FINITE SYMPLECTIC ACTIONS ON THE K3 LATTICE

KENJI HASHIMOTO

Abstract

In this paper, we study finite symplectic actions on $K 3$ surfaces X, that is, actions of finite groups G on X which act on $H^{2,0}(X)$ trivially. We show that the action on the $K 3$ lattice $H^{2}(X, \mathbb{Z})$ induced by a symplectic action of G on X depends only on G up to isomorphism, except for five groups.

Contents

0. Introduction 99
1. Basic facts on lattices 102
2. Finite symplectic actions on the $K 3$ lattice Λ 108
3. Embeddings of Λ_{G} into Niemeier lattices 110
4. Uniqueness of coinvariant lattices Λ_{G} 119
5. Property $\overline{\mathrm{O}\left(\Lambda_{G}\right)}=\mathrm{O}\left(q\left(\Lambda_{G}\right)\right)$ 121
6. Uniqueness of invariant lattices Λ^{G} 125
7. Property $\overline{\mathrm{O}\left(\Lambda^{G}\right)}=\mathrm{O}\left(q\left(\Lambda^{G}\right)\right)$ 126
8. Uniqueness of symplectic actions on the $K 3$ lattice 131
9. Applications 136
10. Tables 136
Appendix: computations using GAP 150
Acknowledgments 152
References 152

§0. Introduction

A compact complex surface X is called a $K 3$ surface if it is simply connected and has a nowhere vanishing holomorphic 2 -form ω_{X}. (For properties on $K 3$ surfaces, see [1].) An automorphism g of X is said to be symplectic if $g^{*} \omega_{X}=\omega_{X}$. Nikulin ([19], [20]) studied symplectic actions of finite groups on $K 3$ surfaces. In particular, he showed the following result.

Theorem 0.1 ([20, Theorems 4.5, 4.7]). There exist exactly 14 finite abelian groups $G\left(G=C_{2}, C_{3}, \ldots\right)$ which act on $K 3$ surfaces faithfully and

[^0]symplectically. Moreover, for each G, the action of G on the $K 3$ lattice induced by a faithful and symplectic action of G on a $K 3$ surface is unique up to isomorphism.

In this paper, we prove that the above uniqueness holds for any finite groups except for five groups (see Theorem 8.10). We use the same notation for groups as in [29] (see Table 10.2).

Main Theorem. Let G be a finite group such that $G \neq Q_{8}, T_{24}, \mathfrak{S}_{5}, L_{2}(7)$, \mathfrak{A}_{6}. Then the action of G on the $K 3$ lattice induced by a faithful and symplectic action of G on a $K 3$ surface is unique up to isomorphism. More precisely, if $G_{i} \cong G$ acts on a K3 surface X_{i} faithfully and symplectically $(i=1,2)$, then there exists an isomorphism $\alpha: H^{2}\left(X_{1}, \mathbb{Z}\right) \rightarrow H^{2}\left(X_{2}, \mathbb{Z}\right)$ preserving the intersection forms such that $\alpha \circ G_{1} \circ \alpha^{-1}=G_{2}$ in $\operatorname{GL}\left(H^{2}\left(X_{2}, \mathbb{Z}\right)\right)$.

As a corollary, we have the following by a similar argument in [20] (see [28] for a detailed argument).

Corollary 0.2. Let G be a finite group which does not belong to the exceptional cases listed above. If G acts on $K 3$ surfaces X_{i} faithfully and symplectically for $i=1,2$, then there exists a connected family \mathcal{X} of $K 3$ surfaces with an action of G which satisfies the following conditions:
(1) X_{1}, X_{2} are fibers of \mathcal{X};
(2) the restriction of the action of G on \mathcal{X} to the fiber X_{i} coincides with the given one ($i=1,2$);
(3) the action of G on each fiber of \mathcal{X} is symplectic.

If two $K 3$ surfaces X_{1} and X_{2} with actions of G satisfy the conclusions of Corollary 0.2, X_{1} and X_{2} are said to be G-deformable.

We recall known results on finite symplectic actions on $K 3$ surfaces. After a result of Nikulin [20], Mukai [18] classified finite groups which act on K3 surfaces faithfully and symplectically by listing the 11 maximal groups (see Theorem 2.4). Xiao [29] gave another proof of Mukai's result by studying the singularities of the quotient $G \backslash X$ for a $K 3$ surface X with a symplectic action of a finite group G. Moreover, he showed the following.

Theorem 0.3 ([29, Theorem 3]). Let G be a finite group. Suppose that $G \neq Q_{8}, T_{24}$. Then, for any $K 3$ surface X with a faithful and symplectic action of G, the quotient $G \backslash X$ has the same $A-D-E$ configuration of the singularities.

Considering his result, one may expect that the uniqueness as in Theorem 0.1 holds for most nonabelian finite groups as well. This paper is motivated by this expectation. We follow Kondō's approach (see [15]) with which he gave another proof of Mukai's result. (See Remark 3.4 for Nikulin's contribution to this other proof.) He embeds the coinvariant lattice $H^{2}(X, \mathbb{Z})_{G}=$ $\left(H^{2}(X, \mathbb{Z})^{G}\right)^{\perp}$ into a Niemeier lattice N and describes a symplectic action as an action on N. Here a Niemeier lattice is a negative definite even unimodular lattice of rank 24 which is not isomorphic to the Leech lattice. By looking at this action more carefully, we prove the main theorem. For some finite groups, the uniqueness of their (symplectic) actions on $K 3$ surfaces was studied by several authors (see [16], [23], [14], [22], [30], [28]). In the case where G is abelian, Garbagnati and Sarti ([10], [11]) and Garbagnati [7] computed the structure of $H^{2}(X, \mathbb{Z})^{G}$ and $H^{2}(X, \mathbb{Z})_{G}$ and corrected errors of computations of discriminant groups of $H^{2}(X, \mathbb{Z})_{G}$ in [20]. We use computer algebra systems GAP [12] and Maxima [17] for the computations of permutation groups and lattices.

The paper proceeds as follows. In Section 1, we recall basic facts on lattices, which are used through the paper. We recall results on finite symplectic actions on $K 3$ surfaces in Section 2. Using these results, we take a lattice-theoretic approach to study finite symplectic actions on $K 3$ surfaces. We introduce the notion of finite symplectic actions on the $K 3$ lattice Λ, taking account of Nikulin's characterization of symplectic actions on $K 3$ surfaces (see Definition 2.5 and Proposition 2.6). The set of finite symplectic actions $G \subset \mathrm{O}(\Lambda)$ on Λ is denoted by \mathcal{L}. For $G \in \mathcal{L}$, there exists a $K 3$ surface X with a symplectic action of G such that we have a G-equivalent isomorphism $\Lambda \cong H^{2}(X, \mathbb{Z})$. Section 3 is the key of the paper. By Kondō's lemma (see Lemma 3.2), the coinvariant lattice Λ_{G} for $G \in \mathcal{L}$ is embedded into a Niemeier lattice N primitively. Since the action of G on Λ_{G} is extended to that on N such that $N_{G}=\Lambda_{G}$, we can study G as an automorphism group of N. Applying the classification of Niemeier lattices, we classify the primitive embeddings of Λ_{G} into Niemeier lattices. To prove the main theorem, we first prove the uniqueness of Λ_{G} and Λ^{G}. In Sections 4 and 6 , we show the uniqueness of Λ_{G} and Λ^{G}, respectively, by using the result in Section 3. Next, we show the uniqueness of the gluing data of Λ^{G} and Λ_{G} to Λ. In Sections 5 and 7 , we show that either $\overline{\mathrm{O}\left(\Lambda_{G}\right)}=\mathrm{O}\left(q\left(\Lambda_{G}\right)\right)$ or $\overline{\mathrm{O}\left(\Lambda^{G}\right)}=\mathrm{O}\left(q\left(\Lambda^{G}\right)\right)$ holds for any $G \in \mathcal{L}$. This implies the uniqueness of the gluing data. Finally, in Section 8, we prove the main theorem by using the results in the previous sections. Some applications of the main theorem
are given in Section 9. We give the list of Niemeier lattices and the results of the computations in Section 10.

§1. Basic facts on lattices

1.1. Definitions

A lattice $L=(L,\langle\rangle$,$) is a free \mathbb{Z}$-module L of finite rank equipped with an integral symmetric bilinear form \langle,$\rangle . We identify a lattice L$ with its Gramian matrix $\left(\left\langle v_{i}, v_{j}\right\rangle\right)$ under an integral basis $\left(v_{i}\right)$ of L. The discriminant $\operatorname{disc}(L)$ of L is defined as the determinant of the Gramian matrix of L. If $\operatorname{disc}(L) \neq 0$ (resp., $= \pm 1$), a lattice L is said to be nondegenerate (resp., unimodular). Let $t_{(+)}$(resp., $\left.t_{(-)}\right)$be the number of positive (resp., negative) eigenvalues of the Gramian matrix of L. We call $\left(t_{(+)}, t_{(-)}\right)$the signature of L and write

$$
\begin{equation*}
\operatorname{sign} L=\left(t_{(+)}, t_{(-)}\right) \tag{1.1}
\end{equation*}
$$

If $\langle v, v\rangle \equiv 0 \bmod 2$ for all $v \in L$, a lattice L is said to be even. We denote by $L(\lambda)$ the \mathbb{Z}-module L equipped with λ times the bilinear form \langle,$\rangle , that is,$ $(L, \lambda\langle\rangle$,$) . A sublattice K$ of L is said to be primitive if L / K is torsion free. An automorphism of L is defined as a \mathbb{Z}-automorphism of L preserving the bilinear form \langle,$\rangle . We denote by \mathrm{O}(L)$ the group of automorphisms of L. For a subset $S \subset L$, we define a subgroup $\mathrm{O}(L, S)$ of $\mathrm{O}(L)$ by

$$
\begin{equation*}
\mathrm{O}(L, S)=\{g \in \mathrm{O}(L) \mid g \cdot S=S\} \tag{1.2}
\end{equation*}
$$

Definition 1.1. A lattice L with an action of G is called a G-lattice if G is a subgroup of $\mathrm{O}(L)$ and is denoted by (G, L). For a G-lattice (G, L), we define the invariant lattice L^{G} and the coinvariant lattice L_{G} by

$$
\begin{equation*}
L^{G}=\{v \in L \mid g \cdot v=v(\forall g \in G)\}, \quad L_{G}=\left(L^{G}\right)_{\frac{\perp}{L}}^{\perp} \tag{1.3}
\end{equation*}
$$

A G-lattice (G, L) and a G^{\prime}-lattice $\left(G^{\prime}, L^{\prime}\right)$ are said to be isomorphic if there exists an isomorphism $\alpha: L \rightarrow L^{\prime}$ such that

$$
\begin{equation*}
\alpha \circ G \circ \alpha^{-1}=G^{\prime} . \tag{1.4}
\end{equation*}
$$

We recall some basic properties on discriminant forms of lattices for the reader's convenience (see [21] for details). Let L be a nondegenerate even lattice. The discriminant group $A(L)$ is a finite abelian group defined by

$$
\begin{equation*}
A(L)=L^{\vee} / L, \quad L^{\vee}=\{v \in L \otimes \mathbb{Q} \mid\langle v, L\rangle \subset \mathbb{Z}\} \tag{1.5}
\end{equation*}
$$

Here we extend the bilinear form \langle,$\rangle on L$ to that on $L \otimes \mathbb{Q}$ linearly. We have

$$
\begin{equation*}
|A(L)|=|\operatorname{disc}(L)| \tag{1.6}
\end{equation*}
$$

The discriminant form $q(L)$ of L is defined by

$$
\begin{equation*}
q(L): A(L) \rightarrow \mathbb{Q} / 2 \mathbb{Z} ; \quad x \bmod L \mapsto\langle x, x\rangle \bmod 2 \mathbb{Z} \tag{1.7}
\end{equation*}
$$

We simply write $q(L)$ instead of $(A(L), q(L))$. For a prime number p, let $A(L)_{p}$ and $q(L)_{p}$ denote the p-components of $A(L)$ and $q(L)$, respectively. We have

$$
\begin{equation*}
A(L)=\bigoplus_{p} A(L)_{p}, \quad q(L)=\bigoplus_{p} q(L)_{p} \tag{1.8}
\end{equation*}
$$

We can consider $q(L)_{p}$ as the discriminant form of $L \otimes \mathbb{Z}_{p}$. (The discriminant group and form for a nondegenerate even lattice over \mathbb{Z}_{p} are similarly defined. Note that any lattice over \mathbb{Z}_{p} is even if $p \neq 2$.) An automorphism of $q(L)$ is defined as an automorphism of a finite abelian group $A(L)$ preserving $q(L)$. We denote the group of automorphisms of $q(L)$ by $\mathrm{O}(q(L))$. An automorphism $\varphi \in \mathrm{O}(L)$ induces an automorphism $\bar{\varphi} \in \mathrm{O}(q(L))$. This correspondence gives the natural homomorphism

$$
\begin{equation*}
\mathrm{O}(L) \rightarrow \mathrm{O}(q(L)) \tag{1.9}
\end{equation*}
$$

We define

$$
\begin{equation*}
\mathrm{O}_{0}(L)=\operatorname{Ker}(\mathrm{O}(L) \rightarrow \mathrm{O}(q(L))) \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\mathrm{O}(L)}=\operatorname{Im}(\mathrm{O}(L) \rightarrow \mathrm{O}(q(L))) \tag{1.11}
\end{equation*}
$$

1.2. Facts

We use the following facts (for details, see [21]).
Lemma 1.2. Let L_{1}, L_{2} be nondegenerate even lattices. We define

$$
\begin{equation*}
\operatorname{Isom}\left(q\left(L_{1}\right),-q\left(L_{2}\right)\right)=\left\{\gamma: q\left(L_{1}\right) \xrightarrow{\sim} q\left(L_{2}\right)\right\} \tag{1.12}
\end{equation*}
$$

If $\gamma \in \operatorname{Isom}\left(q\left(L_{1}\right),-q\left(L_{2}\right)\right)$, the lattice Γ_{γ}, defined by

$$
\begin{equation*}
\Gamma_{\gamma}=\left\{x \oplus y \in L_{1}^{\vee} \oplus L_{2}^{\vee} \mid \gamma\left(x \bmod L_{1}\right)=y \bmod L_{2}\right\} \tag{1.13}
\end{equation*}
$$

is an even unimodular lattice which contains L_{1} and L_{2} primitively. This correspondence gives a one-to-one correspondence between $\operatorname{Isom}\left(q\left(L_{1}\right)\right.$, $\left.-q\left(L_{2}\right)\right)$ and the set of even unimodular lattices $\Gamma \subset L_{1}^{\vee} \oplus L_{2}^{\vee}$ which contain L_{1} and L_{2} primitively. Moreover, let $\gamma^{\prime} \in \operatorname{Isom}\left(q\left(L_{1}\right),-q\left(L_{2}\right)\right)$, and let $\varphi_{i} \in \mathrm{O}\left(L_{i}\right)$. Then, $\varphi_{1} \oplus \varphi_{2} \in \mathrm{O}\left(\mathrm{L}_{1} \oplus \mathrm{~L}_{2}\right)$ is extended to an isomorphism $\Gamma_{\gamma} \rightarrow \Gamma_{\gamma^{\prime}}$ if and only if $\gamma^{\prime} \circ \bar{\varphi}_{1} \circ \gamma^{-1}=\bar{\varphi}_{2}$ in $\mathrm{O}\left(q\left(L_{2}\right)\right)$.

