W S� ! S�.

1. For all � 2Dem, f �: .T/ D F and f �: .F/ D T.
2. For � 2 fRM3; LP;FDEg, f �: .B/ D B.
3. For � 2 fK3; Ł3;FDEg, f �: .N/ D N.
4. For all � 2 Dem, f �_ .x; y/ D x t y, where t is defined on H� and
x; y 2 S�.

5. For all � 2 Dem, f �^ .x; y/ D x u y, where u is defined on H� and
x; y 2 S�.

6. For � 2 fCL;K3; LP;FDEg, f �!.x; y/ D f
�
_ .f

�
: .x/; y/, where x; y 2 S�.

7. For � 2 fŁ3;RM3g, we consult the truth tables in Figure 2.
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Figure 1 Hasse Diagram H .
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Figure 2 Truth tables for f Ł
! and f RM3

! .

Finally, we give sets of designated values r� for each � 2 Dem. These are
the truth values that intuitively imply that the evaluated formula holds. Let
rCL D rK3

D rŁ3
D fTg, rRM3

D rLP D rFDE D fT;Bg. It can be checked
that in each case r� � S�.

From here, we can introduce structures and truth in a model. A structure gives an
interpretation to a signature.

Definition 1.3 A structure is an ordered set A D .A;CA;FA;RAC;RA�/, where
A is a universe of elements, CA � A is a set of interpretations of constants, FA is
a set of interpretations of function symbols, and RAC and RA� are, respectively,
sets of positive and negative interpretations of relation symbols. By the definition of
signature, the symbol D is a member of R, and we define DAC as f.x; x/ W x 2 Ag;
that is, equality has the intended, positive interpretation.

Any closed term t then has an interpretation tA in A.
1. If t D c for some c 2 C, then tA D cA.
2. If t D f .Es/ for some n-ary f 2 F and n-tuple of closed terms Es, then
tA D f A.sA

0 ; : : : ; s
A
n�1/.

In order to ensure that in discussing some structure or other, it is capable of de-
termining a �-interpretation, we introduce the notion of permissibility with respect
to a logic �. A structure A is consistent if for all n-ary R (including equality),
RAC \ RA� D ¿ (inconsistent otherwise), and complete if for all R (including
equality), RAC [ RA� D An (incomplete otherwise). The class of consistent, com-
plete structures is permissible for all � 2 Dem, the class of inconsistent structures
is permissible for LP, RM3, and FDE, and the class of incomplete structures is per-
missible for K3, Ł3, and FDE.

Finally, in order to give an accurate account of the quantifiers and talk about an
element or tuple of elements satisfying a formula, we introduce the following.
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Definition 1.4 The named counterpart of a structure A, hereafter .A; A/, is the
structure gotten from A by adding a constant a for each element a 2 A.

Each structure permissible with respect to a logic � then gives an interpretation of the
sentences (formulas with no free variables) of the language. For an atomic formula
R.Et / (including identities of the form s D t ) and a structure A permissible with
respect to �,

uA
� .R.Et // D

8̂̂̂<̂
ˆ̂:

T if EtA 2 RAC and EtA … RA�

F if EtA … RAC and EtA 2 RA�

B if EtA 2 RAC and EtA 2 RA�

N if EtA … RAC and EtA … RA�

:

It is easy to check that if a structure is permissible with respect to �, the semantic
constraints will ensure that no atoms will be given a truth value not a member of S�.

Using the evaluations of atoms as a basis, uA
�

can be recursively defined according
to the following conditions:

uA
� .:'/ D f

�
: .u

A
� .'//

uA
� .' _  / D f

�
_ .u

A
� .'/; u

A
� . //

uA
� .' ^  / D f

�
^ .u

A
� .'/; u

A
� . //

uA
� .' !  / D f �!.u

A
� .'/; u

A
� . //

uA
� .8x'.x// D glbfu

.A;A/
�

.'.a// W a 2 Ag

uA
� .9x'.x// D lubfu

.A;A/
�

.'.a// W a 2 Ag:

We now are equipped to provide a definition of truth in a model.

Definition 1.5 For a structure A permissible with respect to a logic � 2 Dem,
A

�
' if and only if uA

�
.'/ 2 r�.

This leads immediately to a definition of consequence between formulas modulo
each � 2 Dem by claiming that '

�
 if and only if for every structure A

�
',

also A
�
 . Furthermore, given structure A, we can speak of an n-tuple Ea 2 An

satisfying an n-ary formula ' in logic � by the condition that A
�
'.Ea/ if and only

if .A; A/
�
'.Ea/.

Granted the above definition, we may also note the following equivalences be-
tween the claim that A

�
' and natural language:

A
�
' _  iff A

�
' or A

�
 

A
�
' ^  iff A

�
' and A

�
 

A
�
8x'.x/ iff for all a 2 A;A

�
'.a/

A
�
9x'.x/ iff for some a 2 A;A

�
'.a/:

This connection can be easily confirmed by glancing at the truth functions for the
connectives and quantifiers, but will enable us to argue about model-theoretic prop-
erties in plain language in the following.1
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Given a definition of truth in a model, we may generalize some typical model-
theoretic definitions that will come into play in the following.

Definition 1.6 The theory Th�.A/ of a structure A with respect to a logic � is the
set of sentences true in A with respect to �. Formally, Th�.A/ D f' W A

�
'g.

We define a notion of isomorphism that holds for all DeMorgan logics.

Definition 1.7 Two structures A;B are isomorphic (A Š B) if and only if there
is a one-to-one correspondence h such that for all constant symbols c, cB D h.cA/,
for all function symbols f , f B.h.EaA// D h.f A.EaA//, and for all relation symbols
EaA 2 RAC if and only if h.EaA/ 2 RBC and EaA 2 RA� if and only if h.EaA/ 2 RB�.

Such a generalization of isomorphism should be intuitively correct; for one, that
A Š B implies that A � B, that is, that Th�.A/ D Th�.B/. Furthermore, we
easily see that Š is an equivalence relation on structures. With these definitions in
hand, we proceed to some more concrete observations.

2 Generalizing Łoś’s Theorem to the Case of Dem

We define a product structure
Q
i2I Ai in the following manner. First, the el-

ements a˘A 2
Q
i2I Ai are those functions taking arguments i from I and

returning as value an element from Ai . Tuples of such elements Ea of arity
m are to be thought of as a sequence of such functions .a0; : : : ; am�1/ so that
Ea.i/ D .a0.i/; : : : ; am�1.i//. Constants c˘A denote the element a 2

Q
i2I Ai such

that cAi D a.i/ for all i 2 I . Function symbols are interpreted as f .Ea/˘A D b˘A

such that Ai
�
b.i/ D f Ai .Ea.i// for all i 2 I . Relation symbols R are interpreted

as having both extension and anti-extension; for a tuple Ea 2
Q
i2I Ai , we say thatQ

i2I Ai
�
R.Ea/ iff Ea.i/ 2 RAiC for all i 2 I .

We define the reduced product of
Q
i2I Ai modulo a filter U � }.I /, which we

hereafter call A\,2 in the following manner. We first define an equivalence relation
�U by dictating that any two elements a; b 2

Q
i2I Ai are equivalent modulo

�U if and only if fi W Ai
�
a.i/ D b.i/g 2 U. The universe

Q
i2I Ai=U thus

comprises equivalence classes fb W a �U bg D Œa�. Constants of this structure
c are interpreted as cA\ D a 2 A\ such that fi W Ai

�
cAi D a.i/g 2 U.

