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A Simple Proof and Some Difficult Examples
for Hindman’s Theorem

Henry Towsner

Abstract We give a short, explicit proof of Hindman’s Theorem that in every
finite coloring of the integers, there is an infinite set all of whose finite sums have
the same color. We give several examples of colorings of the integers which do
not have computable witnesses to Hindman’s Theorem.

1 Introduction

Theorem 1.1 (Hindman’s Theorem) If c W N ! Œ1; r� is given then there are an
i 2 Œ1; r� and an infinite set S such that c.s/ D i whenever s is the sum of one or
more distinct elements of S .

There are three standard proofs of Hindman’s theorem: the original combinatorial
argument (Hindman [4]), a streamlined combinatorial argument (Baumgartner [1]),
and the Galvin-Glazer proof using ultrafilters (see Comfort [3] or Hindman and
Strauss [6]). The original proof is generally considered quite difficult (see, for in-
stance, the comments on it in Hindman [5]), but work in reverse mathematics shows
that it is also, at least in the sense of reverse mathematics, the simplest of the three
proofs. Specifically, Blass, Hirst, and Simpson have shown (Blass et al. [2]) that
Hindman’s proof can be formalized in the system ACAC0 , while Baumgartner’s proof
can be formalized in the stronger system …1

2 � TI0. The Galvin-Glazer proof was
analyzed in Towsner [8], where an even stronger system was used to formalize it.
(The definitions and significance of all these systems of reverse mathematics may be
found in Simpson [7].)

The work in [8] demonstrated a striking analogy between the structures of Baum-
gartner and Galvin-Glazer proofs: roughly speaking, both proofs prove an interme-
diate theorem that a structure weaker than that promised by Hindman’s Theorem
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exists, then repeat the same argument with one step replaced by the intermediate the-
orem. Hindman’s proof does not have this structure, but comparison of the proofs
suggests that the corresponding intermediate would be the structure given by Theo-
rem 2.5 below. With the use of this intermediate, we can give a new proof similar to
Hindman’s which is provable in the slightly stronger system ACAC.

Blass et al. [2] also gives a lower bound for the reverse mathematical strength
of Hindman’s Theorem by constructing a computable coloring such that 00 is com-
putable in any set witnessing Hindman’s Theorem and another one such that no set
witnessing Hindman’s Theorem is�2. Since every infinite˙2 set contains an infinite
�2 set, this second construction also has no ˙2 set witnessing Hindman’s Theorem.
In particular, Hindman’s Theorem implies ACA0 over RCA0. We describe a flexi-
ble method for giving colorings for which Hindman’s Theorem is difficult to solve,
including examples which show that certain aspects of our proof are optimal.

2 A Simple Proof of Hindman’s Theorem

It is standard (see [1]) to take advantage of the fact that Hindman’s Theorem is equiv-
alent to a similar statement about unions of finite sets. We will freely equate Pfin.N/
with N, using the fact that there is a computable bijection between the two sets.

Definition 2.1 If S � Pfin.N/, we write NU.S/ for the set of nonempty unions
from S , those nonempty T which are the union of finitely many elements of S . We
say S � Pfin.N/ is IP if it is closed under finite unions and contains an infinite set
of pairwise disjoint elements. If B 2 S , we will write

S � B WD fT 2 S j T \ B D ;g;

and if B � S then
S �B WD S �

[
B:

Then subtraction is a strong form of set difference, where we remove not only B , but
also anything that intersects B .

The following theorem is easily seen to imply Hindman’s Theorem (consider the
map taking a number n to the set of places which are 1 in the binary expansion of n).
(With more work, it can be seen to follow from Hindman’s Theorem as well.)

Theorem 2.2 (Finite Unions Theorem) If c W Pfin.N/! Œ1; r� is given then there
are an i 2 Œ1; r� and an IP set S such that c.S/ D i for every S 2 S .

We introduce two weak notions which will characterize our intermediate steps.

Definition 2.3 We say D half-matches B if there is a D 2 D such that
c.B/ D c.D [ B/. We say D half-matches a set B if D half-matches every
B 2 B.

We say D full-matchesB if there is aD 2 D such that c.D/ D c.B/ D c.D[B/.
We say D full-matches a set B if D full-matches every B 2 B.