Lemma 1.3. Let Γ be a nondegenerate even lattice, and let L be a nondegenerate primitive sublattice of Γ.
(1) If $g \in \mathrm{O}_{0}(L)$, the action of g on L is extended to that on Γ whose restriction to $(L) \stackrel{\perp}{\Gamma}$ is trivial.
(2) Suppose that Γ is unimodular. If G is a subgroup of $\mathrm{O}(\Gamma, L)$ and the action of G on $(L) \perp$ is trivial, then the induced action of G on $A(L)$ is trivial.
(3) Suppose that Γ is unimodular. If a group G acts on Γ and Γ_{G} is nondegenerate, then the induced action of G on $A\left(\Gamma_{G}\right)$ is trivial.

A lattice over \mathbb{Z}_{p} is defined as a free \mathbb{Z}_{p}-module of finite rank with a \mathbb{Z}_{p}-valued symmetric bilinear form \langle,$\rangle . First we consider the case p \neq 2$. In this case, any lattice can be diagonalized over \mathbb{Z}_{p}.

Proposition 1.4 (see [5, Chapter 15, Section 7]). Let p be an odd prime, and let $\varepsilon_{p} \in \mathbb{Z}_{p}^{\times}$be a nonsquare p-adic unit. If $L^{(p)}$ is a nondegenerate lattice over \mathbb{Z}_{p}, we have

$$
\begin{equation*}
L^{(p)} \cong \bigoplus_{k \geq 0}\left(\left\langle p^{k}\right\rangle^{\oplus n_{k}} \oplus\left\langle\varepsilon_{p} p^{k}\right\rangle^{\oplus m_{k}}\right) \tag{1.14}
\end{equation*}
$$

where $n_{k} \geq 0$ and $m_{k} \in\{0,1\}$ are uniquely determined. Hence,

$$
\begin{equation*}
q\left(L^{(p)}\right) \cong \bigoplus_{k \geq 1}\left(q_{+}^{(p)}\left(p^{k}\right)^{\oplus n_{k}} \oplus q_{-}^{(p)}\left(p^{k}\right)^{\oplus m_{k}}\right) \tag{1.15}
\end{equation*}
$$

where

$$
\begin{align*}
& q_{+}^{(p)}\left(p^{k}\right)=\left\langle 1 / p^{k}\right\rangle \quad \text { on } \mathbb{Z} / p^{k} \mathbb{Z} \tag{1.16}\\
& q_{-}^{(p)}\left(p^{k}\right)=\left\langle\varepsilon_{p} / p^{k}\right\rangle \quad \text { on } \mathbb{Z} / p^{k} \mathbb{Z} \tag{1.17}
\end{align*}
$$

In (1.15), n_{k} and m_{k} are also uniquely determined.

Let L be a nondegenerate lattice. We can determine $q(L)_{p}$ as follows. Let $\mathbb{Z}_{(p)}$ be a localization of \mathbb{Z} by the prime ideal (p), which is considered as a subring of \mathbb{Z}_{p}. Then L can be diagonalized over $\mathbb{Z}_{(p)}$. Then we can write

$$
\begin{equation*}
L \cong \bigoplus_{k \geq 0} L_{k}^{(p)}\left(p^{k}\right) \tag{1.18}
\end{equation*}
$$

over $\mathbb{Z}_{(p)}$, where $L_{k}^{(p)}$ are lattices over $\mathbb{Z}_{(p)}$ such that $L_{k}^{(p)}=0$ or $\operatorname{disc}\left(L_{k}^{(p)}\right) \in$ $\mathbb{Z}_{(p)}^{\times} /\left(\mathbb{Z}_{(p)}^{\times}\right)^{2}$. (The discriminant of a lattice over a ring R is defined modulo $\left(R^{\times}\right)^{2}$.) The n_{k} and m_{k} for $L \otimes \mathbb{Z}_{p}$ in the above proposition are determined by

$$
\left(n_{k}, m_{k}\right)= \begin{cases}(0,0) & \text { if } L_{k}^{(p)}=0 \tag{1.19}\\ \left(\operatorname{rank} L_{k}^{(p)}, 0\right) & \text { if } \operatorname{disc}\left(L_{k}^{(p)}\right) \in\left(\mathbb{Z}_{p}^{\times}\right)^{2} /\left(\mathbb{Z}_{(p)}^{\times}\right)^{2} \\ \left(\operatorname{rank} L_{k}^{(p)}-1,1\right) & \text { otherwise }\end{cases}
$$

Next we consider the more complicated case $p=2$.
Proposition 1.5 (see [5, Chapter 15, Section 7]). Let $L^{(2)}$ be a nondegenerate lattice over \mathbb{Z}_{2}. Then $L^{(2)}$ can be written as an orthogonal sum of the following lattices:

$$
\left\langle\varepsilon 2^{k}\right\rangle, \quad\left(\begin{array}{cc}
0 & 2^{k} \tag{1.20}\\
2^{k} & 0
\end{array}\right), \quad\left(\begin{array}{cc}
2^{k+1} & 2^{k} \\
2^{k} & 2^{k+1}
\end{array}\right)
$$

where $k \geq 0$ and $\varepsilon \in\{1,3,5,7\}$. Hence, if $L^{(2)}$ is even, $q\left(L^{(2)}\right)$ can be written as an orthogonal sum of the following:

$$
\begin{align*}
& q_{\varepsilon}^{(2)}\left(2^{k}\right)=\left\langle\varepsilon / 2^{k}\right\rangle \tag{1.21}\\
& \text { on } \mathbb{Z} / 2^{k} \mathbb{Z}, \tag{1.22}\\
& u^{(2)}\left(2^{k}\right)=\left(\begin{array}{cc}
0 & 1 / 2^{k} \\
1 / 2^{k} & 0
\end{array}\right) \quad \text { on }\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\oplus 2} \tag{1.23}\\
& v^{(2)}\left(2^{k}\right)=\left(\begin{array}{cc}
1 / 2^{k-1} & 1 / 2^{k} \\
1 / 2^{k} & 1 / 2^{k-1}
\end{array}\right) \quad \text { on }\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\oplus 2} .
\end{align*}
$$

In the case $p=2$, the uniqueness as in Proposition 1.4 does not hold. Although there is a complete system of invariants of a nondegenerate lattice over \mathbb{Z}_{2} (see [5]), we only recall the unimodular case.

Proposition 1.6 (see [5, Chapter 15, Section 7]). For a nondegenerate lattice $L^{(2)}$ over \mathbb{Z}_{2} with $\operatorname{disc}\left(L^{(2)}\right) \in \mathbb{Z}_{2}^{\times}$, a quadruple (r, d, t, e) defined as follows is a complete system of invariants of $L^{(2)}$. If

$$
L^{(2)} \cong \bigoplus_{i}\left\langle\varepsilon_{i}\right\rangle \oplus\left(\begin{array}{ll}
0 & 1 \tag{1.24}\\
1 & 0
\end{array}\right)^{\oplus n} \oplus\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)^{\oplus m}
$$

the invariants r, d, t, e are defined by

$$
\begin{align*}
& r=\operatorname{rank} L^{(2)}, \tag{1.25}\\
& d= \begin{cases}+1 & \text { if } \operatorname{disc}\left(L^{(2)}\right) \in \pm\left(\mathbb{Z}_{2}^{\times}\right)^{2} /\left(\mathbb{Z}_{2}^{\times}\right)^{2}, \\
-1 & \text { otherwise }\end{cases} \tag{1.26}
\end{align*}
$$

$$
\begin{equation*}
t=\sum_{i} \varepsilon_{i} \bmod 8 \mathbb{Z}_{2} \in \mathbb{Z}_{2} / 8 \mathbb{Z}_{2} \tag{1.27}
\end{equation*}
$$

$$
e= \begin{cases}\mathrm{I} & \text { if } L^{(2)} \text { is odd } \tag{1.28}\\ \mathrm{II} & \text { otherwise }\end{cases}
$$

For example, we can directly check that

$$
\langle 1\rangle^{\oplus 3} \cong\left(\begin{array}{ll}
2 & 1 \tag{1.29}\\
1 & 2
\end{array}\right) \oplus\langle 3\rangle
$$

over \mathbb{Z}_{2}. We actually have $(r, d, t, e)=(3,+1, \overline{3}, \mathrm{I})$ for both lattices. Using Proposition 1.6, we can determine $q(L)_{2}$ for a nondegenerate even lattice L similarly to the case $p \neq 2$. We can find an orthogonal decomposition

$$
\begin{equation*}
L \cong \bigoplus_{k \geq 0} L_{k}^{(2)}\left(2^{k}\right) \tag{1.30}
\end{equation*}
$$

over \mathbb{Z}_{2}, where $L_{k}^{(2)}$ is of the form (1.24). Then we can write $q(L)_{2}$ as the corresponding orthogonal sum of (1.21)-(1.23). (For relations among (1.21)(1.23), see [21].)

For a finite abelian group A, let $l(A)$ denote the minimum number of generators of A. Let L be a nondegenerate even lattice. Since rank $L^{\vee}=$ $\operatorname{rank} L$ (see (1.5)), we have

$$
\begin{equation*}
l(A(L)) \leq \operatorname{rank} L \tag{1.31}
\end{equation*}
$$

The following theorem is a reformulation of Eichler's result in a viewpoint of discriminant forms.

Theorem 1.7 ([21, Theorem 1.13.2]). Let L, L^{\prime} be indefinite (nondegenerate) even lattices of rank ≥ 3. Suppose that the following conditions are satisfied
(1) For each $p \neq 2$, either $\operatorname{rank} L \geq l\left(A(L)_{p}\right)+2$, or $n_{k}+m_{k} \geq 2$ for some k in the orthogonal decomposition (1.15); that is,

$$
\begin{equation*}
q(L)_{p} \cong q_{p} \oplus q_{ \pm}^{(p)}\left(p^{k}\right) \oplus q_{ \pm}^{(p)}\left(p^{k}\right) \tag{1.32}
\end{equation*}
$$

for some q_{p} and $k>0$.
(2) Either $\operatorname{rank} L \geq l\left(A(L)_{p}\right)+2$, or

$$
\begin{equation*}
q(L)_{2} \cong q_{2} \oplus q_{2}^{\prime} \tag{1.33}
\end{equation*}
$$

for some q_{2} and q_{2}^{\prime}, where q_{2}^{\prime} is one of the following:

$$
\begin{align*}
& u^{(2)}\left(2^{k}\right), \quad k>0, \tag{1.34}\\
& v^{(2)}\left(2^{k}\right), \quad k>0 \tag{1.35}\\
& q_{\varepsilon_{1}}^{(2)}\left(2^{k}\right) \oplus q_{\varepsilon_{2}}^{(2)}\left(2^{k}\right), \quad \varepsilon_{i} \in \mathbb{Z}_{2}^{\times}, k>0 \tag{1.36}
\end{align*}
$$

(3) We have $\operatorname{sign} L=\operatorname{sign} L^{\prime}$ and $q(L) \cong q\left(L^{\prime}\right)$.

Then L is isomorphic to L^{\prime}.
We use the following facts in Section 7.
Theorem 1.8 ([21, Theorem 1.14.2]). Let L be an indefinite even lattice of rank ≥ 3. If the following conditions are satisfied, $\overline{\mathrm{O}(L)}=\mathrm{O}(q(L))$.
(1) For each $p \neq 2, \operatorname{rank} L \geq l\left(A(L)_{p}\right)+2$.
(2) Either $\operatorname{rank} L \geq l\left(A(L)_{p}\right)+2$, or

$$
\begin{equation*}
q(L)_{2} \cong q_{2} \oplus u^{(2)}(2) \text { or } q_{2} \oplus v^{(2)}(2) \tag{1.37}
\end{equation*}
$$

for some q_{2}.
Remark 1.9. The conditions of Theorem 1.8 are stronger than those of Theorem 1.7.

Theorem 1.10 ([21, Theorem 1.9.5]). If $L^{(p)}$ is a nondegenerate even lattice over \mathbb{Z}_{p}, we have $\overline{\mathrm{O}\left(L^{(p)}\right)}=\mathrm{O}\left(q\left(L^{(p)}\right)\right)$.

§2. Finite symplectic actions on the $K 3$ lattice Λ

A compact complex surface X is called a $K 3$ surface if it is simply connected and has a nowhere vanishing holomorphic 2 -form ω_{X}.

Definition 2.1. For a $K 3$ surface X, an automorphism g of X is said to be symplectic if $g^{*} \omega_{X}=\omega_{X}$.

We study faithful and symplectic actions of finite groups on $K 3$ surfaces.
Notation 2.2. We use a Fraktur letter (e.g., \mathfrak{G}) for an abstract group, and we use a Latin letter (e.g., G) for a group with an action on an object (a lattice, a finite set, etc.). The abstract group structure of G is denoted by $[G]$.