Relation symbols R, including D,3 are interpreted, again, as having both exten-
sion and anti-extension. n-ary relation symbol R and an n-tuple Ea 2 .A\/n,
A\

�
R.Ea/ iff fi W Ea.i/ 2 RAiCg 2 U, or, alternately, iff fi W Ai

�
R.Ea/g 2 U.

For the same R and Ea, A\
�
:R.Ea/ iff fi W Ai

�
:R.Ea/g 2 U, to include

equational sentences of the form :.a D b/.
Łoś’s Theorem in the classical case is the theorem that for any family of struc-

tures fAig, indexed by set I , and ultrafilter U � }.I /, the following holds for all
sentences ': Y

i2I

Ai=U CL
' iff

n
i W Ai CL

'
o
2 U:

Łoś’s Theorem is useful classically, as controlling the properties of the ultraproduct
in many cases reduces to a careful selection of the ultrafilter. In the case of the logics
of Dem, the typical methods of constructing new models have the limitation of only
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either ensuring that some class of formulas are satisfied or preventing some class of
formulas from being satisfied. The theorem in this context carries the benefit of not
only determining which formulas are found in Th�.A\/, but also determining which
formulas are not in the theory. The present task, then, is to demonstrate that the
theorem extends to the logics currently in question.

Theorem 2.1 For any class of structures fAig permissible with respect to a logic
� 2 Dem, index I , and ultrafilter U � }.I /,

Q
i2I Ai=U

�
' if and only if

fi WAi
�
'g 2 U for the!-free fragment of L, that is, those formulas ' 2 L that

contain no occurrences of the symbol!.

Proof A brief sketch: taking the literals as basis step, we proceed inductively by
first showing the result holds for connectives _ and ^ and then demonstrating its
holding in the case of the quantifiers. We then provide an argument for the theorem
holding for : by cases, in essence, running through the negations of formulas of
these forms. We then merely define! by means of the previous connectives for the
logics FDE;K3; LP; and CL. As the truth function associated with the connective!
is not definable in terms of these connectives in the case of Ł3 or RM3, we’ll have to
treat these logics separately.

Call fi W Ai
�
'g the Boolean extension of ' (hereafter k'k) and assume

that k'k 2 U and k k 2 U. Then by the finite intersection property, or fip,
k'k \ k k 2 U. A cursory glance at Figure 1 reveals that k'k \ k k D k' ^  k,
and so k'^ k 2 U. Similarly, assume that k'^ k 2 U; both k'^ k � k'k and
k' ^  k � k k hold. Since U is closed under supersets, it follows that k'k 2 U

and k k 2 U. Supposing that Łoś’s Theorem holds for ' and  , then we may see
that A\

�
' ^  if and only if A\

�
' and A\

�
 if and only if k'k 2 U and

k k 2 U if and only if k' ^  k 2 U.
Now we demonstrate that this holds for disjunction as well. Assume that either

k'k 2 U or k k 2 U. We know that k'k � k'k [ k k and k k � k'k [ k k,
so as U is closed under supersets in either case k'k [ k k 2 U. Finally,
k'k [ k k D k' _  k so the latter is also a member of the ultrafilter. Now,
assume that k' _ k 2 U; this is equivalent to the hypothesis that k'k [ k k 2 U.
Now, either k'k 2 U or k'k … U. If the former holds, we’ve established
that k' _  k 2 U implies that k'k 2 U. If the latter holds, then by max-
imality of U, I X k'k 2 U. By the finite intersection property and the hy-
pothesis, then, .k'k[k k/ \ .I X k'k 2 U/, which, by distributivity, en-
tails that .k'k\.I X k'k// [ .k k\.I X k'k// 2 U, which is equivalent to
k k\.I Xk'k/ 2 U. Of course, k k\.I Xk'k/ � k k and by the upward closure
of U, k k 2 U. Hence, if k' _  k 2 U, then either k'k 2 U or k k 2 U. Again,
if we assume Łoś’s Theorem holds for ' and  , then it follows that A\

�
' _  if

and only if A\
�
' or A\

�
 if and only if k'k 2 U or k k 2 U if and only if

k' _  k 2 U.
Suppose that k9x'.x/k 2 U. Then for each j 2 k9x'.x/k, Aj

�
'.aAj /

for some element aAj 2 Aj . Let b 2
Q
Ai be such that b � k9x'.x/k maps

i to a witness of ' in Ai , and allow the value to be arbitrary otherwise. Then
k9x'.x/k D k'.b.i//k, and hence the latter is likewise in U. Likewise, if, for some
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b0 2
Q
Ai , k'.b0.i//k 2 U, we note that as at any i such that Ai

�
'.b0.i// it fol-

lows that Ai
�
9x'.x/ and hence k9x'.x/k � k'.b0.i//k, ensuring that the latter,

by upward closure of U, is likewise in the ultrafilter. Again, if the theorem holds for
'.x/, then A\

�
9x'.x/ if and only if there is a b 2 A\ such that A\

�
'.b/ if

and only if k'.b.i//k 2 U if and only if k9x'.x/k 2 U. An analogous argument
provides the result for universally quantified formulas.

Finally, we look at negation by an argument by cases. For a formula :', ' is
either a negation, a conjunction, a disjunction, or a quantified formula. In the former
case, if ' D : for some  , then we note that B

�
:: if and only if B

�
 .

Hence k:: k 2 U if and only if k k 2 U. Thus A\
�
:: if and only if

A\
�
 if and only if k k 2 U if and only if k:: k 2 U.

In the cases of connectives _, ^, we appeal to the fact that DeMorgan’s Laws
hold in each � 2 Dem. Thus, assuming that the theorem holds for all subformulas
and their negations, k:.' _  /k D k:' ^ : k. So A\

�
:.' _  / if and only if

A\
�
:' ^ : if and only if k:' ^ : k 2 U if and only if k:.' _  /k 2 U.

Analogous reasoning gives us the result for formulas :.' ^  /.
Finally, we look at the case of quantified formulas. We note that quantifier inter-

change is valid in all � 2 Dem, and assuming the result for all formulas of lesser
complexity, we note that A\

�
:9x'.x/ if and only if A\

�
8x:'.x/ if and only

if k8x:'.x/k 2 U if and only if k:9x'.x/k 2 U. A similar argument secures the
result for negated universal quantifiers as well.

This establishes that Łoś’s Theorem holds for the!-free fragments of the logics
in Dem.

Theorem 2.2 For any class of structures fAig permissible with respect to the
logic, index I , and ultrafilter U � }.I /,

Q
i2I Ai=U FDE;LP;K3;CL

' if and only if

fi WAi FDE;LP;K3;CL
'g 2 U for arbitrary '.

Proof In the case of FDE, LP, and K3 (as well as CL), B
FDE;LP;K3;CL

' !  if

and only if B
FDE;LP;K3;CL

:' _  , and so Łoś’s Theorem can be demonstrated for
formulas of this form by definition.