Lemma 2.4 (RCA0) Let S be an IP set, let B � S be finite, and let c W NU.S/!
be given. Then either

1. there is a finite D � S �B such that for every S 2 S �B �D , there is a
D 2 NU.D/ such that B does not half-match D [ S , or

2. there is an IP set T � S �B such that B half-matches T .
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Proof Suppose the first condition fails; that is, for any finite D � S � B, there
is an S 2 S � B � D such that B half-matches D [ S for every D 2 NU.D/.
We inductively construct a sequence D0 � D1 � � � � of finite subsets of S � B

such that whenever D 2 NU.Dn/ n Dn, B half-matches D. Set D0 WD fD0g for
an arbitrary D0 2 S � B. Given Dn, since the first condition fails and NU.Dn/

is finite, there is an S 2 S � B � Dn such that for every D 2 NU.Dn/, B half-
matches D [ S . Let DnC1 WD Dn [ fSg. Then for any D 2 NU.DnC1/ nDnC1,
either D 2 NU.Dn/ nDn, in which case B half-matches D by IH, or D D D0 [ S
for some D0 2 Dn, in which case B half-matches D by choice of S .

Let D WD
S

n Dn D fD0;D1; : : :g. Let D 0 WD fD2i [D2iC1 j i 2 Ng. Then if
D 2 NU.D 0/, D 2 NU.Dn/ nDn for some n, so B half-matches D.

Lemma 2.5 (RCA) If S is an IP set and c W NU.S/! Œ1; r� then there is a finite
collection B � S and an IP set T � S �B such that B half-matches T .

Proof Pick an arbitrary element Q 2 S , and set B1 WD fQg and S 01 WD S �B1.
Given Bi ;S

0
i , apply Lemma 2.4. If the second condition holds, we are finished.

Otherwise, let DiC1 be given by the first part, let BiC1 WD NU.Bi [DiC1/, and let
S 0iC1 WD S 0i �BiC1.

Suppose that we reach Br ;S
0
r without terminating. Then for any S 2 S 0r , we may

choose a sequenceDr ; : : : ;D2 withDi 2 NU.Di / and for each i , Bi�1 fails to half-
match S [

Sr
jDi Dj . Let D1 WD Q. Then for each i < i 0, since

Si 0�1
jDi Dj 2 Bi 0�1,

c.S [
Sr

jDi Dj / ¤ c.S [
Sr

jDi 0 Dj /. But since there are r colors, there must be
some i such that c.S/ D c.S [

Sr
jDi Dj /. Therefore, we may take B WD Br and

T WD S 0r .

Lemma 2.6 (ACA) Let S be an IP set and let c W S ! Œ1; r� be given. Then either
1. there is an IP S 0 � S and some i 2 Œ1; r� such that c.S/ ¤ i for every
S 2 S 0, or

2. there is a finite collection B � S and an IP set T � S � B such that B

full-matches T .

Proof Construct sequences B2; : : : ;Bn; : : : ; T1; : : : ; Tn; : : :, and colorings c1; : : : ;

cn; : : : as follows: let c1 WD c and T1 WD S . Given ci ; Ti , let BiC1; TiC1 be the
witness given by Lemma 2.5. Define ciC1 on TiC1 by setting ciC1.S/ WD hB; ci .S/i

where B 2 BiC1 is such that ci .S/ D ci .S [ B/.
If there is some n such that for every S 2 Tn there is a B 2 NU.

S
i�n Bi /

such that c.S/ D c.B/ D c.S [ B/, then Tn and
S

i�n Bi witness the second
possibility. Otherwise, for each n we may choose a Tn 2 Tn such that there is no
B 2 NU.

S
i�n Bi / such that c.Tn/ D c.B/ D c.Tn [ B/. By the pigeonhole

principle, we may choose an infinite subsequence fTing such that c is constantly
some fixed q 2 Œ1; r� on fTing (but not necessarily on NU.fTing/). For each Tin , we
may choose a sequence B1 2 B1; : : : ; Bin 2 Bin such that c.Tin/ D c.Tin [ B/ for
every B 2 NU.fBig/. In particular, it must be that c.B/ ¤ q. Then by König’s
Lemma, we may choose an infinite sequence fBig such that c.B/ ¤ q for any
B 2 NU.fB1; : : : ; Bn; : : :g/.

Note that when the second clause holds in the preceding lemma, the set T is com-
putable from c and S .
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Lemma 2.7 (ACA) Let S be an IP set and let c W S ! Œ1; r� be given. Then either
1. there is an IP S 0 � S such that c is constant on S 0, or
2. there is a finite collection B � S and an IP set T � S � B such that B

full-matches T .

Proof By induction on r . When r D 1, the first condition holds immediately. If
the claim holds for r and c W NU.S/ ! Œ1; r C 1�, we may apply Lemma 2.6 and
either reduce to IH or immediately give the second case.

Theorem 2.8 (ACAC) If c W Pfin.N/! Œ1; r� is given then there are an i 2 Œ1; r�
and an IP set S such that c.S/ D i for every S 2 S .