Definition 2.3. We denote by $\mathfrak{G}_{K 3}^{\text {symp }}$ the set of finite abstract groups $\mathfrak{G} \neq 1$ which can be realized as faithful and symplectic actions of groups on $K 3$ surfaces.

Mukai [18] determined $\mathfrak{G}_{K 3}^{\text {symp }}$ by listing the eleven maximal groups in $\mathfrak{G}_{K 3}^{\text {symp }}$.

Theorem 2.4 ([18, Theorem 0.6]). A finite abstract group $\mathfrak{G} \neq 1$ is an element in $\mathfrak{G}_{K 3}^{\text {symp }}$ if and only if \mathfrak{G} is a subgroup of the following 11 groups:

$$
T_{48}, N_{72}, M_{9}, \mathfrak{S}_{5}, L_{2}(7), H_{192}, T_{192}, \mathfrak{A}_{4,4}, \mathfrak{A}_{6}, F_{384}, M_{20}
$$

There are exactly 79 groups in $\mathfrak{G}_{K 3}^{\text {symp }}$. See Table 10.2 for all elements in $\mathfrak{G}_{K 3}^{\text {symp }}$. We use Xiao's notation (see [29]).

For a $K 3$ surface X, the second integral cohomology group $H^{2}(X, \mathbb{Z})$ with its intersection form is isomorphic to the $K 3$ lattice Λ defined by

$$
\Lambda=\left(\begin{array}{ll}
0 & 1 \tag{2.1}\\
1 & 0
\end{array}\right)^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}
$$

which is the unique even unimodular lattice of signature $(3,19)$ up to isomorphism (see Theorem 1.7; see also [26]). Here E_{8} is the root lattice of type E_{8}. The Néron-Severi group $\mathrm{NS}(X)$ of X is considered as a sublattice of $H^{2}(X, \mathbb{Z})$. If a group G acts on X, the action of G induces a left action on $H^{2}(X, \mathbb{Z})$ by

$$
\begin{equation*}
g \cdot v=\left(g^{-1}\right)^{*} v, \quad g \in G, v \in H^{2}(X, \mathbb{Z}) \tag{2.2}
\end{equation*}
$$

Note that if the action of G is faithful, so is the induced action of G on $H^{2}(X, \mathbb{Z})$ by the global Torelli theorem (see [24], [3], [1]). Hence, if we take an isomorphism $\alpha: H^{2}(X, \mathbb{Z}) \rightarrow \Lambda$, the action of G on X induces a subgroup $\alpha \circ G \circ \alpha^{-1} \subset \mathrm{O}(\Lambda)$, which is isomorphic to G as an abstract group.

We define the notion of finite symplectic actions on the K3 lattice.
Definition 2.5. A finite subgroup $G \neq 1$ of $\mathrm{O}(\Lambda)$ is called a finite symplectic action on the $K 3$ lattice Λ if the following conditions are satisfied:
(1) Λ_{G} is negative definite;
(2) $\langle v, v\rangle \neq-2$ for all $v \in \Lambda_{G}$.

We denote the set of finite symplectic actions on the $K 3$ lattices Λ by \mathcal{L}. Note that the finiteness of G follows from condition (1).

Definition 2.5 is justified due to the following.
Proposition 2.6 ([20, Lemma 4.2, Theorem 4.3]). If a finite group G acts on a K3 surface X faithfully and symplectically, then $H^{2}(X, \mathbb{Z})_{G} \subset \mathrm{NS}(X)$ and the induced subgroup of $\mathrm{O}(\Lambda)$ is an element in \mathcal{L}. Conversely, any element in \mathcal{L} is induced by a symplectic action of a finite group on a $K 3$ surface.

A $K 3$ surface which admits a symplectic action of a finite group is characterized by coinvariant lattices Λ_{G} of $G \in \mathcal{L}$.

Proposition 2.7 ([20, Theorem 4.15]). Let $\mathfrak{G} \in \mathfrak{G}_{K 3}^{\text {symp }}$. A K3 surface X admits a symplectic action of \mathfrak{G} if and only if there exists a primitive embedding $\Lambda_{G} \hookrightarrow \mathrm{NS}(X)$ for some $G \in \mathcal{L}$ such that $[G]=\mathfrak{G}$.

Now we consider extensions of symplectic actions.
Proposition 2.8. Suppose that a finite group G acts on a $K 3$ surface X faithfully and symplectically. Then the action of G on X is extended to a faithful and symplectic action of $G^{\prime}:=\mathrm{O}_{0}\left(H^{2}(X, \mathbb{Z})_{G}\right)$.

Proof (see [20]). By Lemma 1.3(1), the action of G on $H^{2}(X, \mathbb{Z})$ is extended to that of G^{\prime} such that

$$
\begin{equation*}
H^{2}(X, \mathbb{Z})^{G}=H^{2}(X, \mathbb{Z})^{G^{\prime}} \tag{2.3}
\end{equation*}
$$

By the definition of a symplectic action, we have $\omega_{X} \in H^{2}(X, \mathbb{C})^{G}$. Since G is a finite group, there exists a G-invariant Kähler $(1,1)$-form $\kappa \in H^{2}(X, \mathbb{R})^{G}$. By (2.3), the action of G^{\prime} also fixes ω_{X} and κ. By the global Torelli theorem for $K 3$ surfaces, the action of G^{\prime} on $H^{2}(X, \mathbb{Z})$ is induced by that on X. Since the action of G^{\prime} fixes ω_{X}, the action of G^{\prime} on X is symplectic.

Definition 2.9. For $G \in \mathcal{L}$, we define $\operatorname{Clos}(G)$ by

$$
\begin{equation*}
\operatorname{Clos}(G)=\mathrm{O}_{0}\left(\Lambda_{G}\right) \tag{2.4}
\end{equation*}
$$

By Lemma 1.3(1), the action of G on Λ is extended to that of $\operatorname{Clos}(G)$ such that $\Lambda_{G}=\Lambda_{\operatorname{Clos}(G)}$, and $\operatorname{Clos}(G)$ is considered as an element in \mathcal{L} (see Definition 2.5). We define the subset $\mathcal{L}_{\text {clos }}$ of \mathcal{L} by

$$
\begin{equation*}
\mathcal{L}_{\text {clos }}=\{G \in \mathcal{L} \mid \operatorname{Clos}(G)=G\} . \tag{2.5}
\end{equation*}
$$

By the following proposition, $\operatorname{rank} \Lambda_{G}$ depends only on the structure of G as an abstract group.

Proposition 2.10 ([20, Proposition 7.1], [18, Proposition 1.2]). Let g be an element in $\mathrm{O}(\Lambda)$ such that the group $\langle g\rangle$ generated by g is an element in \mathcal{L}. Then $\operatorname{ord}(g) \leq 8$ and $\operatorname{Tr}(g ; \Lambda)=\chi(g)-2$, where

$$
\begin{equation*}
\chi(g)=24,8,6,4,4,2,3,2 \quad \text { if } \operatorname{ord}(g)=1,2,3,4,5,6,7,8 \tag{2.6}
\end{equation*}
$$

Hence, for $G \in \mathcal{L}$,

$$
\begin{equation*}
\operatorname{rank} \Lambda_{G}=c(G):=24-\frac{1}{|G|} \sum_{g \in G} \chi(g) \tag{2.7}
\end{equation*}
$$

In particular, $c(G)=c(\operatorname{Clos}(G))$.

§3. Embeddings of Λ_{G} into Niemeier lattices

In this paper, a Niemeier lattice is a negative definite even unimodular lattice of rank 24 which is not isomorphic to the negative Leech lattice. Here the negative Leech lattice is the unique negative definite even unimodular lattice of rank 24 which has no vector v such that $\langle v, v\rangle=-2$ (see [5]). In this section, we study primitive embeddings of Λ_{G} into Niemeier lattices.

Definition 3.1. Let \mathcal{N} denote the set of isomorphism classes of G lattices (G, N) which satisfy the following conditions:
(1) $G \neq 1$ and N is a Niemeier lattice;
(2) there exists a vector $v \in N^{G}$ such that $\langle v, v\rangle=-2$;
(3) there exists no vector $v \in N_{G}$ such that $\langle v, v\rangle=-2$;
(4) there exists a primitive embedding $N_{G} \hookrightarrow \Lambda$.

Lemma 3.2 ([15, Lemma 5]). For any $G \in \mathcal{L},\left(G, \Lambda_{G}\right) \cong\left(G^{\prime}, N_{G^{\prime}}\right)$ for some $\left(G^{\prime}, N\right) \in \mathcal{N}$. Conversely, if $\left(G^{\prime}, N\right) \in \mathcal{N}$, then there exists an element $G \in \mathcal{L}$ such that $\left(G, \Lambda_{G}\right) \cong\left(G^{\prime}, N_{G^{\prime}}\right)$.

Remark 3.3. In Lemma 3.2, we write $\left(G, \Lambda_{G}\right)$ instead of $\left(\left.G\right|_{\Lambda_{G}}, \Lambda_{G}\right)$ (see Definition 1.1). We use the same notation in what follows.

Remark 3.4. Lemma 3.2 is a direct consequence of Nikulin's work (see [20], [21]). Moreover, Nikulin pointed out that lattices such as Λ_{G} ("Leechtype" lattices) can be classified by embedding them into even unimodular lattices (the latter part of [20, Section 1.14]).

By Lemma 3.2, the study of $\left(G, \Lambda_{G}\right)$ for $G \in \mathcal{L}$ is reduced to that of \mathcal{N}. In the following sections, we present how to make a complete list of \mathcal{N}. Some consequences from the list are given in Section 3.4.

3.1. Some facts on Niemeier lattices

The following theorem is standard.
Theorem 3.5 (see [5, Chapter 16]). There exist exactly 23 isomorphism classes of Niemeier lattices. The isomorphism class of a Niemeier lattice N is determined by the root sublattice of N, whose type is given in Table 10.1. Here the root sublattice of N is the sublattice generated by vectors $v \in N$ such that $\langle v, v\rangle=-2$.

Let N be a Niemeier lattice. A vector $d \in N$ is called a root if $\langle d, d\rangle=-2$. Let Δ denote the set of roots of N. A Weyl chamber \mathcal{C} is a connected component of $N \otimes \mathbb{R}-\bigcup_{d \in \Delta} d^{\perp}$. The set of positive roots Δ^{+}corresponding to \mathcal{C} is defined by

$$
\begin{equation*}
\Delta^{+}=\left\{d \in \Delta \mid\langle d, \mathcal{C}\rangle \subset \mathbb{R}_{>0}\right\} \tag{3.1}
\end{equation*}
$$

We have $\Delta=\Delta^{+} \sqcup-\Delta^{+}$. The set of simple roots $R\left(N, \Delta^{+}\right)$corresponding to Δ^{+}is the set of positive roots $d \in \Delta^{+}$such that there exists no decomposition $d=d_{1}+d_{2}$ with $d_{i} \in \Delta^{+}$. It is known that $R\left(N, \Delta^{+}\right)$becomes a Dynkin diagram of rank 24. The automorphism group of the Dynkin diagram $R\left(N, \Delta^{+}\right)$is denoted by $\operatorname{Aut}\left(R\left(N, \Delta^{+}\right)\right.$. Let $W(N)$ denote the subgroup of $\mathrm{O}(N)$ generated by reflections of $d \in \Delta$. The action of $W(N)$ on the set of Weyl chambers is free and transitive. The group $\mathrm{O}\left(N, \Delta^{+}\right)$ (see (1.2)) is considered as a subgroup of $\operatorname{Aut}\left(R\left(N, \Delta^{+}\right)\right)$. We have $\mathrm{O}(N)=$ $W \rtimes \mathrm{O}\left(N, \Delta^{+}\right)$.

3.2. Method for making the list of \mathcal{N}

We use the above result to construct a complete list of \mathcal{N}. For the proof of the following lemma, see [15].

Lemma 3.6 ([15, Lemma 6]). Let N be a Niemeier lattice, and let G be a subgroup of $\mathrm{O}(N)$. Then Definition 3.1(3) is satisfied if and only if there exists a G-invariant set of positive roots.

Let N_{1}, \ldots, N_{23} be all Niemeier lattices, and let Δ_{i}^{+}be a set of positive roots of N_{i}. Let $G \subset \mathrm{O}\left(N_{i}\right)$ be a subgroup satisfying Definition 3.1(3). By Lemma 3.6, we may assume that G preserves Δ_{i}^{+}by replacing G by $\gamma G \gamma^{-1}$ for some $\gamma \in W\left(N_{i}\right)$ if necessary. Hence, we may only consider subgroups of $\mathrm{O}\left(N_{i}, \Delta_{i}^{+}\right)$. Using GAP [12], we can make a complete list of subgroups $G_{i 1}, \ldots, G_{i j_{i}}$ of $\mathrm{O}\left(N_{i}, \Delta_{i}^{+}\right)$such that $\left[G_{i j}\right] \in \mathfrak{G}_{K 3}^{\text {symp }}$ up to conjugacy.* Since $\mathrm{O}\left(N_{i}, \Delta_{i}^{+}\right)$is realized as a subgroup of $\operatorname{Aut}\left(R\left(N_{i}, \Delta_{i}^{+}\right)\right)$, so is $G_{i j}$. To decide whether $\left(G_{i j}, N_{i}\right) \in \mathcal{N}$, we should check conditions (2)-(4) in Definition 3.1 for $\left(G_{i j}, N_{i}\right)$.

Condition (2) can be checked directly. For example, if N_{i} is of type $A_{1}^{\oplus 24}$, condition (2) is equivalent to the existence of a $G_{i j}$-fixed element in $R\left(N_{i}, \Delta_{i}^{+}\right)$. By Lemma 3.6, condition (3) is already satisfied.