The converse of Łós’s Theorem states that for a reduced product A\, A\ 6
�
' if and

only if k'k … U, which we recall is in general a different claim than that A\
�
:'

if and only if k:'k 2 U. This means that for a truth-functional connective in virtue
of its truth functionality Łós’s Theorem may yet be established. If we can define the
truth function associated with a connective inductively in terms of

�
and 6

�
, then

we can inductively prove Łós’s Theorem. We focus first on Ł3.

Theorem 2.3 For any class of structures fAig permissible with respect to Ł3,
index I , and ultrafilter U�}.I /,

Q
i2I Ai=U Ł3

' if and only if fi WAi Ł3
'g2U.

Proof Note that given a structure A,
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A
Ł3
' !  iff (a) A

Ł3
:', or

(b) A
Ł3
 , or

(c) A 6
Ł3
', A 6

Ł3
:', A 6

Ł3
 , and A 6

Ł3
: .

We first translate into the context of an ultraproduct by examining k' !  k, the
set of indices of structures Ai such that the sentence holds in Ai . We note that
fi WAi 6 Ł3

'g D I X fi WAi Ł3
'g and may translate conditions (a)–(c). More

precisely, the translation of the above point is that i 2 k' !  k if and only if
i 2 k:'k[ k k[ .I X .k'k[ k:'k[ k k[ k: k//, and so these sets are equal.

Left-to-right, suppose that Łoś’s Theorem has been shown to hold for all subfor-
mulas of ' !  and their negations and that A\

Ł3
' !  . Then at least one of

conditions (a)–(c) holds of A\. Suppose that condition (a) holds; then, ex hypothesi,
A\

Ł3
:' implies that k:'k 2 U. We note that k:'k 2 U � k' !  k, and as

U is closed under supersets, k' !  k 2 U as well. Analogous reasoning gives a
similar result for condition (b). Finally, we consider the case in which condition (c)
holds; in this case, we may appeal to the contrapositive form of the theorem and the
hypothesis. A\ 6

Ł3
' implies that k'k … U, A\ 6

Ł3
:' implies that k:'k … U,

and so forth. Since U is maximal, this implies that I X k'k 2 U, I X k:'k 2 U,
I X k k 2 U, and I X k: k 2 U, and by DeMorgan’s laws, this implies that
I X .k'k [ k:'k [ k k [ k: k/ 2 U. Again, though, this set has been observed
to be a subset of k' !  k, and by upward closure we deduce that k' !  k 2 U.
As cases (a)–(c) exhaust the conditions under which ' !  is true in A\, we’ve
demonstrated the left-to-right half of the theorem.

Right-to-left, suppose that k' !  k 2 U and that the theorem has been shown
to hold for subformulas and their negations. Note again that k' !  k D k:'k

[ k k [ .I X .k'k [ k:'k [ k k [ k: k//. As U is maximal, if an element
is equal to a finite union of sets, then at least one of these sets is also an element
of U; hence, the hypothesis yields the result that either k:'k 2 U, k k 2 U, or
.I X .k'k [ k:'k [ k k [ k: k// 2 U. In the first two cases, Łoś’s Theorem
ensures that either A\

Ł3
:' or A\

Ł3
 , respectively. Both cases, of course,

ensure that A\
Ł3
' !  . In the latter case, we note that this is equivalent to stating

that k'k … U and k:'k … U and k k … U and k: k … U. Appealing once more
to the holding of the contraposition of Łoś’s Theorem to subformulas of ' !  

and their negations, we see that this implies that A\ 6
Ł3
' and A\ 6

Ł3
:' and

A\ 6
Ł3
 and A\ 6

Ł3
: , satisfying condition (c), which is sufficient to establish

that A\
Ł3
' !  .

Finally, in the additional case for negation, note that A\
Ł3
:.' !  / if and only

if A\
Ł3
' and A\

Ł3
: ; that is, k:.' !  /k D k'k \ k: k. Thus, assuming

that Łoś’s Theorem holds for all formulas of lesser complexity, A\
Ł3
:.' !  / if

and only if A\
Ł3
' and A\

Ł3
: if and only if k'k 2 U and k: k 2 U. As U

has the fip and is maximal, this is equivalent to stating that k'k\k: k 2 U, which
we’ve established is equivalent to stating that k:.' !  /k 2 U. This completes
the cases for negation, and hence the induction for Łoś’s Theorem for Ł3.



Model Theory of DeMorgan Logics 121

Theorem 2.4 For any class of structures fAig permissible with respect to
RM3, index I , and ultrafilter U � }.I /,

Q
i2I Ai=U RM3

' if and only if

fi WAi RM3
'g 2 U.

Proof We make the following observations about the interpretation of the logical
connective! in RM3:

A
RM3

' !  iff (a) A 6
RM3

', or

(b) A 6
RM3
: , or

(c) A
RM3

', A
RM3
:', A

RM3
 , and A

RM3
: .

Translating, this implies that i 2 k' !  k if and only if i 2 .I X k'k/

[ .I X k: k/[ .k'k \ k:'k \ k k \ k: k/.
Left-to-right, we assume that the theorem has been established for formulas of

lesser complexity and that A\
RM3

' !  . Then at least one of conditions (a)–(c)
holds. In the cases of (a) and (b), ex hypothesi, k'k … U or k: k … U, respectively,
and by maximality, I X k'k 2 U or I X k: k 2 U. Both these sets are subsets
of k' !  k, and hence k' !  k 2 U by upward closure. In case (c), ' and
 are both true and false in A\, which tells us that k'k, k:'k, k k, k: k are all
members of U. By the fip, their intersection is also in U, and as this is a subset of
k' !  k, by upward closure, so too is it a member of U. Right-to-left follows a
similar adaptation of the Ł3 case.

For the case of negation, note that A\
RM3
:.' !  / if and only if A\

RM3
'

and A\ 6
RM3

 . Supposing that the theorem holds for subformulas and their nega-

tions, we infer that A\
RM3
:.' !  / if and only if A\

RM3
' and A\ 6

RM3
 , if

and only if , in turn, k'k\.IXk k/ 2 U. But this set is equivalent to k:.' !  /k,
and hence the foregoing is equivalent to the claim that the Boolean extension of the
formula is in U. Thus the case of! and its negation are covered, completing the
induction.

As an application, we may use Łoś’s Theorem to demonstrate that in any of these
logics, the model-theoretic properties of inconsistency and incompleteness are not
general first-order; that is, the class of inconsistent structures is not axiomatizable
in a first-order language. In a finite signature, of course, inconsistency is first-
order; for finitely many relation symbols Pi (indexed by a finite set I ), the sentence
� D

W
i2I 9Exi .Pi .Exi /^:Pi .Exi //, where Exi and Pi are of identical arity, A

LP
� 

if and only if A is inconsistent. When moving to a signature of cardinality � � @0,
however, such a � is not well-formed, as it will have �-many disjuncts. This does
not, however, tell that no such � exists; such a sentence for each signature may
indeed exist, though it would be a consequence of such a property. Łoś’s Theorem,
however, speaks against the existence of any such sentence, or set of sentences.

Theorem 2.5 The structural property of being inconsistent in an infinite signature
is not general first-order; that is, there is no sentence � that axiomatizes the class
of inconsistent structures, nor is there an infinite set of sentences that does so.