Proof The method is the same as Lemma 2.6. Construct sequences B2; : : : ;Bn;

: : : ; T1; : : : ; Tn; : : :, and colorings c1; : : : ; cn; : : : by setting c1 WD c and T1 WD S .
Given ci ; Ti , apply Lemma 2.7. In the first case, we are done. In the second,
let BiC1; TiC1 be the given witness and define ciC1 on NU.TiC1/ by setting
ciC1.S/ WD hB; ci .S/i where B 2 BiC1 is such that ci .S/ D ci .B/ D ci .S [ B/.
Then for any n, we may find a sequence fBigi�n with Bi 2 Bi and c constant on
NU.fBigi�n/. By Weak König’s Lemma, we may find an infinite sequence fBig so
that c is constant on NU.fBig/, as promised.

3 Difficult Examples

In [2], a lower bound for the reverse mathematical strength of Hindman’s Theorem
is established by exhibiting a computable coloring of Pfin.N/ which has no com-
putable monochromatic IP set. Specifically, two such colorings are given, one where
every monochromatic IP set computes 00 and one where no monochromatic IP set is
computable in 00.

In this section, we present computable colorings of Pfin.N/ with various more
specific properties. We hope to serve three purposes. First, we will improve the
recursion theoretic lower bound on Hindman’s Theorem by giving a computable col-
oring of Pfin.N/ with no ˙2 monochromatic IP set. Second, we will demonstrate
that various stages in the proof of the previous section are optimal; if one hopes to
give a proof of Hindman’s Theorem within ACA0, this will help indicate where im-
provements are possible. Finally, since these are the first new examples of colorings
which are computationally difficult for Hindman’s Theorem, we hope the relatively
flexible nature of our method will spur the development of further progress.

We adopt a few notational conventions. Whenever we write the union of two finite
sets, say B [ C , we always assume that maxB < minC . We say S generates an IP
set if S contains infinitely many pairwise disjoint elements. (That is, S generates an
IP set if and only if NU.S/ is an IP set.) When we speak of one set B containing a
set C , we mean that B D A0 [ C [ A1 with maxA0 < minC , maxC < minA1

(and possibly A0; A1 or both empty). Similarly, when we speak of an initial segment
of B , we mean that B D C [A1 with maxC < minA1. We fix some ordering � of
Pfin.N/ with order type ! so that if minB < minC then B � C .

We will let W1; : : : ;Wi ; : : : be an enumeration of the computably enumerable
subsets of Pfin.N/, and for each i; s, define Wi;s to be a finite subset of Pfin.N/
computable from i; s such that s � t implies Wi;s � Wi;t and Wi D

S
s Wi;s .

Before giving examples, we briefly describe our method, which is modeled on
the finite injury priority argument. (This idea was suggested to us by Mummert.)
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We will fix a list of conditions, indexed by the natural numbers, which we wish our
coloring to satisfy; for instance, we might want to ensure that each of the countably
many computably enumerable sets either fails to generate an IP set or generates one
which is not monochromatic.

In this case, the i th condition wishes to choose two elements of Wi and color
them distinct colors. However, since Wi is only computably enumerable, and we
want our coloring to be computable, we must decide how to color a given set with-
out being able to wait to see whether it will be in Wi . Instead, we will wait until
some W 2 Wi;s for some big enough s, and then color sets of the form W [ B

where maxB � s. If Wi generates an IP set, we are guaranteed that we can find
a B 2 Wi with maxB � s (and maxW < minB), and we will therefore have
W [ B 2 NU.Wi / be an element colored according to our desired rule.

3.1 A computable coloring with no computably enumerable monochromatic IP
set To illustrate our method, we give a coloring with no computably enumerable
monochromatic IP set. Our method is similar to (though gives a weaker result than)
Theorem 2.1 of [2].

Theorem 3.1 There is a computable c W Pfin.N/ ! f0; 1g such that if S is com-
putably enumerable and generates an IP set then NU.S/ is not monochromatic.

Proof For any s and each i � s, we defineW s
i to be least (with respect to �) such

that
1. W s

i 2 Wbi=2c;s ,
2. if j < i and W s

j is defined then maxW s
j < minW s

i .
If there is no such element thenW s

i is undefined. Note that Wbi=2c;s is a finite set, so
it is computable from i; s whether W s

i exists, and if so, what the value of W s
i is.

Given B 2 Pfin.N/ with maxB D s, note that there are finitely many W s
i with

i � s. By checking each in turn, it is computable whether there is any i such that
W s

i is an initial segment of B . From the definition of the W s
i , there is at most one

such i . If there is no such i , set c.B/ D 0. If there is such an i , set c.B/ D i mod 2.

Claim 3.2 For each i , there is some s such that W s
i D W t

i for all t � s (where
both sides are undefined if either is).