To confirm condition (4), it is sufficient to show that there exists an even lattice L such that

$$
\begin{equation*}
\operatorname{sign} L=\left(3,19-c\left(G_{i j}\right)\right), \quad q(L) \cong-q\left(N_{G_{i j}}\right) \tag{3.2}
\end{equation*}
$$

by Lemma 1.2 and Proposition 2.10. We can compute the Gramian matrix of $N^{G_{i j}}$ by using the orbit decomposition of $R\left(N_{i}, \Delta_{i}^{+}\right)$which is obtained from the list of $\left(G_{i j}, N_{i}\right)$. From the Gramian matrix of $N^{G_{i j}}$, we can determine $A\left(N^{G_{i j}}\right)$ and $q\left(N^{G_{i j}}\right)$ (see Section 1$)$. Since $q\left(N_{G_{i j}}\right) \cong-q\left(N^{G_{i j}}\right)$ by Lemma 1.2, we obtain the list of $q\left(N_{G_{i j}}\right)$. From the list, we have the following.

Lemma 3.7. For $\left(G_{i j}, N_{i}\right)$ satisfying Definition 3.1(2), condition (4) is equivalent to the inequality

$$
\begin{equation*}
l\left(A\left(N^{G_{i j}}\right)\right) \leq 22-c\left(G_{i j}\right)=\operatorname{rank} N^{G_{i j}}-2 \tag{3.3}
\end{equation*}
$$

Here $l(A)$ denotes the minimum number of generators of a finite abelian group A.

[^1]Proof. For each case satisfying inequality (3.3), we can find a lattice L satisfying (3.2). (See Tables 10.2 and 10.3 for $q\left(N_{G_{i j}}\right)$ and L in each case, respectively.) Conversely, the existence of L implies that

$$
\begin{equation*}
l\left(A\left(N^{G_{i j}}\right)\right)=l\left(A\left(N_{G_{i j}}\right)\right)=l(A(L)) \leq \operatorname{rank} L=22-c\left(G_{i j}\right) \tag{3.4}
\end{equation*}
$$

by Lemma 1.2 and (1.31).
By the above argument, the set which consists of $\left(G_{i j}, N_{i}\right)$ satisfying Definition 3.2(2) and the inequality (3.3) becomes a complete list of \mathcal{N}.

3.3. Example

We consider the case of the cyclic group C_{8} of order 8 as an example. We make the list of $(G, N) \in \mathcal{N}$ with $[G]=C_{8}$. Since $c\left(C_{8}\right)=18$, we have $\operatorname{rank} N_{G}=18$ and $\operatorname{rank} N^{G}=6$. Using GAP [12], we can make a complete list of subgroups $G \subset \mathrm{O}\left(N, \Delta^{+}\right)$such that $[G]=C_{8}$ up to conjugacy for each Niemeier lattice N. The result is as follows.

Case	(I)	(II)	(III)	(IV)	(V)	(VI)
Root type of N	$E_{6}^{\oplus 4}$	$A_{5}^{\oplus 4} \oplus D_{4}$	$A_{3}^{\oplus 8}$	$A_{2}^{\oplus 12}$	$A_{2}^{\oplus 12}$	$A_{1}^{\oplus{ }^{\oplus 4}}$
Number of stable						
components of $R\left(N, \Delta^{+}\right)$	0	1	0	2	0	2
$(G, N) \in \mathcal{N} ?$	No	Yes	No	Yes	No	Yes

If Definition 3.1(2) holds, then at least one component of the Dynkin diagram $R\left(N, \Delta^{+}\right)$is stable under the action of G. In the case (I), the action of G as a permutation group of the components E_{6} of $R\left(N, \Delta^{+}\right)$is transitive. Therefore, we have $(G, N) \notin \mathcal{N}$ in the case (I). Similarly, we have $(G, N) \notin \mathcal{N}$ in the cases (III) and (V). In fact, we have $(G, N) \in \mathcal{N}$ in the cases (II), (IV), and (VI), as we will see below. Let g be a generator of G.

The case (II). There exists a numbering of $R\left(N, \Delta^{+}\right)=\left\{v_{1}, \ldots, v_{24}\right\}$ as in Figure 1 such that

$$
\begin{equation*}
g \cdot v_{i}=v_{\sigma(i)} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{align*}
\sigma= & (1,6,11,16,5,10,15,20)(2,7,12,17,4,9,14,19) \\
& (3,8,13,18)(23,24) . \tag{3.6}
\end{align*}
$$

Figure 1: $A_{5}^{\oplus 4} \oplus D_{4}$

Hence, $N^{G} \otimes \mathbb{Q}$ is generated by

$$
\begin{align*}
& w_{1}=\sum_{i=0}^{3}\left(v_{1+5 i}+v_{5+5 i}\right), \quad w_{2}=\sum_{i=0}^{3}\left(v_{2+5 i}+v_{4+5 i}\right) \\
& w_{3}=\sum_{i=0}^{3} v_{3+5 i}, \quad w_{4}=v_{21}, \quad w_{5}=v_{22}, \quad w_{6}=v_{23}+v_{24} \tag{3.7}
\end{align*}
$$

over \mathbb{Q}. From the explicit description of $G \subset \mathrm{O}\left(N, \Delta^{+}\right)$, we find that N^{G} is generated by the above vectors and $\left(w_{1}+w_{3}\right) / 2$ over \mathbb{Z}. Therefore,

$$
\begin{equation*}
w_{1}, w_{2},\left(w_{1}+w_{3}\right) / 2, w_{4}, w_{5}, w_{6} \tag{3.8}
\end{equation*}
$$

form a basis of N^{G} over \mathbb{Z}. The Gramian matrix of N^{G} under the basis (3.8) is

$$
\left(\begin{array}{cccccc}
-16 & 8 & 0 & 0 & 0 & 0 \tag{3.9}\\
8 & -16 & 8 & 0 & 0 & 0 \\
0 & 8 & -8 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 1 & 0 \\
0 & 0 & 0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0 & 2 & -4
\end{array}\right)
$$

We can determine $A\left(N^{G}\right)$ and $q\left(N^{G}\right)$ from (3.9) is (see Section 1):

$$
\begin{equation*}
A\left(N^{G}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \oplus(\mathbb{Z} / 8 \mathbb{Z})^{\oplus 2} \tag{3.10}
\end{equation*}
$$

Figure 2: $A_{2}^{\oplus 12}$

$$
q\left(N^{G}\right) \cong\langle 1 / 2\rangle \oplus\langle 1 / 4\rangle \oplus\left(\begin{array}{cc}
0 & 1 / 8 \tag{3.11}\\
1 / 8 & 0
\end{array}\right)
$$

Since $q\left(N_{G}\right) \cong-q\left(N^{G}\right)$ by Lemma 1.2, we have

$$
q\left(N_{G}\right) \cong\langle-1 / 2\rangle \oplus\langle-1 / 4\rangle \oplus\left(\begin{array}{cc}
0 & 1 / 8 \tag{3.12}\\
1 / 8 & 0
\end{array}\right)
$$

The case (IV). Similarly, there exists a numbering of $R\left(N, \Delta^{+}\right)$as in Figure 2 such that $g \cdot v_{i}=v_{\sigma(i)}$, where

$$
\sigma=(3,4)(5,7,6,8)(9,11,13,15,17,19,21,23)
$$

$$
\begin{equation*}
(10,12,14,16,18,20,22,24) . \tag{3.13}
\end{equation*}
$$

Moreover, $N^{G} \otimes \mathbb{Q}$ is generated by

$$
\begin{equation*}
w_{1}=v_{1}, \quad w_{2}=v_{2}, \quad w_{3}=v_{3}+v_{4}, \quad w_{4}=\sum_{i=5}^{8} v_{i} \tag{3.14}
\end{equation*}
$$

$$
w_{5}=\sum_{i=0}^{7} v_{9+2 i}, \quad w_{6}=\sum_{i=0}^{7} v_{10+2 i}
$$

over \mathbb{Q}, and N^{G} is generated by

$$
\begin{equation*}
w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, \frac{1}{3}\left(w_{1}-w_{2}+w_{5}-w_{6}\right) \tag{3.15}
\end{equation*}
$$

Figure 3: $A_{1}^{\oplus 24}$
over \mathbb{Z}. The Gramian matrix of N^{G} under the basis (3.15) is

$$
\left(\begin{array}{cccccc}
-2 & 1 & 0 & 0 & 0 & -1 \tag{3.16}\\
1 & -2 & 0 & 0 & 0 & 1 \\
0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & -16 & -8 \\
-1 & 1 & 0 & 0 & -8 & -6
\end{array}\right)
$$

From (3.16), we can check that $q\left(N_{G}\right)$ is isomorphic to (3.12).
The case (VI). There exists a numbering of $R\left(N, \Delta^{+}\right)$as in Figure 3 such that $g \cdot v_{i}=v_{\sigma(i)}$, where

$$
\begin{equation*}
\sigma=(3,4)(5,6,7,8)(9,10,11,12,13,14,15,16) \tag{3.17}
\end{equation*}
$$

$(17,18,19,20,21,22,23,24)$.

Moreover, $N^{G} \otimes \mathbb{Q}$ is generated by

$$
\begin{align*}
& w_{1}=v_{1}, \quad w_{2}=v_{2}, \quad w_{3}=\sum_{i=3}^{4} v_{i}, \quad w_{4}=\sum_{i=5}^{8} v_{i} \tag{3.18}\\
& w_{5}=\sum_{i=9}^{16} v_{i}, \quad w_{6}=\sum_{i=17}^{24} v_{i}
\end{align*}
$$

over \mathbb{Q}, and N^{G} is generated by

$$
\begin{equation*}
w_{1}, w_{2}, w_{3}, \frac{1}{2}\left(w_{1}+w_{2}+w_{3}+w_{4}\right), \frac{1}{2}\left(w_{4}+w_{5}\right), \frac{1}{2}\left(w_{4}+w_{6}\right) \tag{3.19}
\end{equation*}
$$

over \mathbb{Z}. The Gramian matrix of N^{G} under the basis (3.19) is

$$
\left(\begin{array}{cccccc}
-2 & 0 & 0 & -1 & 0 & 0 \tag{3.20}\\
0 & -2 & 0 & -1 & 0 & 0 \\
0 & 0 & -4 & -2 & 0 & 0 \\
-1 & -1 & -2 & -4 & -2 & -2 \\
0 & 0 & 0 & -2 & -6 & -2 \\
0 & 0 & 0 & -2 & -2 & -6
\end{array}\right)
$$

From (3.20), we can check that $q\left(N_{G}\right)$ is isomorphic to (3.12).
The type of the root sublattice of N^{G}, that is, the sublattice generated by vectors $v \in N^{G}$ such that $\langle v, v\rangle=-2$, in each case is as follows:

$$
\begin{array}{c|ccc}
\text { Case } & (\mathrm{II}) & (\mathrm{IV}) \quad(\mathrm{VI}) \tag{3.21}\\
\hline \text { Root type } & A_{3} & A_{1} \oplus A_{2} A_{1}^{\oplus 2}
\end{array}
$$

Hence, Definition 3.1(2) is satisfied. Condition (3) is satisfied by Lemma 3.6. By the above argument, we have

$$
q\left(N_{G}\right) \cong\langle-1 / 2\rangle \oplus\langle-1 / 4\rangle \oplus\left(\begin{array}{cc}
0 & 1 / 8 \tag{3.22}\\
1 / 8 & 0
\end{array}\right)
$$

in each case. Let L be a lattice defined by

$$
L=\langle 2\rangle \oplus\langle 4\rangle \oplus\left(\begin{array}{ll}
0 & 8 \tag{3.23}\\
8 & 0
\end{array}\right)
$$

Then we have $\operatorname{sign} L=(3,1)$ and $q(L) \cong-q\left(N_{G}\right)$. By Lemma 1.2, there exists a primitive embedding $N_{G} \hookrightarrow \Lambda$ such that $\left(N_{G}\right)_{\Lambda}^{\perp} \cong L$. Thus, condition (4) is satisfied. Therefore, we have $(G, N) \in \mathcal{N}$ in the cases (II), (IV), and (VI).

3.4. Consequences from the list of \mathcal{N}

Let \mathcal{Q} denote a set defined by

$$
\begin{equation*}
\mathcal{Q}=\left\{(\mathfrak{G}, q) \mid \exists G \in \mathcal{L} \text { such that } \mathfrak{G}=[G], q \cong q\left(\Lambda_{G}\right)\right\} \tag{3.24}
\end{equation*}
$$

By Lemma 3.2, we have

$$
\begin{equation*}
\mathcal{Q}=\left\{(\mathfrak{G}, q) \mid \exists(G, N) \in \mathcal{N} \text { such that } \mathfrak{G}=[G], q \cong q\left(N_{G}\right)\right\} \tag{3.25}
\end{equation*}
$$

We introduce an equivalence relation \sim on \mathcal{Q} by

$$
\begin{equation*}
(\mathfrak{G}, q) \sim\left(\mathfrak{G}^{\prime}, q^{\prime}\right) \Leftrightarrow \mathfrak{G}=\mathfrak{G}^{\prime} \quad \text { and } \quad q \cong q^{\prime} \tag{3.26}
\end{equation*}
$$

By (3.25) and the list of $q\left(\left(N_{i}\right)^{G_{i j}}\right)$ for $\left(G_{i j}, N_{i}\right) \in \mathcal{N}$, we have the following.
Proposition 3.8. For $\mathfrak{G} \in \mathfrak{G}_{K 3}^{\text {symp }}$, we have

$$
\sharp(\{q \mid(\mathfrak{G}, q) \in \mathcal{Q}\} / \text { isom })= \begin{cases}1 & \text { if } \mathfrak{G} \neq Q_{8}, T_{24}, \tag{3.27}\\ 2 & \text { if } \mathfrak{G}=Q_{8}, T_{24} .\end{cases}
$$

Remark 3.9. From Xiao's list (see [29]), we have $\sharp \mathfrak{G}_{K 3}^{\text {symp }}=79$. By the above proposition, $\sharp(\mathcal{Q} / \sim)=81$. In Table 10.2, we list a complete representative $\left\{\left(\mathfrak{G}_{n}, q_{n}\right)\right\}$ of \mathcal{Q} / \sim. Our numbering coincides with that in [29].

By (3.25), we have the natural map

$$
\begin{equation*}
\pi: \mathcal{N} \rightarrow \mathcal{Q} ; \quad(G, N) \mapsto\left([G], q\left(N_{G}\right)\right) \tag{3.28}
\end{equation*}
$$

In Table 10.6, the type of the root sublattice of N^{G} for each $(G, N) \in \mathcal{N}$ is given. From the table, we have the following.