Proof We may take a family of inconsistent structures fAi W i 2 �g with infinite
signature � D .A; fPj W j 2 �g/ with A D fag such that the extension of Pj in a
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model Ai is PAiC

j D faAi g if i D j and PAiC

j D ¿ otherwise, and the anti-

extension Pj in a model Ai is PAi�

j D faAi g for all i; j .
Now it is immediate that each structure is inconsistent; in general, Ai

FDE;LP;RM3
9x.Pix ^ :Pix/. Suppose that there exists a first-order sentence

� that axiomatizes the class of inconsistent structures. Just as in the canonical proof
that the property of a field’s having finite characteristic is not first-order, one can
make use of Łós’s Theorem to demonstrate that � is not general first-order. We first
consider the reduced product A\ D

Q
i2� Ai=U, where U is nonprincipal. Noting

that
Q

ı2� Ai is a singleton, it follows that the domain A\ D f�i:aAi g, that is, the
function mapping each index i to the element a 2 Ai .

It is clear that this structure is first-order consistent. Consider the diagram:
for no relation symbol Pj are both PA\

j and :PA\

j satisfied. By Łós’s Theorem,

A\
FDE;LP;RM3

Pj .�i:a
Ai / if and only if kPj .�i:aAi .i//k 2 U. But for any

candidate Pj , the set of structures that make true this formula is either empty or a
singleton; both are precluded from inclusion in U. Thus although k:Pj .a.i//k is
always �, and hence a member of U, a contradiction between two atomic formulas
is true at only a singleton in the power set. Furthermore, any inconsistent formula
' constructed from such contradictions is finite in length, and as such k'k is finite
and hence not contained in U. As the theory is determined by the diagram, that the
diagram is consistent ensures that the theory of the structure is (a) classical and (b)
nontrivial.

That the theory is first-order consistent means that
Q

Ai=U 6 FDE;LP;RM3
� . But

by hypothesis, all Ai FDE;LP;RM3
� , which Łós’s Theorem tells us is impossible.

Analogous reasoning over a similarly artificial set of incomplete structures yields
that there is no first-order sentence �Inc that holds of all structures with incomplete
theories.

Theorem 2.6 The structural property of being incomplete in an infinite signature
is not general first-order, that is, there is no sentence �Inc that axiomatizes the class
of incomplete structures, nor is there an infinite set of sentences that does so.

Proof Consider the family fBi W i 2 !g such that PBiC

j D ¿ for all i; j and

P
Bi�

j D ¿ if i D j and PBi�

j D fbBi g otherwise. By slightly amending the

argument, it follows that B\ 6
FDE;K3;Ł3

�Inc and hence the property of a structure’s
having a complete theory is not first-order.

As a further result, we may apply a simple, model-theoretic proof of compactness for
the logics � 2 Dem, due to Malcev, desirable as no reference to syntax is required.
We refer the reader to the elegant presentation of Malcev’s proof in Rothmaler [10]
and note that the proof immediately applies to all � 2Dem without any generaliza-
tion. We can now move on to make some comments about categoricity in the context
of Dem.
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3 Categoricity and Cantor’s Theorem

In this section we wish to explore the general case of Cantor’s Theorem and make
some notes about categoricity with respect to logics in Dem.

Theorem 3.1 For any language L, every set of L-sentences (to include L itself)
has an LP-model (alternately, RM3-model, FDE-model).

Proof Consider a structure in the signature of L, AL, in which AL is a sin-
gleton fag and for all c, cAL

D a, for all f , f AL
.Ea/ D a and for all R,

RALC D RAL� D AL. We proceed by induction on complexity of formulas that
AL

LP;RM3;FDE
L.

We use as the base case literals (equational formulas, atoms, and their negations)
and immediately see that all literals in L are true in AL (as well as false). The
values of all constants and all functions denote a, and both AL

LP;RM3;FDE
a D a

and AL
LP;RM3;FDE

a ¤ a; hence, all equational formulas are both true and false.

Similarly, for any term t , AL
LP;RM3;FDE

R.t/ and AL
LP;RM3;FDE

:R.t/, and so all
literals are both true and false.

For connectives, if '; are both true and false, then by consulting Figures 1 and 2
we see that :', '_ , '^ , and ' !  are likewise both true and false. Similarly,
appealing to the interpretation of the quantifiers, if '.Ea/ is both true and false, then
8Ex'.Ex/ and 9Ex'.Ex/ are both true and false as well.

This procedure exhausts L and hence we reason that AL
LP;RM3;FDE

L.

By compactness, the foregoing gives the result that every set of sentences has a model
in these logics. This does not say, of course, that every set of sentences has a model
in which all and only those sentences is true.4 AL is a peculiar beast.

Theorem 3.2 For a language L, AL is up to isomorphism the unique model of
L.

Proof We consider first the universe AL. Since AL
LP;RM3;FDE

8x; yŒx D y�,

then by the truth conditions for equational formulas we see that AL is a singleton.
Hence the only function from one model of L to another is one-to-one. Interpre-
tations of constants and the value of any argument of the interpretation of function
symbols must be that element of the domain, and as all n-ary relations are both true
and false of that element (or the n-tuple of that element), their extensions and anti-
extensions will be identical.

We can look at these results to examine the plight of Cantor’s Theorem that DLO��
is @0-categorical. [3] provides an explicit construction that demonstrates that the
result does not hold for RM3 and Priest’s Collapsing Lemma may be appealed to
in order to provide an explicit construction for which Cantor fails in LP (and hence
FDE as well). As we’ll require the Collapsing Lemma shortly, we’ll briefly give an
example of the applicability in the case of Cantor.

Given a consistent structure A, we may define a congruence relation � on A
such that for any n-ary f A and Ea; Eb 2 An, if Ea � Eb, then f A.Ea/ � f A.Eb/.
We then partition A into A�, consisting of the classes Œa� D fb 2 AW b � ag

and define interpretations of constants and function symbols in the following way:
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cA� D Œa� such that cA 2 Œa� and f A�.Œa0�; : : : ; Œan�/ D ŒanC1� if and only
if for some b0 2 Œa0�; : : : ; bnC1 2 ŒanC1�, f A.b0; : : : ; bn/ D bnC1. Further-
more, we may interpret each m-ary relation symbol R so that for its extension,
.Œa0�; : : : ; Œam�/ 2 RA�C if and only if for some b0 2 Œa0�; : : : ; bm 2 Œam�,
b0; : : : ; bm 2 RAC, and for its anti-extension, .Œa0�; : : : ; Œam�/ 2 RA�� if and
only if for some b0 2 Œa0�; : : : ; bm 2 Œam�, b0; : : : ; bm 2 RA�. Collecting these
interpretations together, we define A� D .A�;CA� ;FA� ; RA�C;RA��/ and call
it the collapse of A modulo �.

Theorem 3.3 (Collapsing Lemma) ThLP.A�/ � ThCL.A/.

Proof We refer the reader to [6].

Corollary 3.4 The classical theory DLO�� is not @0-categorical with respect to
the class of LP-structures, nor is it categorical in any cardinality.

Proof We take the classical model of DLO�� and produce two structures, Q�1 and
Q�2 such that jQ�1 j D jQ�2 j D @0 and Q�1 ;Q�2

LP
DLO�� but Q�1 © Q�2 .