Proof By strong induction on i . Let s0 be large enough such that for all j < i , if
t � s0 then W s0

j D W t
j . If Wbi=2c contains any W such that minW > maxW s0

j for
all j < i , there is a least suchW . There must be some s such thatW 2 Wbi=2c;s , and
it follows that W t

i D W for all t � max s; s0. Otherwise, there is no such W , so W t
i

is undefined for all t � s0. (When i D 0 there are no j < i , so we may take s0 D 0
and W to be the least element of W0 if W0 is nonempty.) a

Then the next claim follows immediately.

Claim 3.3 If We generates an IP set then there is some s such that for all t � s,
W t

2e; W
t

2eC1 are defined.

Suppose We generates an IP set. Then, in particular, it contains some W0; W1 with
maxW0 < minW1 such that for some s, W t

2e D W0 and W t
2eC1 D W1 for all t � s.

Since We contains infinitely many pairwise disjoint elements, it must contain some
B with maxB � s and minB > maxW1. It follows that c.W0 [ B/ D 0 and
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c.W1 [ B/ D 1. Since W0 [ B;W1 [ B 2 FS.We/, it follows that We does not
generate a monochromatic IP set.

3.2 Computable colorings with no computably enumerable sets half-matched by
small sets Here we show that there is no bound on the size of the finite set B found
in Lemma 2.5.

Theorem 3.4 For any k, there is a computable c W Pfin.N/! f0; 1g such that for
any set A with size� k and any computably enumerable set S such that S generates
an IP set, A does not half-match S .

Proof Fix a computable sequence fAi ; jig where each Ai is a set of size � k and
such that whenever A is a set of size � k and j is an integer, there is an i with
Ai D A and ji D j . The purpose of ji is to represent the computably enumerable
set Wji

from the enumeration fixed above. In particular, if A is a set of size � k and
W is computably enumerable, there is an i with Ai D A and Wji

D W .
For each s and each i � s and u 2 Œ0; k�, we inductively define W u

i;s to be least
satisfying the following properties:

1. i < minW u
i;s;

2. maxZ < minW u
i;s for all Z 2 Ai ;

3. if j < i and W u0

j;s is defined then maxW u0

j;s < minW u
i;s;

4. if u0 < u and W u0

i;s is defined then maxW u0

i;s < minW u
i;s;

5. W u
i;s 2 Wji ;s .

If there is no such W u
i;s then W u

i;s is undefined. Note that W u
i;s is computable from

i; s; u, since Wji ;s is computable from i; s (and, in particular, the set of i; s; u such
that W u

i;s is defined is computable).
A decomposition of B with maxB D s is a tuple i; u;Z;D such that B D

Z [ W u
i;s [ D and neither Z nor D contains W u0

i;s for any u0 ¤ u. We often write
that Z [ W u

i;s [ D is a decomposition of B to mean that the tuple i; u;Z;D is. A
decomposition is correct if Z 2 Ai . (Recall that when we write Z [ W u

i;s [ D,
we implicitly assume that maxZ < minW u

i;s and maxW u
i;s < minD.) Note that

correctness of a decomposition is computable, since Ai is finite and computable
from i , and W u

i;s is computable from i; u; s.
Observe that, for each n, there is a stage sn by whichW u

n;sn
has stabilized for each

u � k, in the sense that for all t � sn, W u
n;t D W

u
n;sn

(where if one side is undefined
then the other is as well). When W u

n;sn
is defined, we call it W u

n .

Claim 3.5 Let c be a coloring, and suppose that for all n and all D with
minD � sn, there is a u � k such that either W u

n is undefined, or for all Z 2 An,
c.Z [W u

n [D/ ¤ c.W
u

n [D/. Then c satisfies the theorem.

Proof Let A be given with jAj D k and let S be computably enumerable and
generate an IP set. Choose n such that An D A and Wjn

D S . Since S generates
an IP set, W u

n is defined for all u � k, and we may find a D 2 S with minD � sn.
Then for some u, c.Z [W u

n [D/ ¤ c.W
u

n [D/ for all Z 2 A. Therefore, A does
not half-match W u

n [ D, and since W u
n [ D 2 NU.S/, it follows that A does not

half-match S . a
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We will construct c so that it satisfies the preceding claim. A naïve attempt would
be to simply decree that c.Z [ W u

n [ D/ ¤ c.W u
n [ D/ for all correct decom-

positions Z [ W u
n [ D. It’s not hard to see, however, that this is too general. If

B D Z [ W u
n [ D D Z0 [ W u0

n0 [ D
0 and both decompositions are correct then

it might be that c.W u
n [ D/ ¤ c.W u0

n0 [ D
0/, in which case we cannot color B so

that c.B/ ¤ c.W u
n [ D/ and also c.B/ ¤ c.W u0

n0 [ D
0/. Let us say, temporarily,

that Z; u conflicts with n0 (over n;D) if there are Z0; u0 so that Z0 [W u0

n0 [D
0 is a

correct decomposition of Z [W u
n [D; note that u0 is uniquely fixed by D.