Proposition 3.10. Let \mathcal{Q}° denote the subset of \mathcal{Q} defined by

$$
\begin{equation*}
\mathcal{Q}^{\circ}=\left\{(\mathfrak{G}, q) \in \mathcal{Q} \mid \mathfrak{G} \neq \mathfrak{G}_{58}\right\} \tag{3.29}
\end{equation*}
$$

There exists a section $\sigma: \mathcal{Q}^{\circ} \rightarrow \pi^{-1}\left(\mathcal{Q}^{\circ}\right)$ of π with the following conditions. We set $\mathcal{N}^{\prime}=\sigma\left(\mathcal{Q}^{\circ}\right)$.
(1) $\operatorname{Let}(G, N) \in \mathcal{N}$, and let $\left(G^{\prime}, N^{\prime}\right) \in \mathcal{N}^{\prime}$. If $\pi(G, N)=\pi\left(G^{\prime}, N^{\prime}\right)$ and $N^{G} \cong$ $\left(N^{\prime}\right)^{G^{\prime}}$, then $(G, N) \cong\left(G^{\prime}, N^{\prime}\right)$.
(2) Let $(G, N) \in \mathcal{N}^{\prime}$. If $[G] \neq \mathfrak{G}_{3}$, then N is of type $A_{1}^{\oplus 24}$.

Proof. For each $(\mathfrak{G}, q) \in \mathcal{Q}^{\circ}$, we can choose $\sigma(\mathfrak{G}, q) \in \mathcal{N}$ case by case. For example, we consider the case of $C_{8}=\mathfrak{G}_{14}$ (see Section 3.3). By the table (3.21), the root types of N^{G} for $(G, N) \in \mathcal{N}$ with $[G]=C_{8}$ are different from each other. Therefore, N^{G} are not isomorphic to each other. Hence, we can choose (G, N) of the case (VI), in which N is of type $A_{1}^{\oplus 24}$, as $\sigma\left(\mathfrak{G}_{14}, q_{14}\right)$. Similarly, for $(G, N) \in \mathcal{N}$ with $\pi(G, N)=\left(\mathfrak{G}_{n}, q_{n}\right)$, the isomorphism classes of N^{G} can be distinguished by looking at the root types except for the cases $n=32,41,56,63$. For the cases $n=32,41,56,63$, we can distinguish them by looking at the root types and the numbers of vectors $v \in N^{G}$ such that $\langle v, v\rangle=-4$ or -6 . As a consequence, we can choose (G, N) enclosed by boxes in Table 10.6. The choice of σ is not unique.

§4. Uniqueness of coinvariant lattices Λ_{G}

Let \mathcal{S} denote a set of G-lattices defined by

$$
\begin{equation*}
\mathcal{S}=\left\{(G, S) \mid \exists G^{\prime} \in \mathcal{L} \text { such that }(G, S) \cong\left(G^{\prime}, \Lambda_{G^{\prime}}\right)\right\} . \tag{4.1}
\end{equation*}
$$

For $(G, S) \in \mathcal{S}$, we have $G \subset \mathrm{O}_{0}(S)$ by Lemma $1.3(3)$. In this section, we apply the results in the previous section to prove the following.

Theorem 4.1. The natural map $\varphi: \mathcal{S} /$ isom $\rightarrow \mathcal{Q} / \sim$ is bijective.
Proof. The surjectivity of φ is trivial. We will show the injectivity. Let $(\mathfrak{G}, q) \in \mathcal{Q}$. Suppose that $(G, S) \in \mathcal{S},[G]=\mathfrak{G}$ and $q(S) \cong q$. We show that (G, S) is uniquely determined up to isomorphism.
(1) The case $\mathfrak{G} \neq \mathfrak{G}_{58}$. By Proposition 3.10, there exists an element $(\Gamma, N) \in \mathcal{N}^{\prime}$ such that $[\Gamma]=\mathfrak{G}$ and $q\left(N_{\Gamma}\right) \cong q$. We show that $(G, S) \cong$ $\left(\Gamma, N_{\Gamma}\right)$. By Lemma 1.2, $q(S) \cong q \cong q\left(N_{\Gamma}\right) \cong-q\left(N^{\Gamma}\right)$. Again by Lemma 1.2, there exists a primitive embedding $S \hookrightarrow N^{\prime}$ of S into a Niemeier lattice N^{\prime} such that $(S)_{N^{\prime}}^{\perp} \cong N^{\Gamma}$. By Lemma 1.3, the action of G on S is extended to that on N^{\prime} such that $\left(N^{\prime}\right)_{G}=S$ and $\left(N^{\prime}\right)^{G} \cong N^{\Gamma}$. Thus, $\left(G, N^{\prime}\right) \in \mathcal{N}$ (see Definition 3.1). By Proposition 3.10, we have $\left(G, N^{\prime}\right) \cong(\Gamma, N)$. Hence, $(G, S)=\left(G,\left(N^{\prime}\right)_{G}\right) \cong\left(\Gamma, N_{\Gamma}\right)$.
(2) The case $\mathfrak{G}=\mathfrak{G}_{58}$. From Table 10.4, we find that $\mathfrak{G}_{43} \subsetneq \mathfrak{G}_{58}$ and $c\left(\mathfrak{G}_{43}\right)=c\left(\mathfrak{G}_{58}\right)$. Hence, there exists a subgroup G_{43}^{\prime} of G such that $\left[G_{43}^{\prime}\right]=$ \mathfrak{G}_{43}. Since $c\left(\mathfrak{G}_{43}\right)=c\left(\mathfrak{G}_{58}\right)$, we have $\left(G_{43}^{\prime}, S\right) \in \mathcal{S}$. Let $G_{43} \in \mathcal{L}$ be as in Lemma 8.7. By (1) and Proposition 3.8, $\left(G^{\prime}, S^{\prime}\right) \in \mathcal{S}$ such that $\left[G^{\prime}\right]=\mathfrak{G}_{43}$ is unique up to isomorphism. Therefore, we have $\left(G_{43}^{\prime}, S\right) \cong\left(G_{43}, \Lambda_{G_{43}}\right)$. By Lemma 8.7(2), there exists a unique subgroup G_{58} of $\mathrm{O}_{0}\left(\Lambda_{G_{48}}\right)$ such that $\left[G_{58}\right]=\mathfrak{G}_{58}$ up to conjugacy in $\mathrm{O}\left(\Lambda_{G_{48}}\right)$. Hence, $(G, S) \cong\left(G_{58}, \Lambda_{G_{43}}\right)$.

Definition 4.2. Let $(\mathfrak{G}, q) \in \mathcal{Q}$. By Theorem 4.1, there exists a unique element $(G, S) \in \mathcal{S}$ such that $([G], q(S)) \sim(\mathfrak{G}, q)$; that is, $[G]=\mathfrak{G}$ and $q(S) \cong$ q up to isomorphism. The lattice S determined by this condition is denoted by $S(\mathfrak{G}, q)$. Since $G \subset \mathrm{O}_{0}(S), \mathfrak{G}$ is a subgroup of $\left[\mathrm{O}_{0}(S(\mathfrak{G}, q))\right]$.

By the definition of $S(\mathfrak{G}, q)$, we have

$$
\begin{equation*}
\Lambda_{G} \cong S\left([G], q\left(\Lambda_{G}\right)\right) \tag{4.2}
\end{equation*}
$$

for $G \in \mathcal{L}$.
Corollary 4.3. Let $(\mathfrak{G}, q),\left(\mathfrak{G}^{\prime}, q^{\prime}\right) \in \mathcal{Q}$. If $\mathfrak{G} \subset \mathfrak{G}^{\prime}, q \cong q^{\prime}$, and $c(\mathfrak{G})=$ $c\left(\mathfrak{G}^{\prime}\right)$, then $S(\mathfrak{G}, q) \cong S\left(\mathfrak{G}^{\prime}, q^{\prime}\right)$.

Proof. Let $G^{\prime} \in \mathcal{L}$ such that $\left[G^{\prime}\right]=\mathfrak{G}^{\prime}$ and $q\left(\Lambda_{G^{\prime}}\right) \cong q^{\prime}$. Then $\Lambda_{G^{\prime}} \cong$ $S\left(\mathfrak{G}^{\prime}, q^{\prime}\right)$. Let G be the subgroup of G^{\prime} which corresponds to the subgroup \mathfrak{G} of \mathfrak{G}^{\prime}. Since $c(G)=c\left(G^{\prime}\right)$, we have $S(\mathfrak{G}, q) \cong \Lambda_{G}=\Lambda_{G^{\prime}} \cong S\left(\mathfrak{G}^{\prime}, q^{\prime}\right)$.

Remark 4.4. In Table 10.4, we give the trees of

$$
\begin{equation*}
T_{S}=\left\{\mathfrak{G}_{n} \mid S\left(\mathfrak{G}_{n}, q_{n}\right) \cong S\right\} \tag{4.3}
\end{equation*}
$$

for T_{S} with $\sharp T_{S} \geq 2$. From Tables 10.2 and 10.4 , we find that there exist exactly 40 isomorphism classes of lattices $S\left(\mathfrak{G}_{n}, q_{n}\right)$ (or Λ_{G} for $G \in \mathcal{L}$). Also, we can check that the natural map
(4.4) $\quad\{S(\mathfrak{G}, q) \mid(\mathfrak{G}, q) \in \mathcal{Q}\} /$ isom $\rightarrow\{q \mid \exists \mathfrak{G}$ such that $(\mathfrak{G}, q) \in \mathcal{Q}\} /$ isom is bijective.

Definition 4.5. Let $(\mathfrak{G}, q) \in \mathcal{Q}$. We define $\operatorname{Clos}(\mathfrak{G}, q)$ by

$$
\begin{equation*}
\operatorname{Clos}(\mathfrak{G}, q)=\left(\left[\mathrm{O}_{0}(S(\mathfrak{G}, q))\right], q\right) \tag{4.5}
\end{equation*}
$$

Note that \mathfrak{G} is a subgroup of $\left[\mathrm{O}_{0}(S(\mathfrak{G}, q))\right]$ (see Definition 4.2).
For $(\mathfrak{G}, q) \in \mathcal{Q}$, there exists an element $G \in \mathcal{L}$ such that $\left([G], q\left(\Lambda_{G}\right)\right) \sim$ (\mathfrak{G}, q). Since $S\left([G], q\left(\Lambda_{G}\right)\right) \cong \Lambda_{G}$, we have

$$
\begin{equation*}
\operatorname{Clos}(\mathfrak{G}, q)=\left(\left[\mathrm{O}_{0}\left(\Lambda_{G}\right)\right], q\right)=([\operatorname{Clos}(G)], q) \tag{4.6}
\end{equation*}
$$

(see Definition 2.9). In particular, we have $\operatorname{Clos}(\mathfrak{G}, q) \in \mathcal{Q}$. Let $\mathcal{Q}_{\text {clos }}$ denote a subset of \mathcal{Q} defined by

$$
\begin{equation*}
\mathcal{Q}_{\mathrm{clos}}=\{(\mathfrak{G}, q) \in \mathcal{Q} \mid \operatorname{Clos}(\mathfrak{G}, q)=(\mathfrak{G}, q)\} . \tag{4.7}
\end{equation*}
$$

For $G \in \mathcal{L}, G \in \mathcal{L}_{\text {clos }}$ if and only if $\left([G], q\left(\Lambda_{G}\right)\right) \in \mathcal{Q}_{\text {clos }}$.
Corollary 4.6. The map

$$
\begin{equation*}
\mathcal{Q}_{\text {clos }} / \sim\left\{\Lambda_{G} \mid G \in \mathcal{L}\right\} / \text { isom } \tag{4.8}
\end{equation*}
$$

which is induced by the correspondence $(\mathfrak{G}, q) \mapsto S(\mathfrak{G}, q)$ is bijective.
Proof. The inverse map of (4.8) is the map induced by the correspondence $S \mapsto\left(\left[\mathrm{O}_{0}(S)\right], q(S)\right)$.

Corollary 4.7. Let $(\mathfrak{G}, q) \in \mathcal{Q}$. Then we have $\operatorname{Clos}(\mathfrak{G}, q)=\left(\mathfrak{G}^{\prime}, q\right)$, where \mathfrak{G}^{\prime} is the unique maximal element in

$$
\begin{equation*}
\left\{\mathfrak{G}^{\prime \prime} \in \mathfrak{G}_{K 3}^{\text {symp }} \mid\left(\mathfrak{G}^{\prime \prime}, q^{\prime \prime}\right) \in \mathcal{Q}, \mathfrak{G} \subset \mathfrak{G}^{\prime \prime}, q \cong q^{\prime \prime}, c(\mathfrak{G})=c\left(\mathfrak{G}^{\prime \prime}\right)\right\} . \tag{4.9}
\end{equation*}
$$

Moreover, we have the following.
(1) If $\mathfrak{G} \in\left\{Q_{8}, T_{24}\right\}$, that is, $(\mathfrak{G}, q) \sim\left(\mathfrak{G}_{n}, q_{n}\right)$ for $n \in\{12,13,37,38\}$, then we have the following table:

n	$\mathfrak{G}=\mathfrak{G}_{n}$	m	$\mathfrak{G}^{\prime}=\mathfrak{G}_{m}$
12	Q_{8}	12	Q_{8}
13	Q_{8}	40	$Q_{8} * Q_{8}$
37	T_{24}	77	T_{192}
38	T_{24}	54	T_{48}

Here m is determined by $\left(\mathfrak{G}_{m}, q_{m}\right) \sim \operatorname{Clos}(\mathfrak{G}, q)$.
(2) If $\mathfrak{G} \notin\left\{Q_{8}, T_{24}\right\}$, then \mathfrak{G}^{\prime} is the unique maximal element in

$$
\begin{equation*}
\left\{\mathfrak{G}^{\prime \prime} \in \mathfrak{G}_{K 3}^{\text {symp }} \mid \mathfrak{G} \subset \mathfrak{G}^{\prime \prime}, c(\mathfrak{G})=c\left(\mathfrak{G}^{\prime \prime}\right)\right\} \tag{4.10}
\end{equation*}
$$

Proof. For any element $\mathfrak{G}^{\prime \prime}$ in (4.9), we have $S(\mathfrak{G}, q) \cong S\left(\mathfrak{G}^{\prime \prime}, q^{\prime \prime}\right)$ by Corollary 4.3. Hence, $\mathfrak{G}^{\prime \prime} \subset \mathfrak{G}^{\prime}=\left[\mathrm{O}_{0}(S(\mathfrak{G}, q))\right]$. Therefore, the former part of the corollary follows. We can directly check the latter part by Proposition 3.8 and Table 10.4.
§5. Property $\overline{\mathrm{O}\left(\Lambda_{G}\right)}=\mathrm{O}\left(q\left(\Lambda_{G}\right)\right)$
This section is devoted to prove the following theorem, which gives a sufficient condition for $G \in \mathcal{L}$ such that $\overline{\mathrm{O}\left(\Lambda_{G}\right)}=\mathrm{O}\left(q\left(\Lambda_{G}\right)\right)$ (see (1.11)).