Consider the classical set of linearly ordered rationals .Q; </. Consider two intervals
defined by parameters .a; b/; .c; d/ � Q such that Q

CL
b <Q c. We then define

two equivalence relations, �1 and �2 such that for e; f 2 Q, e �1 f if and only
if e D f or e; f 2 .a; b/, and e �2 f if and only if e �1 f or e; f 2 .c; d/.
We then consider the collapsed structures Q�1 and Q�2 . As both are gotten through
congruence relations on a countable structure, they are at most countably infinite, and
as Œb; c� is a proper subset of each, they are at least countably infinite. Furthermore,
by the Collapsing Lemma, each structure makes true ThCL..Q; <//, and hence they
both model DLO��.

Now suppose that there is an isomorphism h W Q�2 Š Q�1 . We note that .a; b/�2

and .c; d/�2 each are single, discrete elements in the former—that is, there are no
elements between a�2 , .a; b/�2 , and b�2 , and likewise for .c; d/�2—and that the
image of h under each would likewise have to pick out a discrete element in the
latter. But there is only one such point in Q�1 that each could be mapped to, and
hence h..a; b/�2/ D h..c; d/�2/ D .a; b/�1 . But as h is bijective, this would imply
that Q�2

LP
.a; b/�2 D .c; d/�2 , which in fact fails.

As DLO�� is not classically �-categorical for any uncountable �, the classical wit-
nesses of the failure of categoricity in each such cardinality, as they are permissible
for LP, serve to generalize this result for uncountable cardinalities in LP.

We can also examine the fate of Cantor’s theorem in the logics K3 and Ł3. We first
establish a result about categoricity of classical theories with respect to these logics.

Theorem 3.5 If some theory T classically is categorical in some cardinal � and
has no finite models, then it is �-categorical in both K3 and Ł3.

Proof Consider such a T . By the Łoś-Tarski test, it is a complete theory, so for
every model of T A, n-ary relation symbolR, and n-tuple Ea 2 An, Ea 2 RAC[RA�.
It follows that the only K3 and Ł3 models of T are the classical, consistent ones. But
ex hypothesi, T was classically �-categorical, and so any two such structures of
cardinality � will be isomorphic.

From this, we may observe the following.
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Corollary 3.6 The classical theory DLO�� is @0-categorical with respect to the
class of K3- and Ł3-structures.

Proof Immediate from the theorem.

4 Some Commutative Properties of Ultraproducts

We now outline a failed strategy to weigh in on an open problem of Priest [7] and left
open by Paris and Pathmanathan [4]—whether every countably infinite LP-model of
PA is the collapse of a consistent model of arithmetic, or an elementary substructure
thereof. A negative answer to this problem was initially the target, motivating the
investigation of Łoś’s Theorem. The strategy is modestly outlined; the structures it
generates may be interesting, even if they do not solve the problem. We then go
into more detail about why the strategy fails, as its failure is due to model theoretic
theorems interesting in their own right.

Priest [6] introduces inconsistent, finite models of arithmetic, with which we shall
here concern ourselves. The so-called cycle models make true all sentences of Peano
Arithmetic PA though, of course, it may likewise make the negations of some sen-
tences ' 2 PA as well. These models are gotten by the Collapsing Lemma, generated
by means of congruence relations �n;p for natural numbers n; p. We partition the
set N, the universe of the structure .N; SN ;CN ;�N ; <NC; <N�/, modulo �n;p by
claiming that for a; b 2 N, a �n;p b if and only if both a; b < n and a D b or
both a; b � n and a �p b. We shall hereafter refer to the structure N�

n;p
as Anp

for some n; p, as the general composition of these structures is bipartite: an initial
segment of (consistent) elements of length n, followed by a single cycle of period p.

We briefly describe a structure
Q
i2! Ani =U, where U is a nonprincipal ultrafilter

on }.!/. Such a structure looks like a single “tag-end” of length n, extended by an
!�-block on one end and an !-block on the other. Beyond the limits of each end of
this block lies an undifferentiated “sea” of further �-blocks of nonstandard elements;
these blocks are not meaningfully orderable, as any element of any particular block
is both greater than and less than the elements of every other block. It is most conve-
nient to think of such as structure as a densely ordered cycle of c-many �-blocks, but
these blocks may just as well be interwoven among each other, or stacked atop one
another, or worse.

The conjecture forwarded in earlier drafts of this paper was that ultraproducts of
such structures could be generated that were not the collapse of any classical model
of PA. It is not clear that for any element a in a classical nonstandard model �N that
such a

Q
i2! Ani =U is the collapse of �N modulo �1;a. But this isn’t to say that

there is no such collapse; Theorem 4.1 shows that there is always such a collapse,
albeit not a simple one.

Theorem 4.1 For any collection of collapsed LP-models fA�i

i g indexed by
a set I and an ultrafilter U � }.I /, there exists a collapse �I such thatQ
i2I A

�i

i =U Š .
Q
i2I Ai=U/

�I , that is, collapsing and taking ultrapowers
commute.

Proof We continue to denote
Q
i2I A

�i

i =U by A\, while denoting
Q
i2I Ai=U by

A[ and .
Q
i2I Ai=U/

�I by A[�. A few remarks about notation: when helpful, a
subscript will be placed by an element a, for example, a�U

, to reinforce that a is an
equivalence class modulo that relation. More often than not, the domain from which
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the element is drawn will provide the context and such subscripts will be suppressed.
Furthermore, our abbreviations for the ultraproducts omit mention of the ultrafilter
whence they are constructed. It is important to bear in mind that U is taken to be
common to all structures; by this we can transport facts about one into the other.
Finally, when dealing with an n-tuple of elements, we use Ea 2 Eb to mean that for all
j < n, a.j / 2 b.j /.

We define �I by claiming that for two a; b 2 A[, a �I b if for some a0 2 a
and b0 2 b, ka0.i/ �i b0.i/k 2 U. We must first demonstrate that this is an
equivalence relation. To demonstrate reflexivity, we note that ex hypothesi, �i is
a congruence relation for all i 2 I . This being the case, ka0.i/ �i a0.i/k D I

and is hence a member of U for any a. To demonstrate transitivity, we sup-
pose that a �I b and b �I c, and hence that for some a0 2 a, b0 2 b, and
c0 2 c both ka0.i/ �i b0k 2 U and kb0.i/ �i c0.i/k 2 U. Since �i is as-
sumed to be transitive, at every i in the intersection of these sets a0.i/ �i c0.i/
holds. Hence ka0.i/ �i b0k \ kb0.i/ �i c0.i/k � ka0.i/ �i c0.i/k. By the
fip, ka0.i/ �i b0k \ kb0.i/ �i c0.i/k 2 U, and by upward closure of U,
ka0.i/ �i c

0.i/k 2 U, and thus a �I c. Finally, to demonstrate symmetry, we
merely note that as all �i are symmetric, ka0.i/ �i b0.i/k D kb0.i/ �i a0.i/k, and
hence a �I b implies b �I a.