When we have conflicting decompositions, we must have n ¤ n0, by the definition
of a decomposition. If n < n0 then we must have D0 a proper final subset of D.
We illustrate this situation in Figure 1. Note that this conflict only occurs when Z0

contains W u
n for exactly one u. In particular, if we pick a fixed D and n < n0, there

are at most jAn0 j possible pairs Z; u with Z 2 An such that Z; u conflicts with n0.
Since there are k C 1 > k � jAn0 j possible choices for u, this means there is some
u such for every Z 2 An, Z; u does not conflict with n0 over n;D.

Z W u
n;s D

Z0 Z0 W u0

n0;s D0Z

Figure 1 Two decompositions of the same set B

There is a remaining obstacle, namely, that for various values of Z and u, the pair
Z; u could conflict with multiple values of n0. Our solution is to use a stronger
notion, blocking, and arrange (see Claim 3.7) that we need only worry about the
largest n0 which is a source of conflicts.

We now make this precise. Consider triples i; u;D (viewed as referring to the set
W u

i;max D [D); we define the blocked triples i; u;D by induction on the length ofD.
The triple i; u;D is blocked by i 0 if there exist Z0; i 0; u0;D0 such that

1. maxD D maxD0,
2. W u0

i 0;max D [D
0 is a final segment of D,

3. W u
i;max D [D is a final segment of Z [W u0

i 0;max D [D
0,

4. the triple i 0; u0;D0 is unblocked,
5. Z0 [W u0

i 0;max D [D
0 is a correct decomposition, and

6. if Z0 contains W u�

i;max D then u� D u.

Note that when this occurs, i < i 0. When B D Z [W u
i;s [D is a correct decompo-

sition, we say it is blocked by i 0 if and only if i; u;D is blocked by i 0.

Claim 3.6 For any B , there is at most one correct unblocked decomposition.

Proof Suppose B D Z [W u
i;s [D D Z

0 [W u0

i 0;s [D
0 give two correct decompo-

sitions, with Z a proper initial segment of Z0. If W u0

i 0;s [D
0 is not blocked, then by

definition i; u;D is blocked by i 0. a
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Since correctness is computable, we may identify the unblocked decompositions
of B by examining all possible decompositions of all sets B 0 with maxB 0 D maxB .
There are finitely many such sets B 0, and therefore finitely many such decompo-
sitions. In particular, given B , we may computably determine whether there is a
correct unblocked decomposition, and if so, what it is.

We now define our coloring inductively. Let B be given, and suppose c.B/ has
been decided for all proper final segments of B . LetZ[W u

i;s[D be the correct, un-
blocked decomposition, if there is one. Then set c.Z[W u

i;s[D/ D 1�c.W
u

i;s[D/.
If there is no correct unblocked decomposition, set c.B/ D 0.

Claim 3.7 Suppose n; v; B is blocked by i while n; v0; B is blocked by i 0. Then
i D i 0.

Proof Suppose i ¤ i 0; without loss of generality, we may assume i < i 0. Let
s D maxB . There exist Z; u;D and Z0; u0;D0 witnessing the blocking. We will
show that Z0; i 0; u0;D0 witnesses the blocking of i; u;D.

We certainly have maxD D s D maxD0. SinceW u
i;s[D andW u0

i 0;s[D
0 are both

proper final segments of B with maxW u
i;s < minW u0

i 0;s , it follows that W u0

i 0;s [D
0 is

a proper final segment of D. Since W u
i;s [D is a proper final segment of W v

n;s [ B ,
which is in turn a proper final segment of Z0 [ W u0

i 0;s [D
0, we have that W u

i;s [D

is a proper final segment of Z0 [ W u0

i 0;s [ D
0. Since Z0; i 0; u0;D0 blocks n; v; B , it

must be that i 0; u0;D0 is unblocked. By assumption, Z0 [ W u0

i 0;s [ D
0 is a correct

decomposition.
Finally, suppose Z0 contains W u�

i;s for some u�; since W v
n [ B is a proper final

segment of Z0 [W u0

i 0;s [D
0 and maxW v

n < minW u�

i;s , it must be that W u�

i;s is con-
tained in B . SinceW v

n [B is a proper final segment ofZ[W u
i;s [D, it must be that

W u�

i;s is contained inZ[W u
i;s [D. SinceZ[W u

i;s [D is a decomposition, u� D u.
These conditions show that i; u;D is blocked, contradicting the assumption. So