Theorem 5.1. Let $G \in \mathcal{L}$ with $c(G)=\operatorname{rank} \Lambda_{G} \geq 17$ (see Proposition 2.10). The group $\overline{\mathrm{O}\left(\Lambda_{G}\right)}$ is equal to $\mathrm{O}\left(q\left(\Lambda_{G}\right)\right)$ if and only if $[\operatorname{Clos}(G) \notin$ $\left\{\mathfrak{G}_{48}, \mathfrak{G}_{51}\right\}$. In particular, if $c(G)=\operatorname{rank} \Lambda_{G}=19$, then $\overline{\mathrm{O}\left(\Lambda_{G}\right)}=\mathrm{O}\left(q\left(\Lambda_{G}\right)\right)$.

Since $c\left(\mathfrak{G}_{48}\right)=c\left(\mathfrak{G}_{51}\right)=18$ by Table 10.2 , the latter part of the theorem follows from the former part.
5.1. Criterion of the property $\overline{\mathrm{O}(L)}=\mathrm{O}(q(L))$

We prepare for a criterion of the property $\overline{\mathrm{O}(L)}=\mathrm{O}(q(L))$.
Lemma 5.2. Let H be a group, and let K_{1}, K_{2} be subgroups of H. If $K_{1} \subset$ K_{2} and $\sharp K_{1} \backslash H / K_{2}=1$, then $K_{2}=H$.

Proof. By the second assumption, any element in H is of the form $k_{1} k_{2}$ with $k_{i} \in K_{i}$. Hence, $K_{2}=H$ by the first assumption.

Proposition 5.3. Let L_{1} be a nondegenerate even lattice. The group $\overline{\mathrm{O}\left(L_{1}\right)}$ is equal to $\mathrm{O}\left(q\left(L_{1}\right)\right)$ if and only if there exists a nondegenerate even lattice L_{2} satisfying the following conditions.
(1) There exists an essentially unique even unimodular lattice $\Gamma \subset L_{1}^{\vee} \oplus L_{2}^{\vee}$ which contains L_{i} primitively. Here the uniqueness of Γ means that for another Γ^{\prime}, there exist isomorphisms $\varphi_{i} \in \mathrm{O}\left(L_{i}\right)$ for $i=1,2$ such that $\varphi_{1} \oplus \varphi_{2}$ induces an isomorphism $\Gamma \rightarrow \Gamma^{\prime}$.
(2) The restriction map $\mathrm{O}\left(\Gamma, L_{2}\right) \rightarrow \mathrm{O}\left(L_{2}\right)$ is surjective (see (1.2)).

Proof. Assume that there exists L_{2} satisfying conditions (1) and (2). Let $\gamma \in \operatorname{Isom}\left(q\left(L_{1}\right),-q\left(L_{2}\right)\right)$ be the isomorphism corresponding to Γ (see Lemma 1.2). Condition (1) implies that

$$
\begin{align*}
\overline{\mathrm{O}\left(L_{2}\right)} \backslash & \operatorname{Isom}\left(q\left(L_{1}\right),-q\left(L_{2}\right)\right) / \overline{\mathrm{O}\left(L_{1}\right)} \\
& \cong \gamma^{-1} \circ \overline{\mathrm{O}\left(L_{2}\right)} \circ \gamma \backslash \mathrm{O}\left(q\left(L_{1}\right)\right) / \overline{\mathrm{O}\left(L_{1}\right)} \tag{5.1}
\end{align*}
$$

is a one point set by Lemma 1.2. On the other hand, condition (2) implies that for any $\varphi_{2} \in \mathrm{O}\left(L_{2}\right)$, there exists an automorphism $\varphi_{1} \in \mathrm{O}\left(L_{1}\right)$ such that $\gamma \circ \bar{\varphi}_{1} \circ \gamma^{-1}=\bar{\varphi}_{2}$ by Lemma 1.2. Hence, $\gamma^{-1} \circ \overline{\mathrm{O}\left(L_{2}\right)} \circ \gamma \subset \overline{\mathrm{O}\left(L_{1}\right)}$. By Lemma 5.2, we have $\overline{\mathrm{O}\left(L_{1}\right)}=\mathrm{O}\left(q\left(L_{1}\right)\right)$.

Conversely, assume that $\overline{\mathrm{O}\left(L_{1}\right)}=\mathrm{O}\left(q\left(L_{1}\right)\right)$. Then any nondegenerate even lattice L_{2} with $q\left(L_{2}\right) \cong-q\left(L_{1}\right)$ satisfies conditions (1) and (2) by Lemma 1.2. For example, we can take $L_{1}(-1)$ as L_{2}.

5.2. Proof of Theorem 5.1

Now we apply Proposition 5.3 to prove Theorem 5.1. Let $G_{0} \in \mathcal{L}$ with $c\left(G_{0}\right) \geq 17$. By Corollary 4.6, $\Lambda_{G_{0}} \cong S\left(\mathfrak{G}_{n}, q_{n}\right)$ for some $\left(\mathfrak{G}_{n}, q_{n}\right) \in \mathcal{Q}_{\text {clos }}$. Since $n \neq 58$ (see Table 10.4), we have

$$
\begin{equation*}
\Lambda_{G_{0}} \cong S\left(\mathfrak{G}_{n}, q_{n}\right) \cong N_{G}, \quad\left([G], q\left(N_{G}\right)\right) \sim\left(\mathfrak{G}_{n}, q_{n}\right) \in \mathcal{Q}_{\text {clos }} \tag{5.2}
\end{equation*}
$$

for some $(G, N) \in \mathcal{N}^{\prime}$ by Proposition 3.10. Since $c\left(\mathfrak{G}_{3}\right)=12<17, N$ is of type $A_{1}^{\oplus 24}$ by Proposition 3.10. To prove Theorem 5.1, it is sufficient to show that conditions (1) and (2) in Proposition 5.3 are satisfied for $L_{1}=N_{G}$ and $L_{2}=N^{G}$ if and only if $n \neq 48,51$.

We check that for $(G, N) \in \mathcal{N}^{\prime}$ satisfying (5.2), condition (1) is satisfied as follows. Let $N^{\prime} \subset\left(N_{G}\right)^{\vee} \oplus\left(N^{G}\right)^{\vee}$ be a Niemeier lattice which contains N_{G}
and N^{G} primitively. By Lemma 1.3 , the action of G on N_{G} is extended to that on N^{\prime} such that $\left(N^{\prime}\right)^{G}=N^{G}$. We have $\left(G, N^{\prime}\right) \in \mathcal{N}$ by Definition 3.1. By Proposition 3.10, $(G, N) \cong\left(G, N^{\prime}\right)$. The uniqueness of N is shown.

Before showing condition (2), we prepare for a couple of lemmas.
Lemma 5.4. For $(G, N) \in \mathcal{N}^{\prime}$ satisfying (5.2), let π denote the restriction map

$$
\begin{equation*}
\pi: \mathrm{O}\left(N, N^{G}\right) \rightarrow \mathrm{O}\left(N^{G}\right) \tag{5.3}
\end{equation*}
$$

Then we have $\operatorname{Ker}(\pi)=G$. In particular, $G \triangleleft \mathrm{O}\left(N, N^{G}\right)$.
Proof. Clearly, we have $G \subset \operatorname{Ker}(\pi)$. Let $g \in \operatorname{Ker}(\pi)$. Then $\left.g\right|_{N_{G}} \in \mathrm{O}_{0}\left(N_{G}\right)$ by Lemma $1.3(3)$. Since $\left(\mathfrak{G}_{n}, q_{n}\right) \in \mathcal{Q}_{\text {clos }}$, that is, $\operatorname{Clos}\left(\mathfrak{G}_{n}, q_{n}\right)=\left(\mathfrak{G}_{n}, q_{n}\right)$, we have $g \in G$ (see Definition 4.5). Hence, $\operatorname{Ker}(\pi) \subset G$.

Let Δ^{+}be a set of positive roots of N which is stable under the action of G (see Section 3.1). Since N is of type $A_{1}^{\oplus 24}, \mathrm{O}\left(N, \Delta^{+}\right)$is isomorphic to the Mathieu group M_{24} of degree 24 and the Weyl group $W(N)$ of N is isomorphic to C_{2}^{24}. We have $\mathrm{O}(N)=W(N) \rtimes M_{24}$.

Lemma 5.5. For $(G, N) \in \mathcal{N}^{\prime}$ satisfying (5.2), we have

$$
\begin{equation*}
\mathrm{O}\left(N, N^{G}\right)=C_{2}^{m} \rtimes N_{M_{24}}(G), \tag{5.4}
\end{equation*}
$$

where $m=\operatorname{rank} N^{G}=24-c(G)$ and where $N_{M_{24}}(G)$ is the normalizer subgroup of G in M_{24}. In particular, we have $\left|\mathrm{O}\left(N, N^{G}\right)\right|=2^{m}\left|N_{M_{24}}(G)\right|$.

Proof. Set $\left\{v_{1}, \ldots, v_{24}\right\}=R\left(N, \Delta^{+}\right)$, and set $W^{\prime}=\mathrm{O}\left(N, N^{G}\right) \cap W$. The action of G decomposes $R\left(N, \Delta^{+}\right)$into n orbits O_{1}, \ldots, O_{m}. The invariant lattice N^{G} is generated by $\sum_{v \in O_{j}} v(j=1, \ldots, m)$ over \mathbb{Q}. Let $w \in W$. Then w is of the form

$$
\begin{equation*}
w=\prod_{i=1}^{24} T\left(v_{i}\right)^{e_{i}}, \quad e_{i} \in\{0,1\} \tag{5.5}
\end{equation*}
$$

where $T(v)$ is the reflection of v. Since

$$
\begin{equation*}
w \cdot \sum_{i=1}^{24} a_{i} v_{i}=\sum_{i=1}^{24}(-1)^{e_{i}} a_{i} v_{i}, \quad a_{i} \in \mathbb{Q} \tag{5.6}
\end{equation*}
$$

W^{\prime} is generated by $\prod_{v \in O_{j}} T(v)(j=1, \ldots, m)$; thus, $W^{\prime} \cong C_{2}^{m}$. By Lemma 5.4, we have an injection $\iota: \mathrm{O}\left(N, N^{G}\right) / W^{\prime} \rightarrow N_{M_{24}}(G)$. For $g \in N_{M_{24}}(G)$,
we have $g G \cdot v_{i}=G g \cdot v_{i}$. Therefore, for any j, we have $g \cdot O_{j}=O_{j^{\prime}}$ for some j^{\prime}. Hence, we have $N_{M_{24}}(G) \subset \mathrm{O}\left(N, N^{G}\right)$, and ι is an isomorphism. The assertion follows from this.

Now we show that for $(G, N) \in \mathcal{N}^{\prime}$ satisfying (5.2), condition (2) is satisfied. By Lemma 5.5, we can determine the order of $\mathrm{O}\left(N, N^{G}\right)$ from the order of $N_{M_{24}}(G)$. We can compute the order of $N_{M_{24}}(G)$ by using GAP [12]. On the other hand, we can also determine the order of $\mathrm{O}\left(N^{G}\right)$ as follows.

Let $B=\left(b_{i j}\right) \in M_{m}(\mathbb{Z})$ be the Gramian matrix of N^{G}. Then $\mathrm{O}\left(N^{G}\right)$ is identified with the matrix group H consisting of $P \in M_{m}(\mathbb{Z})$ such that ${ }^{t} P B P=B$. Let S denote the set consisting of column vectors $v \in \mathbb{Z}^{m}$ such that ${ }^{t} v B v=b_{i i}$ for some i. Then any element $P \in H$ is of the form $\left(v_{1} \cdots v_{m}\right)$ with $v_{i} \in S$. Since N^{G} is negative definite, we can enumerate all elements in S and H in finite steps. Practically, we take B with smaller $\left|b_{i i}\right|$. Since the rank of N^{G} is less than or equal to $24-17=7$ by the assumption of Theorem 5.1, we can determine the order of $\mathrm{O}\left(N^{G}\right)$ in practical time by this method. The author used Maxima [17] for this computation. The result is the following.

Lemma 5.6. For $(G, N) \in \mathcal{N}^{\prime}$ satisfying (5.2), we have $\left[\mathrm{O}\left(N, N^{G}\right): G\right]=$ $\left|\mathrm{O}\left(N^{G}\right)\right|$ if and only if $[G] \neq \mathfrak{G}_{48}, \mathfrak{G}_{51}$.

For example, we consider the case $n=80\left([G]=\mathfrak{G}_{80}=F_{384}\right)$. There exists exactly one element $(G, N) \in \mathcal{N}$ such that $[G]=F_{384}$. The Niemeier lattice N is of type $A_{1}^{\oplus 24}$. We have $\left[N_{M_{24}}(G): G\right]=2$ and $\left|\mathrm{O}\left(N^{G}\right)\right|=64$. Since $c(G)=19$, we have $\left|\mathrm{O}\left(N^{G}\right)\right|=\left[\mathrm{O}\left(N, N^{G}\right): G\right]=2^{24-19} \cdot 2=64$ by Lemma 5.5.