More tricky is that�I is a congruence relation, that is, that if for an n-ary function
symbol f and n-tuples Ea; Eb 2 .A[/n, Ea �I Eb implies f A[

.Ea/ �I f
A[
.Eb/. By

assumption for all j < n kaj .i/ � bj .i/k 2 U. By the finiteness of n and the
fip, \j<nkaj .i/ � bj .i/k 2 U as well. Since all �i are congruence relations,
\j<nkaj .i/ � bj .i/k � kf

Ai .Ea.i// �i f
Ai .Eb.i//k, and by upward closure, the

latter is a member of U. But f A[
.Ea/ D fc W kf Ai .Ea.i// D ck 2 Ug, similarly for

f A[
.Eb/, and so this is just to say that a representative from each class are equivalent

modulo �i at almost all i ’s, that is, f A[
.Ea/ �I f

A[
.Eb/.

We submit as candidate isomorphism the function h that maps a 2 A\ to the
b�I 2 A[� such that there exists a b�U 2 b�I , a b0 2 b�U and an a0 2 a�U

such
that kb0.i/ 2 a0.i/k 2 U.

To prove injectivity of h, suppose that h.a/ D h.b/. Then there is an a0 2 a
and a b0 2 b and element c 2

Q
i2I Ai such that kc.i/ 2 a0.i/k 2 U and

kc.i/ 2 b0.i/k 2 U. This implies that kc.i/ 2 a0.i/k \ kc.i/ 2 b0.i/k 2 U,
and hence that a0.i/ and b0.i/ share a member at almost all indices. We recog-
nize that a0.i/ and b0.i/ denote equivalence classes modulo �i and so reason that
ka0.i/ D b0.i/k 2 U. This, of course, implies that a D b.

To demonstrate surjectivity of h, consider an arbitrary a 2 A[�, an arbitrary
a0 2 a, and an arbitary a00 2 a0. At each index, a00.i/ picks out an element
a00.i/ 2 Ai , and there is an equivalence class b0.i/ 2 A

�i

i of which a00.i/ is a
member. Furthermore, consider the function b0 mapping each i to the equivalence
class b0.i/ 3 a00.i/ for all i . b0 2

Q
i2I A

�i

i and, as �U partitions this domain, is
thus a member of some b 2 A\. The selection of b ensures that h.b/ D a, and as a
was chosen arbitrarily, this implies surjectivity of h. By the foregoing, we conclude
that h is bijective.

We want to show that h is not only a bijection, but is an isomorphism. We begin
with constants. In order to examine cA[�

, we first note that cA[
D fa 2

Q
i2I Ai W
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ka.i/ D cAi k 2 Ug. So cA[�
D fb 2 A[ W b �I c

A[
g, or, alternately, fb 2 A[ W

9b0 2 b such that kb0.i/ �i cAi .i/k 2 Ug. Consider cA\
D fa 2

Q
i2I A

�i

i W

ka.i/ D cA
�i
i k 2 Ug; we define h.cA\

/ D fb 2 A[ W 9b0 2 b such that
kb0.i/ 2 cA

�i
i .i/k 2 Ug. We recognize, however, cA

�i
i .i/ as the class of ele-

ments of Ai collapsed modulo �i and reason that b0.i/ 2 cA
�i
i .i/ if and only if

b0.i/ �i c
Ai .i/. So fb 2 A[ W 9b02 b such that kb0.i/ �i cAi .i/k 2 UgDfb 2 A[ W

9b0 2 b such that kb0.i/ 2 cA
�i
i .i/k 2 Ug, that is, cA[�

D h.cA\
/.

Next, for an n-ary function symbol f and n-tuple Ea 2 .A\/n, we must demon-
strate that f A[�

.h.Ea// D h.f A\
.Ea//. Consider h.Ea/. h maps this n-tuple to the

equivalence class fEb 2 .A[/n W 9Eb0 2 Eb such that 8j < n kb0j .i/ 2 aj .i/k 2 Ug.

We may then ask what the extension of f A[�
.h.Ea// is; to that we answer that we

may choose a representative Ec 2 h.Ea/ and consider that f A[�
.h.Ea// will be equal

to the class of all d 2 A[ such that d �I f A[
.Ec/, or fd 2 A[ W 9d 0 2 d such that

kd 0.i/ �i f
Ai .Ea/.i/k 2 Ug. Of course, since �i is a congruence relation for all

i , d 0.i/ �i f Ai .Ea/.i/ if and only if d 0.i/ 2 f A
�i
i .Ea/.i/, and so we may rewrite

this as fd 2 A[ W 9d 0 2 d such that kd 0.i/ 2 f A
�i
i .Ea/.i/k 2 Ug. Now we may

finally turn our attention toward h.f A\
.Ea// and note that this is the very same set.

As f A\
.Ea/ is the set of all elements of

Q
i2I A

�i

i that are almost everywhere equal
to f A

�i
i .Ea/.i/, h.f A\

.Ea// is the set of elements of A[ such that they are almost
everywhere a member of this element. Thus h.f A\

.Ea// D fd 2 A[ W 9d 0 2 d such
that kd 0.i/ 2 f A

�i
i .Ea/.i/k 2 Ug D f A[�

.h.Ea//, and we establish identity.
Finally, we simply demonstrate, that for any n-ary literal R or :R, that an n-

tuple Ea 2 RA\C if and only if h.Ea/ 2 RA[�C (alternately, Ea 2 RA\� if and
only if h.Ea/ 2 RA[��). For left-to-right, suppose that Ea 2 RA\C; this implies

that kEa.i/ 2 RA
�iC

i k 2 U. Now Ea.i/ 2 RA
�iC

i if and only if there exists a
Ea0.i/ 2 Ea.i/ such that Ea0 2 RAiC, and hence this is equivalent to stating that
kEa0.i/ 2 RAiCk 2 U. This in turn implies that for the equivalence class Ea0�U

3 Ea0,

Ea0�U
2 RA[C, and in turn that for a Ea0�I

3 Ea0�U
, Ea0�I

2 RA[�C. But we immediately
may recognize Ea0�I

D h.Ea/.

Right-to-left, we suppose that h.Ea/ 2 RA[�C. h.Ea/ is the class of all elements
of Ea0 2 RA[C such that there exists an Ea00 2 Ea0 such that kEa00.i/ 2 Ea.i/k 2 U.
Ex hypothesi, we know that Ea0 2 RA[C and hence that kEa00 2 RAiCk 2 U. So
at almost all Ai , Ea00.i/ 2 RAiC. But at each such i , we have a collapsed model
modulo �i , and we reason that Ea.i/ 3 Ea00 and Ea.i/ 2 RA

�i
i
C at each such i . Hence

kEa.i/ 2 RA
�i
i
C
k 2 U, and we conclude that Ea 2 RA\C. The above proof obviously

applies in the case of the anti-extension of R as well. Given the definition of �I and
h, we conclude that h is an isomorphism.

Corollary 4.2 For any ultraproduct of collapsed models of arithmetic A\, there
exists a classical nonstandard model of arithmetic �N and a collapsing relation �
such that A\ Š .�N/�.