we must have i D i 0. a

So, holding B fixed, there is at most one i such that there exist A; v so that
A [ W v

n;max B [ B is blocked by i . In order for A [ W v
n;max B [ B to be blocked

by i , there must be a Z 2 Ai such that W v
n is contained in Z, and for v ¤ v0,

W v0

n is not contained in Z. Since jAi j D k, there are at most k values of v
for which any A [ W v

n;max B [ B is blocked. Therefore, for some v � k,
A[W v

n;max B[B is a correct unblocked decomposition for allA 2 An, and therefore
c.A [W v

n;max B [ B/ D 1 � c.W
v

n [ B/. We may now apply Claim 3.5.

3.3 A computable coloring with no computably enumerable full-matched sets Here
we show that the first clause in Lemma 2.6 is necessary by presenting a computable
coloring in which there is no finite set B and computable, or even computably enu-
merable, IP set T such that B full-matches T .

Theorem 3.8 There is a computable c W Pfin.N/! f0; 1g such that for any finite
set B and any computably enumerable set S such that S generates an IP set, B does
not full-match S .

Proof For each s and each i � s and u 2 f0; 1g, we inductively define W u
i;s to be

least satisfying the following properties:
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1. i < minW u
i;s;

2. if j < i and W u0

j;s is defined, then maxW u0

j;s < minW u
i;s;

3. if W 0
i;s is defined, then maxW 0

i;s < minW 1
i;s;

4. W u
i;s 2 Wi;s .

If there is no such W u
i;s then W u

i;s is undefined. Since Wi;s is a finite set computable
from i; s, W u

i;s is computable from u; i; s.
A primary s-decomposition of B , where s D maxB , is a tuple i; u;Z;D such

that B D Z [ W u
i;s [ D, neither Z nor D contains W 1�u

i;s as a subsequence, and
there is no primary s-decomposition of D. Clearly, there is at most one primary
s-decomposition of B . Note that since there are only finitely many decompositions
of B , we need search only finitely many possibilities to identify whether there is a
primary s-decomposition of B , and if so, what it is.

We say B contains i with polarity v if there is a primary maxB-decomposition
j; u;Z;D ofB with either i D j and v D u, or i contained inZ with polarity jv�uj.
Observe that whenever B contains i , B D Z [W u

i;t [D for some t � maxB .
We now define our coloring inductively. Let B be given, and suppose we have

already decided c.B 0/ whenever B 0 is a proper initial segment of B . If B has a
primary s-decomposition B D Z [ W u

i;s [ D, we set c.B/ D c.Z/ if u D 0

and c.B/ ¤ c.Z/ if u D 1. If there is no primary s-decomposition of B , we set
c.B/ D 0.

Claim 3.9 For each i , there is some s such that W s
i D W t

i for all t � s (where
both sides are undefined if either is).

Let B be a finite set such that for all A 2 B, maxA � i and let s;W 0
i ; W

1
i be such

that for all t � s, W u
i;s D W u

i . It is easy to see that for any B with minB � s there
is a vB such that A [W u

i [ B contains i with polarity jvB � uj for all A 2 B.

Claim 3.10 For all B with minB � s, c.A [ W vB

i [ B/ D c.A/ and
c.A [W

1�vB

i [ B/ ¤ c.A/.

Proof By induction on the length ofB . LetD D A[W u
i [B . A[W u

i [B gives a
primary maxB-decomposition of D unless B has a primary maxB-decomposition,
so D must have a primary maxB-decomposition Z [ W u0

j [ B
0. If we just have

j D i , the claim follows immediately from the definition of the coloring.
Otherwise, if u0 D 0 then c.D/ D c.Z/ and Z contains i with polarity

jvB � uj; by IH applied to Z n A [ W u
i , c.D/ D c.Z/ D c.A/ if u D vB and

c.D/ D c.Z/ ¤ c.A/ if u ¤ vB . If u0 D 1 then c.D/ ¤ c.Z/ and Z contains i
with polarity 1 � jvB � uj; by IH applied to Z n A [W u

i , c.D/ ¤ c.Z/ ¤ c.A/ if
u D vB , so c.D/ D c.A/, and c.D/ ¤ c.Z/ D c.A/ if u ¤ vB . a

So suppose A full-matched NU.W/with W computably enumerable. Then for some
i such that maxA � i for all A 2 A, we have W D Wi . If Wi generated an IP set,
there would be a B 2 Wi with minB � s, and W 0

i ; W
1

i 2 Wi such that either A
failed to full-match W 0

i [ B or A failed to full-match W 1
i [ B . In either case, since

both W 0
i [ B and W 1

i [ B belong to NU.Wi /, A fails to full-match NU.Wi /.