Similarly, for other cases except $n \neq 48,51$, we have $\left[\mathrm{O}\left(N, N^{G}\right): G\right]=$ $\left|\mathrm{O}\left(N^{G}\right)\right|$. The following is the table of $k(G)=\left[N_{M_{24}}(G): G\right]$:

n	12	26	32	33	34	39	40	46	49	54	55	56	61
$k(G)$	48	4	2	6	8	2	24	4	120	2	6	12	2
n	62	63	65	70	74	75	76	77	78	79	80	81	
$k(G)$	2	6	24	1	2	24	2	4	4	2	2	24	

On the other hand, we have $\left[\mathrm{O}\left(N, N^{G}\right): G\right]<\left|\mathrm{O}\left(N^{G}\right)\right|$ for the cases $n=48,51$, as follows:

n	48	51
$k(G)$	2	2
$\mathrm{O}\left(N^{G}\right) / 2^{m}$	6	6

We will finish the proof of Theorem 5.1. We already checked that condition (1) is satisfied. By Lemma 5.4, the restriction map $\pi: \mathrm{O}\left(N, N^{G}\right) \rightarrow$ $\mathrm{O}\left(N^{G}\right)$ induces an injection $\mathrm{O}\left(N, N^{G}\right) / G \hookrightarrow \mathrm{O}\left(N^{G}\right)$. By Lemma 5.6, this map is an isomorphism if and only if $n \neq 48,51$. Therefore, condition (2), that is, the surjectivity of π, is satisfied if and only if $n \neq 48,51$. By Proposition $5.3, \overline{\mathrm{O}\left(N_{G}\right)}=\mathrm{O}\left(q_{N_{G}}\right)$ if and only if $n \neq 48,51$.

§6. Uniqueness of invariant lattices Λ^{G}

This section is devoted to prove the following.
Proposition 6.1. Set $E=\left\{\mathfrak{S}_{5}, L_{2}(7), \mathfrak{A}_{6}\right\}$. For $(\mathfrak{G}, q) \in \mathcal{Q}$ (see (3.24)), we have

$$
\sharp\left(\left\{\Lambda^{G} \mid G \in \mathcal{L},[G]=\mathfrak{G}, q\left(\Lambda_{G}\right) \cong q\right\} / \text { isom }\right)= \begin{cases}2 & \text { if } \mathfrak{G} \in E, \tag{6.1}\\ 1 & \text { otherwise } .\end{cases}
$$

The Gramian matrices of Λ^{G} are given in Table 10.3.
Proof. Let $G \in \mathcal{L}$ such that $[G]=\mathfrak{G}$ and $q\left(\Lambda_{G}\right) \cong q$. By Lemma 1.2, $q\left(\Lambda^{G}\right) \cong-q\left(\Lambda_{G}\right) \cong-q$.

First we consider the case $\operatorname{rank} \Lambda^{G}>3$. Since $\operatorname{sign} \Lambda=(3,19)$ and Λ_{G} is negative definite, Λ^{G} is indefinite in this case. From Table 10.3, we can check that conditions (1) and (2) in Theorem 1.7 for Λ^{G} are satisfied. Hence, the assertion follows from Theorem 1.7. We can directly find the Gramian matrices of Λ^{G} with the given signature and discriminant form for each case.

Next we consider the case $\operatorname{rank} \Lambda^{G}=3$. In this case, Λ^{G} is positive definite. From the table of definite ternary forms (see [25]), we can check that there exists a unique positive definite even lattice K of rank 3 such that $q(K) \cong-q$ up to isomorphism, except for the cases $\mathfrak{G}=\mathfrak{S}_{5}, L_{2}(7), \mathfrak{A}_{6}$. If $\mathfrak{G}=$ $\mathfrak{S}_{5}, L_{2}(7), \mathfrak{A}_{6}$, there exist exactly two positive definite even lattices K_{1}, K_{2} of rank 3 such that $q\left(K_{i}\right) \cong-q$ up to isomorphism. For each $i=1,2$, there exists a primitive embedding $\Lambda_{G} \rightarrow \Lambda$ such that $\left(\Lambda_{G}\right)_{\Lambda}^{\perp} \cong K_{i}$ by Lemma 1.2. By Lemma 1.3, the action of G on Λ_{G} is extended to that on Λ such that $\Lambda^{G} \cong K_{i}$. This action is an element in \mathcal{L} by Definition 2.5. Therefore, the assertion follows.
§7. Property $\overline{\mathrm{O}\left(\Lambda^{G}\right)}=\mathrm{O}\left(q\left(\Lambda^{G}\right)\right)$
This section is devoted to prove the following.
Theorem 7.1. Let $G \in \mathcal{L}$. If $\operatorname{rank} \Lambda^{G} \geq 4$ or, equivalently, $c(G) \leq 18$ (see Proposition 2.10), then $\overline{\mathrm{O}\left(\Lambda^{G}\right)}=\mathrm{O}\left(q\left(\Lambda^{G}\right)\right)$.

We may assume that $G \in \mathcal{L}_{\text {clos }}$ by replacing G by $\operatorname{Clos}(G)$ if necessary. Then $\Lambda_{G} \cong S\left(\mathfrak{G}_{n}, q_{n}\right)$ for some $\left(\mathfrak{G}_{n}, q_{n}\right) \in \mathcal{Q}_{\text {clos }}$ (see Section 4). We can check that Λ^{G} satisfies conditions (1) and (2) in Theorem 1.8 from Table 10.3 , except for the following nine cases:

$$
\begin{equation*}
n=26,30,32,33,40,46,48,56,61 \tag{7.1}
\end{equation*}
$$

Hence, we have $\overline{\mathrm{O}\left(\Lambda^{G}\right)}=\mathrm{O}\left(q\left(\Lambda^{G}\right)\right)$ except for these nine cases.
For example, in the case $n=65$, we find that

$$
\begin{align*}
\Lambda^{G} \cong\left(\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right) \oplus\langle 4\rangle \oplus\langle-8\rangle, \tag{7.2}\\
q\left(\Lambda^{G}\right) \cong-q_{65} \cong v^{(2)}(2) \oplus q_{1}^{(2)}(4) \oplus q_{7}^{(2)}(8) \oplus q_{+}^{(3)}(3) \tag{7.3}
\end{align*}
$$

from Table 10.3. Since

$$
\begin{equation*}
\operatorname{rank} \Lambda^{G}=4>l\left(A\left(\Lambda^{G}\right)_{3}\right)+2=3 \tag{7.4}
\end{equation*}
$$

condition (1) is satisfied. On the other hand, since $v^{(2)}(2)$ appears in the orthogonal decomposition (7.3) of $q\left(\Lambda^{G}\right)$, condition (2) is satisfied.

7.1. Preparation for the cases (7.1)

Before studying the nine cases (7.1), we recall some properties of the spinor norm (see, e.g., [4]). Let L be a nondegenerate lattice. For any $\varphi \in$ $\mathrm{O}(L \otimes \mathbb{Q}), \varphi$ is written as a composition of reflections:

$$
\begin{equation*}
\varphi=\prod_{i=1}^{r} T\left(v_{i}\right), \quad v_{i} \in L \otimes \mathbb{Q},\left\langle v_{i}, v_{i}\right\rangle \neq 0 \tag{7.5}
\end{equation*}
$$

Here $T(v) \in \mathrm{O}(L \otimes \mathbb{Q})$ is the reflection of v, which is defined by

$$
\begin{equation*}
T(v) \cdot w=w-\frac{2\langle v, w\rangle}{\langle v, v\rangle} v . \tag{7.6}
\end{equation*}
$$

The spinor norm $\theta(\varphi)$ of φ is defined by

$$
\begin{equation*}
\theta(\varphi)=\prod_{i=1}^{r}\left\langle v_{i}, v_{i}\right\rangle \bmod \left(\mathbb{Q}^{\times}\right)^{2} \in \mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2} \tag{7.7}
\end{equation*}
$$

which is independent of the choice of expression (7.5). We define a map f and a subgroup $\mathrm{O}^{\prime}(L) \subset \mathrm{O}(L)$ by

$$
\begin{equation*}
f=\operatorname{det} \times \theta: \mathrm{O}(L) \rightarrow\{ \pm 1\} \times \mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2} \tag{7.8}
\end{equation*}
$$

and $\mathrm{O}^{\prime}(L)=\operatorname{Ker}(f)$. Note that if $L=L_{1} \oplus L_{2}$, then $f\left(\mathrm{O}\left(L_{i}\right)\right) \subset f(\mathrm{O}(L))$. We can define the spinor norm $\theta_{p}\left(\varphi_{p}\right) \in \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ of $\varphi_{p} \in \mathrm{O}\left(L \otimes \mathbb{Q}_{p}\right)$ in a similar way. Moreover, we define

$$
\begin{equation*}
f_{p}=\operatorname{det} \times \theta_{p}: \mathrm{O}\left(L_{p}\right) \rightarrow\{ \pm 1\} \times \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2} \tag{7.9}
\end{equation*}
$$

and $\mathrm{O}^{\prime}\left(L_{p}\right)=\operatorname{Ker}\left(f_{p}\right)$, where $L_{p}=L \otimes \mathbb{Z}_{p}$.
To deal with the cases (7.1), we use the following proposition, which is a consequence of the strong approximation theorem of quadratic forms (see [4]).

Proposition 7.2. Let L be an indefinite even lattice of rank ≥ 3. We set $\mathrm{O}_{0}\left(L_{p}\right)=\operatorname{Ker}\left(\mathrm{O}\left(L_{p}\right) \rightarrow \mathrm{O}\left(q\left(L_{p}\right)\right)\right)$ and $d=\operatorname{disc}(L)$. If the natural map

$$
\begin{equation*}
\mathrm{O}(L) \rightarrow \prod_{p \mid d} \frac{f_{p}\left(\mathrm{O}\left(L_{p}\right)\right)}{f_{p}\left(\mathrm{O}_{0}\left(L_{p}\right)\right)} \tag{7.10}
\end{equation*}
$$

is surjective, then $\overline{\mathrm{O}(L)}=\mathrm{O}(q(L))$.
Proof. We have a natural commutative diagram

$$
\begin{array}{rlllll}
1 \rightarrow & \rightarrow & \mathrm{O}^{\prime}(L) & \rightarrow & \mathrm{O}(L) & \rightarrow \\
\downarrow \alpha & & f(\mathrm{O}(L)) & \rightarrow 1 \tag{7.11}\\
1 & & \rightarrow \beta & & \downarrow \gamma & \\
1 & \prod_{p \mid d} \frac{\mathrm{O}^{\prime}\left(L_{p}\right)}{\mathrm{O}_{0}^{\prime}\left(L_{p}\right)} & \rightarrow \prod_{p \mid d} \frac{\mathrm{O}\left(L_{p}\right)}{\mathrm{O}_{0}\left(L_{p}\right)} & \rightarrow \prod_{p \mid d} \frac{f_{p}\left(\mathrm{O}\left(L_{p}\right)\right)}{f_{p}\left(\mathrm{O}_{0}\left(L_{p}\right)\right)} & \rightarrow 1,
\end{array}
$$

where $\mathrm{O}_{0}^{\prime}\left(L_{p}\right)=\mathrm{O}^{\prime}\left(L_{p}\right) \cap \mathrm{O}_{0}\left(L_{p}\right)$. The rows in (7.11) are exact. Since

$$
\begin{equation*}
\mathrm{O}(q(L))=\prod_{p \mid d} \mathrm{O}\left(q(L)_{p}\right) \cong \prod_{p \mid d} \frac{\mathrm{O}\left(L_{p}\right)}{\mathrm{O}_{0}\left(L_{p}\right)} \tag{7.12}
\end{equation*}
$$

by Theorem 1.10, it is sufficient to show that β is surjective. Since $\left[\mathrm{O}^{\prime}\left(L_{p}\right)\right.$: $\left.\mathrm{O}_{0}^{\prime}\left(L_{p}\right)\right]<\infty$, each coset of $\mathrm{O}^{\prime}\left(L_{p}\right) / \mathrm{O}_{0}^{\prime}\left(L_{p}\right)$ is an open dense subset of $\mathrm{O}^{\prime}\left(L_{p}\right)$ in p-adic topology. By the strong approximation theorem of quadratic forms (see [4]), the image of $\mathrm{O}^{\prime}(L)$ in $\prod_{p \mid d} \mathrm{O}^{\prime}\left(L_{p}\right)$ is dense. Therefore, α is surjective. On the other hand, γ is surjective by the assumption. By chasing the diagram, β is surjective.

For $f(\mathrm{O}(L))$ and $f_{p}\left(\mathrm{O}_{0}\left(L_{p}\right)\right)$, we have the following.
Lemma 7.3. Let $L^{(p)}$ be a nondegenerate even lattice over \mathbb{Z}_{p}.
(1) If $v \in L^{(p)}$ satisfies $a=\langle v, v\rangle \in \mathbb{Z}_{p}^{\times} \cup 2 \mathbb{Z}_{p}^{\times}$, then $T(v) \in \mathrm{O}_{0}\left(L^{(p)}\right)$ and $f_{p}(T(v))=(-1, \bar{a}) \in f_{p}\left(\mathrm{O}_{0}\left(L_{p}\right)\right)$.
(2) If $L^{(p)}$ contains $U=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ as a sublattice, then

$$
f_{p}\left(\mathrm{O}_{0}\left(L^{(p)}\right)\right) \supset \begin{cases}J_{2}:=\left\langle\left(1, \mathbb{Z}_{2}^{\times} /\left(\mathbb{Z}_{2}^{\times}\right)^{2}\right),(-1, \overline{2})\right\rangle & \text { if } p=2 \tag{7.13}\\ J_{p}:=\{ \pm 1\} \times \mathbb{Z}_{p}^{\times} /\left(\mathbb{Z}_{p}^{\times}\right)^{2} & \text { otherwise } .\end{cases}
$$

(3) If $p=2$ and $L^{(2)}$ contains $V=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ as a sublattice, then

$$
\begin{equation*}
f_{2}\left(\mathrm{O}_{0}\left(L^{(2)}\right)\right) \supset J_{2} \tag{7.14}
\end{equation*}
$$

Proof. Let v, a be as in (1). Since $T(v) \cdot w=w-(2\langle v, w\rangle / a) v$ and $2 / a \in$ \mathbb{Z}_{p}^{\times}, we have $T(v) \cdot w \in L^{(p)}$ for $w \in L^{(p)}$. Hence, $T(v) \in \mathrm{O}\left(L^{(p)}\right)$. If $w \in$ $\left(L^{(p)}\right)^{\vee}$, then $\langle v, w\rangle \in \mathbb{Z}_{p} ;$ thus $T(v) \cdot w \equiv w \bmod L^{(p)}$. Hence, $T(v) \in$ $\mathrm{O}_{0}\left(L^{(p)}\right)$. Since the determinant of any reflection is equal to -1 , we have $f_{p}(T(v))=(-1, \bar{a})$. This proves (1).