Proof Immediate from the theorem.
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Such a result can be had for other methods of constructing nonclassical models more
general than collapsing. In [1], Dunn offers a technique for the construction of 3-
valued structures from consistent structures. His presentation formally differs from
ours, and we in a sense bifurcate his result into an LP case and a K3 case.5

Taking a pair of consistent structures A;A0 and a surjective, operation-preserving
homomorphism h W A ! A0, we define the inconsistent structure determined by
h, Q3A, by Q3A D A0 D fh.a/ W a 2 Ag, c Q3A D h.cA/, f Q3A.Eb/ D h.f A.Ea//,
where a0 2 h�1Œb0�; : : : ; an�1 2 h�1Œbn�1�, and for n-ary RQ3AC D f.b0; : : : ; bn�1/

2 Bn W 9b00 2 h�1Œb0�; : : : ; b
0
n�1 2 h�1Œbn�1�; .b

0
0; : : : ; b

0
n�1/ 2 RACg and

R
Q3A� D f.b0; : : : ; bn�1/ 2 Bn W 9b00 2 h�1Œb0�; : : : ; b

0
n�1 2 h�1Œbn�1�;

.b00; : : : ; b
0
n�1/ 2 R

A�g.
Given the identical homomorphism, we generate an incomplete structure L3A by

retaining the universe and interpretations of constants and function symbols while
defining an n-ary R L3AC D f.b0; : : : ; bn�1/ 2 Bn W 8b00 2 h�1Œb0�; : : : ; b

0
n�1

2 h�1Œbn�1�; .b
0
0; : : : ; b

0
n�1/ 2 RACg and R

L3A� D f.b0; : : : ; bn�1/ 2 Bn W

8b00 2 h
�1Œb0�; : : : ; b

0
n�1 2 h

�1Œbn�1�; .b
0
0; : : : ; b

0
n�1/ 2 R

A�g. The intuition is
that in the LP interpretation, Q3A makes true R of some element b if and only if of
something in its preimage under h is R true in A; in the K3 interpretation, R is true
of b in L3A if and only if R is true of everything in its preimage under h.

Dunn offers a preservation theorem with respect to such constructions, which we
split as follows.

Theorem 4.3 (Dunn for LP) For a structure Q3A determined by an operational,
surjective homomorphism h W A! A0, A

CL
'.Ea/ only if Q3A

LP
'.h.Ea//.

Proof We refer the reader to [1].

Theorem 4.4 (Dunn for K3) For a structure L3A determined by an operational,
surjective homomorphism h W A! A0, L3A

K3
'.h.Ea// only if A

CL
'.Ea/.

Proof We refer the reader to [1].

Referring to alternately Q3A or L3A as 3A when the permissibility of the structure is
irrelevant, we offer the following.

Theorem 4.5 For an index I and a class of either inconsistent or incomplete
structures f3Aig such that each is determined by a function hi W Ai ! Bi , and an
ultraproduct .3A/\ D

Q
i2I 3Ai=U, there exists a function h W A\ ! B\ such that

the structure determined by this function, 3.A\/ D 3.
Q
i2I Ai=U/, is identical to

.3A/\, that is, .3A/\ D 3.A\/.

Proof We offer as candidate operational homomorphism h W A\ ! B\ the func-
tion h.a/ D fb0 2

Q
i2I Bi W 8a

0 2 a; kb0.i/ D hi .a
0
i .i//k 2 Ug. We must show

that h is surjective and operation-preserving. First, for an arbitrary b 2 B\ and a
member b0 2 b, as ex hypothesi all hi are surjective, there exists some a0i 2 Ai such
that hi .a0i / D b0i for all i . Let a be an equivalence class of elements of

Q
i2I Ai

equivalent to a0 W i 7! ai modulo U. As all a00 2 a are equal to a0 at almost all
indices, khi .a00i / D b0ik 2 U, and as for all b00 2 b, b00 is equal to b0 at almost all
indices khi .a0i / D b

00
i k 2 U. We quickly see that the condition holds for any a00 2 a,

b00 2 b, and thus there exists a preimage of b under h.
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h is also an operational homomorphism. We now must establish that
h.f A\

.a0; : : : ; an�1// D f B\
.h.a0/; : : : ; h.an�1//. First, we expand the former

to see that it is fb0 2
Q
i2I Bi W kb

0.i/ D hi .f
A\
.a0; : : : ; an�1/.i//k 2 Ug. But

this is just the set fb0 2
Q
i2I Bi W kb

0.i/ D hi .f
Ai.a0.i/; : : : ; an�1.i///k 2 Ug,

as A\ and B\ are reduced modulo the same filter. We may expand the latter as
fb0 2

Q
i2I Bi W kb

0.i/ D f B\
.h.a0.i//; : : : ; hi .an�1.i///.i/k 2 Ug, or by similar

reasoning, fb0 2
Q
i2I Bi W kb

0.i/ D f Bi .hi .a0.i//; : : : ; hi .an�1.i///k 2 Ug. But
ex hypothesi, for all i , hi preserves operations, so hi .f Ai.a0.i/; : : : ; an�1.i/// D

f Bi .hi .a0.i//; : : : ; hi .an�1.i/// at each i . Thus the two sets are identical.
The foregoing establishes that h is a surjective, operational homomorphism and

thus determines a structure 3.A\/. We now observe that .3A/\ D 3.A\/. By the
manner of construction due to Dunn, 3Ai D Bi , and hence .3A/\ is

Q
i2I Bi reduced

modulo U. By the equivalent construction of 3.A\/, we note that 3.A\/ D B\, which
is just

Q
i2I Bi reduced modulo U.

This isn’t, of course, enough; we must ensure that idB\ also preserves in-
terpretations. First, for a constant c, we ensure that c.3A/\ D c3.A

\/. Now,
c.3A/\ D fb 2

Q
i2I 3Ai W kb.i/ D c3Ai k 2 Ug. Noticing that c3Ai picks out the

b0 2 Bi such that b0 D hi .c
Ai /, we rewrite this as fb 2

Q
i2I 3Ai W kb.i/ D

hi .c
Ai /k 2 Ug. As for all i 2 I , 3Ai D Bi , we further rewrite this as

fb 2
Q
i2I Bi W kb.i/ D hi .c

Ai /k 2 Ug. Since c3.A
\/ D h.cA\

/, this is
the set fb 2

Q
i2I Bi W 8a 2 cA\

; kb.i/ D a.i/k 2 Ug. Now an a 2 cA\

if and only if ka.i/ D hi .c
Ai /k 2 U, and so we may rewrite this element as

fb 2
Q
i2I Bi W kb.i/ D hi .c

Ai /k 2 Ug, which establishes identity.
Furthermore, we must demonstrate that f .3A/\.Eb/ D f 3.A

\/.Eb/. Fix Ea 2 A\ such
that 9Ea0 2 Ea; Eb0 2 Eb such that ka00 2 h

�1Œb0�; : : : ; a
0
n�1 2 h

�1Œbn�1�k 2 U. We
immediately may expand f .3A/\.Eb/ as the set of b0 such that b0.i/ is almost every-
where equal to f 3Ai .Eb.i//, or fb0 2

Q
i2I Bi W kb

0.i/D f 3Ai .Eb.i//k 2 Ug. Now
at all i 2 I , f 3Ai .Eb.i// D hi .f

Ai .Ea0.i///, so we rephrase this as fb0 2
Q
i2I Bi W

kb0.i/ D hi .f
Ai .Ea0.i///k 2 Ug. But by selection of a0 and the definition of h,

kb0.i/ D hi .f
Ai .Ea0.i///k 2 U if and only if kb0.i/ D h.f A\

.Ea/.i//k 2 U, so
we rewrite this as fb0 2

Q
i2I Bi W kb

0.i/ D h.f A\
.Ea//.i/k 2 Ug. Since every

member of h.f A\
.Ea// is equal to every other almost everywhere, we recognize this

as h.f A\
.Ea//, which is equal to f 3.A

\/.Eb/. Thus the two are equal.
To demonstrate identity between the structures, we must treat the interpretation

of relation symbols. We now split the cases of the inconsistent and incomplete struc-
tures determined by h.