3.4 A computable coloring with no ˙2 monochromatic IP set

Theorem 3.11 There is a computable c W Pfin.N/! f0; 1g such that if S is a ˙2

set generating an IP set then NU.S/ is not monochromatic.
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Proof Fix an enumeration of all ˙2 formulas

'i .Z/ D 9x8yRi .x; y;Z/:

We will sometimes conflate 'i with fZ 2 Pfin.N/ j 'i .Z/g (for example, by writing
NU.'i /).

We arrange pairs .i; n/ with n < i C 1 in lexicographic order (so .j;m/ < .i; n/

iff j < i or j D i and m < n). For each pair .i; n/, we define the i; n-candidates
and Ti;n, the i; n-witness, simultaneously by induction.

We will now define the key building blocks of our argument, the candidates and
witnesses. The main point of an i -candidate is that it will satisfy 'i ; a secondary
point is that its smallest element is large enough to give bounds on the existential
quantifiers needed to justify all the earlier witnesses. In other words, a candidate
should “see” all the earlier witnesses. A witness, in turn, is just the smallest candi-
date. (We could dispense with the notion of a candidate and discuss only witnesses;
the notion of a candidate is used to simplify the proofs of some claims.)

Definition 3.12 T is an i; n-candidate if
1. 'i .T /,
2. for each .j;m/ < .i; n/ such that the least j;m-candidate Tj;m is defined,
9x � minT8yRj .x; y; Tj;m/,

3. for all .j;m/ < .i; n/ such that the least j;m-candidate Tj;m is defined,
maxTj;m < minT .

We define Ti;n, the i; n-witness, to be the least i; n-candidate if there is one, and
undefined otherwise.

Note that if 'i generates an IP set then all the i; n-witnesses are defined. We will
also need certain approximations to the i; n-witnesses.

Definition 3.13 Let integers p; q be given. T is a p; q; i; n-candidate if
1. maxT < p,
2. 9x � p8y � qRi .x; y; T /,
3. for all .j;m/ < .i; n/ such that the least p; q; j;m-candidate T p;q

j;m is defined,

T
min T;q

j;m D T
p;q

j;m ,
4. for all .j;m/ < .i; n/ such that the least p; q; j;m-candidate T p;q

j;m is defined,
maxT p;q

j;m < minT .

We define T p;q
i;n , the p; q; i; n-witness, to be the least p; q; i; n-candidate if there is

one, and undefined otherwise.

Note that there are only finitely many sets with maxT < p, and therefore only
finitely many possible candidates for T p;q

i;n ; in particular, the set of p; q; i; n such that
T

p;q
i;n exists is computable, and T p;q

i;n can be computed from p; q; i; n.

Claim 3.14 If p � p0 and T
p;q

j;m D T
p0;q

j;m for all .j;m/ < .i; n/, then

T
p0;q
i;n � T

p;q
i;n .

Proof It suffices to show that T p;q
i;n is a p0; q; i; n-candidate. Certainly, if

9x � p8y � qRi .x; y; T
p;q
i;n / then there is such an x � p0 as well. The re-

maining conditions hold by assumption. a
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Claim 3.15 If p � p0 � p00 and T p;q
j;m D T

p00;q
j;m for all .j;m/ < .i; n/, then

T
p0;q

j;m D T
p;q

j;m for all .j;m/ � .i; n/.

Proof Suppose not. Let .j;m/ be least such that T p;q
j;m ¤ T

p0;q
j;m . Applying the

preceding claim to p; p0 and to p0; p00, we have T p0;q
j;m � T

p;q
j;m D T

p00;q
j;m � T

p0;q
j;m ,

which is impossible. a

We define a coloring of Pfin.N/ as follows. Let B 2 Pfin.N/ be given with
maxB D s; we may assume c.B 0/ is decided for all B 0 with maxB 0 < s and for all
proper final segments of B . We will attempt to color B in a series of stages, indexed
by i � s. At stage i , we ask whether there exist A;D such that

1. A [D D B ,
2. maxA < minD, and
3. A D T min D;max D

i;n for some n < i C 1.
If all these conditions are met, we set c.B/ D 1 � c.D/ for the longest such D,
and say that B is i; A;D-colored. Otherwise, we do not color B at stage i . This is
computable since there are only finitely many possible divisions B D A [D which
need to be checked, and checking if A D T

min D;max D
i;n is computable. If B is not

colored at any stage i � s, we arbitrarily set c.B/ D 0.
For each i , we wish to show that if 'i generates an IP set then c is not monochro-

matic on NU.'i /. So suppose 'i generates an IP set. Choose p such that for
each T 0 � Ti;i , if 9x8yRi .x; y; T

0/ then 9x � p8yRi .x; y; T
0/. Since 'i gen-

erates an IP set, we may find an A with minA � p and 'i .A/. Now let q be
large enough that for each j � i , each T 0 � Ti;i such that :'j .T

0/, and each
x � minA, there is a y � q such that :Rj .x; y; T

0/. Again we may find B such
that 'i .B/ and maxB � q. In particular, when j � i , T 0 � Ti;i , 9x8yRj .x; y; T

0/

holds if and only if 9x � minA8y � maxBRj .x; y; T
0/ holds, and therefore

Tj;m D T
min A;max B

j;m for all .j;m/ � .i; i/.
We will show that for some n < iC1, Ti;n[A[B is i; Ti;n; A[B-colored. This

means c.Ti;n [ A [ B/ ¤ c.A [ B/, and therefore NU.'i / is not monochromatic.
Since Ti;n D T

min A;max B
i;n , it suffices to show that for some n < i C 1, Ti;n [ A [ B

is not j; T 0;D-colored for any j < i with T 0 ¤ Ti;n or i; T 0;D-colored for any T 0

a proper initial segment of T 0i;n.

Claim 3.16 If T 0 is a proper initial segment of Ti;n and j < i then Ti;n [ A [ B

is not j; T 0;D-colored, where T 0 [D D Ti;n [ A [ B .

Proof Since T min T 0;max D
j 0;m D T

min A;max D
j 0;m D Tj 0;m for all .j 0; m/ < .i; n/

and minT 0 � minD � minA, it follows that T min D;max D
j 0;m D Tj 0;m for all

.j 0; m/ < .i; n/. In particular, since T 0 is a proper initial segment of Ti;n, we cannot
have T 0 D Tj;m for any m. Therefore, Ti;n [ A [ B is not j; T 0;D-colored. a

Claim 3.17 If T 0 is a proper initial segment of Ti;n and j < i then Ti;n [ A [ B

is not i; T 0;D-colored, where T 0 [D D Ti;n [ A [ B .

Proof If 'i .T
0/ then T 0 would be an i; n-candidate with T 0 � Ti;n, contradicting

leastness of Ti;n. So:'i .T
0/, and therefore8x � minA9y � maxB:Rj .x; y; T

0/.
Since maxB D maxD and minD � minA, also 8x � minD9y � maxD:Rj .x;

y; T 0/, so T 0 cannot be T min D;max D
i;m for any m. a
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It is still possible for Ti;n [ A [ B to be j; T 0;D-colored by some j < i when T 0

is a proper end-extension of Ti;n. We will show that each j does so for at most one
n < i C 1.

Claim 3.18 If j < i and Ti;n [ A [ B is j; T 0;D-colored where T 0 is a proper
end-extension of Ti;n then T 0 D T min D;max D

j;m is least such that Tj;m is undefined.

Proof By definition, T 0 D T
min D;max D

j;m for some m < j C 1. If Tj;m0 is defined

for some m0 < j C 1 then, since minA � minD, Tj;m0 D T
min D;max D

j;m0 ¤ T 0. If
m0 < m is such that Tj;m0 is undefined, in order for T 0 [D to be j; T 0;D-colored,
we would have to have T min T 0;max D

j;m0 D T
min D;max D

j;m0 . But minT 0 D minTi;n and

maxD D maxB , so T min T 0;max D
j;m0 D T

min Ti;n;max B

j;m0 is undefined. Therefore, m is
least such that Tj;m0 is undefined. a

So suppose there are distinct n; n0 < i C 1 such that Ti;n [ A [ B is j; T 0;D0-
colored while Ti;n0 [A[B is j; T 00;D00-colored. Without loss of generality, assume
T 0 � T 00. Then maxD0 D maxD00 D maxB and minA � minD0 � minD00. Let
m be least such that Tj;m is undefined. Then T 0 is a minD00;maxD00; j;m-candidate.
Since T 0 � T 00, it follows that T 00 cannot be T min D00;max D00

j;m .
Therefore, for each j , there is at most one n such that Ti;n [ A [ B is j; T 0;D-

colored. This means there are at most i choices of n such that Ti;n [ A [ B is
j; T 0;D-colored for any j < i , and since there are i C 1 possible values for n, there
is some n such that Ti;n[A[B is not j; T 0;D-colored for any j < i , and therefore
Ti;n [ A [ B is i; Ti;n; A [ B-colored, as desired.

4 Conclusion

The results of the previous section still leave a significant gap in the strength of
Hindman’s Theorem; in particular, while we do not see how to prove Hindman’s
Theorem in ACA0, we cannot rule out the possibility that there is such a proof.
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