In the LP case, an element .b0; : : : ; bn�1/ 2 R.
Q3A/\C if and only if fi W .b0.i/;

: : : ; bn�1.i// 2 R
Q3AiCg 2 U. This holds if and only if fi W 9a00.i/ 2 h

�1
i Œb0.i/�;

: : : ; a0n�1.i/ 2 h
�1
i Œbn�1.i/� such that .a00.i/; : : : ; a

0
n�1.i// 2 R

AiCg 2 U, which is
equivalent to stating that fa00 2

Q
i2I Ai W a

0
0 D a

00
0 ^ � � � ^ a

0
n�1 D a

00
n�1g 2 R

A\C.
This, finally, is equivalent to claiming that there exists Ea 2 A\ such that h.Ea/ D Eb and
Ea 2 RA\C, which is equivalent to stating that Eb 2 RQ3.A

\/C. Analogous reasoning
establishes the result for the anti-extension of R.
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More easily, for K3-structures so determined, Eb 2 R.
L3A/\C is again those

Eb0 2 .
Q
i2I Bi /

n such that fi W .b00.i/; : : : ; b
0
n�1.i// 2 R

L3AiCg 2 U. This will hold
if and only if every Ea0 2 .

Q
i2I Ai /

n such that a00 2 h
�1Œb00�; : : : ; a

0
n�1 2 h

�1Œb0n�1�

is a member of RAiC. This implies that all Ea 2 A\ such that Ea0 2 Ea are members
of RA\C. But the set of such Ea is h�1ŒEb�, and so Eb 2 R L3.A

\/. The argument for
the anti-extension is again identical. Given that the structures 3.A\/ and .3A/\ are
determined by the extensions of their respective interpretations of symbols, we may
conclude that the two are identical.

5 Concluding Remarks

From this point, I hope that we’ve gotten generalizations of a few fundamental
techniques and seen some applications suggesting that mathematics set upon a
DeMorgan-logical landscape is something that warrants study. A few concluding
notes concerning future directions of such a study might be in order to further stress
its worth.

One motivation may be made apparent by an analogy with the reverse mathemat-
ics program. Reverse mathematics, rather than investigating what pre-set-theoretic
mathematical fruits are gotten given particular set-theoretic assumptions, works
backward, attempting to reveal what set-theoretic assumptions (e.g., comprehension
axiomata) are necessary and sufficient in order to secure those fruits. Inasmuch
as particular mathematical theorems hold for certain DeMorgan logics and fail for
others, we may hope that an analogous investigation may be made in determining
what logical properties are necessary to secure particular mathematical theorems.
It is, for example, my suspicion that logics intermediate between, for example, LP
and CL could be generated to mark with precision those points at which particular
theorems hold or fail, by adding additional inference rules. For example, by adding
the schemata ';:'  , where ' is, for example, of some bounded complexity,
to LP would produce such an intermediate logic that could potentially provide, say,
an account of how much inconsistency a particular theorem can “handle.” Certainly
there are such “intermediate points.”

To wit, regarding Cantor’s Theorem, in the minimally inconsistent logic LPm in-
troduced in Priest [5], since the structure .Q; </ is trivially the minimally incon-
sistent model of DLO�� of cardinality @0, the theorem holds in LPm. Hence the
theorem fails at some intermediate point between LP and LPm. The question of
where it fails in this spectrum is the question of how much logical apparatus- what
sort of logical presuppositions- are requisite in order to secure the result.6 Just as
we cannot, for example, prove Łoś’s Theorem without the axiom of choice, there is
some logical assumption made classically that underwrites Cantor. If one may dis-
cover the precise location in this spectrum of logics at which some theorem fails this
constitutes evidence that there is a correlation between, perhaps, some structural rule
of that logic and the success or failure of that theorem.

It also may be hoped that transfer properties between the class of structures of
a nonclassical logic and the class of classical structures could be established. Such
transfer properties have the potential to provide facts about classical mathematical
theories. Just, for instance, as the fruits of non-standard analysis may be applied
to standard analysis without the theorist accepting the accompanying ontology, so
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might we hope that transfer principles could very well provide useful, classical re-
sults.

Finally, [3] suggests a “special case hypothesis” that classical mathematics is a
special case of a broader swarth of mathematics. This, it seems, goes beyond hy-
pothesis to being a truism. The structures we herein describe are there, and in virtue
of being describable, deserve study. We can play the pragmatist and outline strate-
gies to entice the working mathematician, but the truth is that DeMorgan logics have
a model theory- surreal and curious as it may be- and its existence alone is sufficient
to warrant its study. Even if one is inclined to think of it as teratology, monstrosities
yet fall under the purview of the science as a whole. Regardless, the above introduces
the use of ultraproducts as a viable method of constructing nonclassical models and
establishes their “nice” properties with respect to previously established techniques
for constructing models in these logics. Motivations aside, this provides another tool
in the nonclassical logician’s armamentarium.

Notes

1. That the semantics for the logics herein considered translate so swiftly to natural lan-
guage constitutes prima facie evidence that they withstand the scrutiny of, for example,
Quine’s maxim that a “change of logic” is a “change of subject” in Quine [9].

2. The “chromatic” notation for ultraproducts is borrowed from Schoutens [11], though we
will not retain its particular algebraic purpose.

3. Though, of course,D is privileged in its positive extension.

4. Note that this result preempts the typical proof of the upward Löwenheim-Skolem The-
orem. Given a structure A, typically, one merely adds �-many formulas of the form
ci ¤ cj for every i; j 2 � to the theory Th.A/. By compactness, this has a model,
and by the inclusion of the set fci ¤ cj W i; j 2 �g, it will have a model of cardi-
nality greater than or equal to �. One then uses the downward theorem to establish the
existence of a model of cardinality �. The problem is obvious; while classically, that
A0

CL
fci ¤ cj W i; j 2 �g implies that A0 6

CL
ci D cj for all i; j 2 �, ensur-

ing that jA0j > �. But in FDE, RM3, and LP, such an inference is unwarranted; that
A0

LP;RM3;FDE
fci ¤ cj W i; j 2 �g [ fci D cj W i; j 2 �g is possible while jA0j Œ �.

5. Dunn doesn’t use these names; he mentions the “Łukasiewicz logic” but only presents
the matrices for negation and conjunction with a third truth value neuter (N). Dunn
states that this can be either read as “both true and false” or “neither true nor false”; the
interpretation is, of course, central in our presentation. The result thus splits, with the
former applying in LP and the latter applying to K3.

6. Priest has pointed out that the serviceability of LPm in such an endeavor is strained as
its implication relation is not closed under uniform substitution. Nevertheless, this fact
does illustrate that there are well-defined, intermediate points that may serve in such an
investigation.
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