Let $\left(e_{1}, e_{2}\right)$ be a basis of U such that $\left\langle e_{i}, e_{i}\right\rangle=0$ and $\left\langle e_{1}, e_{2}\right\rangle=1$. For $x \in \mathbb{Z}_{p}^{\times}$, set $v_{x}=e_{1}+x e_{2}$. We have $\left\langle v_{x}, v_{x}\right\rangle=2 x \in 2 \mathbb{Z}_{p}^{\times}$. By (1), $T\left(v_{x}\right) \in$ $\mathrm{O}_{0}\left(L^{(p)}\right)$ and $f_{p}\left(T\left(v_{x}\right)\right)=(-1, \overline{2 x})$. We can check that the group generated by elements of the form $(-1, \overline{2 x})$ is J_{2} (resp., $\left.J_{p}\right)$ if $p=2$ (resp., $p \neq 2$).

The proof of (3) is similar to that of (2), and we omit it.
Lemma 7.4. Let L be a nondegenerate even lattice.
(1) We have $f\left(-1_{L}\right)=\left((-1)^{\operatorname{rank} L}, \overline{\operatorname{disc}(L)}\right)$.
(2) If $L \cong U(t) \oplus L^{\prime}$ for some L^{\prime}, then $f(\mathrm{O}(L)) \supset\langle(-1, \pm \overline{2 t})\rangle$, where $U(t)=$ $\left(\begin{array}{ll}0 & t \\ t & 0\end{array}\right)$.

Proof. Let $\left(e_{1}, \ldots, e_{r}\right)$ be an orthogonal basis of $L \otimes \mathbb{Q}$, where $r=\operatorname{rank} L$. Then, $-1_{L}=\prod_{i=1}^{r} T\left(e_{i}\right)$ and $\prod_{i=1}^{r}\left\langle e_{i}, e_{i}\right\rangle \equiv \operatorname{disc}(L) \bmod \left(\mathbb{Q}^{\times}\right)^{2}$. Therefore, $f\left(-1_{L}\right)=\left((-1)^{r}, \overline{\operatorname{disc}(L)}\right)$. This proves (1).

Let $\left(e_{1}, e_{2}\right)$ be a basis of $U(t)$ such that $\left\langle e_{i}, e_{i}\right\rangle=0$ and $\left\langle e_{1}, e_{2}\right\rangle=t$. Then, $\mathrm{O}(U(t)) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$ is generated by $T\left(e_{1} \pm e_{2}\right)$. Therefore, $f(\mathrm{O}(U(t)))=$ $\langle(-1, \pm \overline{2 t})\rangle$. This proves (2).

7.2. Proof of Theorem 7.1 for the cases (7.1)

We set $L=\Lambda^{G}, r=\operatorname{rank} L$, and $d=\operatorname{disc}(L)$. We will show that the map (7.10) is surjective in each case in (7.1). In other words, we show that $\prod_{p \mid d} f_{p}\left(\mathrm{O}\left(L_{p}\right)\right)$ is generated by the images of $\mathrm{O}(L)$ and $\prod_{p \mid d} f_{p}\left(\mathrm{O}_{0}\left(L_{p}\right)\right)$. As is shown below, we have $f_{p}\left(\mathrm{O}\left(L_{p}\right)\right)=N_{p}$ except for the cases $n=46,61$, where

$$
\begin{equation*}
N_{p}=\{ \pm 1\} \times \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2} . \tag{7.15}
\end{equation*}
$$

Recall that the map $(a, b, c) \mapsto(-1)^{a} 3^{b} 2^{c}$ induces an isomorphism $(\mathbb{Z} / 2 \mathbb{Z})^{3} \rightarrow \mathbb{Q}_{2}^{\times} /\left(\mathbb{Q}_{2}^{\times}\right)^{2}$. Moreover, the map $(a, b) \mapsto \varepsilon_{p}^{a} p^{b}$ induces an isomor$\operatorname{phism}(\mathbb{Z} / 2 \mathbb{Z})^{2} \rightarrow \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ if $p \neq 2$, where ε_{p} is a nonsquare p-adic unit. Let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of L whose Gramian matrix is given by Table 10.3. We say that a is represented by L if there exists a vector $v \in L$ such that $\langle v, v\rangle=a$. We denote $f(\mathrm{O}(L))$ and $f_{p}\left(\mathrm{O}_{0}\left(L_{p}\right)\right)$ by I and I_{p}, respectively.
(1) The case $n=26$. We have

$$
L \cong\left(\begin{array}{ll}
0 & 8 \tag{7.16}\\
8 & 0
\end{array}\right) \oplus\langle 2\rangle \oplus\langle 4\rangle, \quad d=-2^{9}
$$

Since 2 and 6 are represented by L, we have $(-1, \overline{2}),(-1, \overline{6}) \in I_{2}$ by Lemma $7.3(1)$. By Lemma $7.4(2),(-1, \pm \overline{16})=(-1, \pm \overline{1}) \in I$. We can check that the images of these four elements generate N_{2}. (In what follows, we omit "the image(s) of" for simplicity.)
(2) The case $n=30$. We have

$$
L \cong\left(\begin{array}{ll}
0 & 3 \tag{7.17}\\
3 & 0
\end{array}\right)^{\oplus 2} \oplus\left(\begin{array}{ll}
2 & 3 \\
3 & 0
\end{array}\right), \quad d=-3^{6}
$$

By Lemma $7.4(2),(-1, \pm \overline{6}) \in I$. Since $T\left(e_{5}\right) \in \mathrm{O}(L)$, we have $f\left(T\left(e_{5}\right)\right)=$ $(-1, \overline{2}) \in I$. We can check that these three elements generate N_{3}.
(3) The case $n=32$. We have

$$
L \cong\left(\begin{array}{ll}
0 & 5 \tag{7.18}\\
5 & 0
\end{array}\right) \oplus\left(\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right), \quad d=-2^{2} \cdot 5^{3}
$$

Since L_{2} contains U, we have $J_{2} \subset I_{2}$ by Lemma $7.3(2)$. Since 4 is represented by L, we have $(-1, \overline{4})=(-1, \overline{1}) \in I_{5}$ by Lemma 7.3(1). By Lemma $7.4(2),(-1, \pm \overline{10}) \in I$. Since $T\left(e_{3}\right) \in \mathrm{O}(L)$, we have $f\left(T\left(e_{1}\right)\right)=(-1, \overline{4})=$ $(-1, \overline{1}) \in I$. Let $L^{\prime}=\left(\begin{array}{c}4 \\ 2\end{array} 6\right)$. By Lemma 7.4(1), $f\left(-1_{L^{\prime}}\right)=(1, \overline{20})=(1, \overline{5}) \in I$. Therefore, the images of I, I_{2}, I_{5} contain the following elements:

	Image in $N_{2} \times N_{5}$
I_{2}	$\left(1, \mathbb{Z}_{2}^{\times} /\left(\mathbb{Z}_{2}^{\times}\right)^{2}\right) \times(1, \overline{1}),(-1, \overline{2}) \times(1, \overline{1})$
I_{5}	$(1, \overline{1}) \times(-1, \overline{1})$
I	$(-1, \pm \overline{10}) \times(-1, \pm \overline{10}),(-1, \overline{1}) \times(-1, \overline{1}),(1, \overline{5}) \times(1, \overline{5})$

From this, we can check that I, I_{2}, I_{5} generate $N_{2} \times N_{5}$.
(4) The case $n=33$. We have

$$
L \cong\left(\begin{array}{ll}
0 & 7 \tag{7.19}\\
7 & 0
\end{array}\right) \oplus\left(\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right), \quad d=-7^{3}
$$

By Lemma $7.4(2),(-1, \pm \overline{14}) \in I$. Since $T\left(e_{3}\right) \in O(L)$, we have $(-1, \overline{2}) \in I$. We can check that these three elements generate N_{7}.
(5) The case $n=40$. We have

$$
\begin{equation*}
L \cong\langle 4\rangle^{\oplus 3} \oplus\langle-4\rangle^{\oplus 2}, \quad d=2^{10} \tag{7.20}
\end{equation*}
$$

Let $\varphi=T\left(e_{1}\right) T\left(e_{1}+2 e_{2}\right) \in \mathrm{O}\left(L_{2}\right)$. Then, modulo L_{2}, we have

$$
\begin{align*}
& \varphi \cdot \frac{e_{1}}{4}=T\left(e_{1}\right) \cdot\left(\frac{e_{1}}{4}-\frac{2}{20}\left(e_{1}+2 e_{2}\right)\right) \equiv T\left(e_{1}\right) \cdot \frac{3}{4} e_{1} \equiv \frac{e_{1}}{4} \tag{7.21}\\
& \varphi \cdot \frac{e_{2}}{4}=T\left(e_{1}\right) \cdot\left(\frac{e_{2}}{4}-\frac{4}{20}\left(e_{1}+2 e_{2}\right)\right) \equiv T\left(e_{1}\right) \cdot \frac{e_{2}}{4}=\frac{e_{2}}{4} \tag{7.22}
\end{align*}
$$

Hence, $\varphi \in \mathrm{O}_{0}\left(L_{2}\right)$ and $f_{2}(\varphi)=(-1, \overline{4}) \cdot(-1, \overline{20})=(1, \overline{5}) \in I_{2}$. Since $T\left(e_{1}\right)$, $T\left(e_{4}\right), T\left(e_{1}+e_{2}\right) \in \mathrm{O}(L)$, we have $(-1, \pm \overline{4}),(-1, \overline{8}) \in I$. We can check that these four elements generate N_{2}.
(6) The case $n=46$. We have

$$
L \cong\left(\begin{array}{ll}
2 & 1 \tag{7.23}\\
1 & 2
\end{array}\right) \oplus\langle 6\rangle \oplus\langle-18\rangle, \quad d=-2^{2} \cdot 3^{4}
$$

Since L_{2} contains V, we have $J_{2} \subset I_{2}$ by Lemma 7.3(3). By [6, Theorem 3.14(i)], we have $f_{2}\left(\mathrm{O}\left(L_{2}\right)\right)=J_{2}$; thus, $I_{2}=f_{2}\left(\mathrm{O}\left(L_{2}\right)\right)=J_{2}$. Since
$T\left(e_{1}\right), T\left(e_{3}\right), T\left(e_{4}\right) \in \mathrm{O}(L)$, we have $(-1, \overline{2}),(-1, \overline{6}),(-1,-\overline{18}) \in I$. From this, we can check that I, I_{2} generate $f_{2}\left(\mathrm{O}\left(L_{2}\right)\right) \times N_{3}$.
(7) The case $n=48$. We have

$$
L \cong\left(\begin{array}{cc}
0 & 3 \tag{7.24}\\
3 & 0
\end{array}\right) \oplus\left(\begin{array}{cc}
12 & 6 \\
6 & 12
\end{array}\right), \quad d=-2^{2} \cdot 3^{5}
$$

Since L_{2} contains U, we have $J_{2} \subset I_{2}$ by Lemma 7.3(2). By Lemma 7.4(2), $(-1, \pm \overline{6}) \in I$. Since $T\left(e_{3}\right), T\left(e_{3}+e_{4}\right) \in \mathrm{O}(L)$, we have $(-1, \overline{12}),(-1, \overline{36}) \in I$. Therefore, the images of I, I_{2} contain the following elements:

	Image in $N_{2} \times N_{3}$
I_{2}	$\left(1, \mathbb{Z}_{2}^{\times} /\left(\mathbb{Z}_{2}^{\times}\right)^{2}\right) \times(1, \overline{1}),(-1, \overline{2}) \times(1, \overline{1})$
I	$(-1, \pm \overline{6}) \times(-1, \pm \overline{6}),(-1, \overline{3}) \times(-1, \overline{3}),(-1, \overline{1}) \times(-1, \overline{1})$

From this, we can check that I, I_{2} generate $N_{2} \times N_{3}$.
(8) The case $n=56$. We have

$$
\begin{equation*}
L \cong\langle 4\rangle^{\oplus 3} \oplus\langle-8\rangle, \quad d=-2^{9} \tag{7.25}
\end{equation*}
$$

By the argument in the case $n=40, \varphi=T\left(e_{1}\right) T\left(e_{1}+2 e_{2}\right) \in \mathrm{O}_{0}\left(L_{2}\right)$ and $f_{2}(\varphi)=(1, \overline{5}) \in I_{2}$. Since $T\left(e_{1}\right), T\left(e_{4}\right), T\left(e_{1}+e_{2}\right) \in \mathrm{O}(L)$, we have $(-1, \overline{4})$, $(-1,-\overline{8}),(-1, \overline{8}) \in I$. We can check that these four elements generate N_{2}.
(9) The case $n=61$. We have

$$
L \cong\left(\begin{array}{ll}
0 & 3 \tag{7.26}\\
3 & 0
\end{array}\right) \oplus\left(\begin{array}{ll}
8 & 4 \\
4 & 8
\end{array}\right), \quad d=-2^{4} \cdot 3^{3}
$$

Since L_{2} contains U, we have $J_{2} \subset I_{2}$ by Lemma 7.3(2). By [6, Theorem 3.14(i)], $f_{2}\left(\mathrm{O}\left(L_{2}\right)\right)=J_{2}$; thus, $I_{2}=f_{2}\left(\mathrm{O}\left(L_{2}\right)\right)=J_{2}$. Since $T\left(e_{3}\right) \in \mathrm{O}(L)$, $(-1, \overline{8})=(-1, \overline{2}) \in I$. By Lemma $7.4(2),(-1, \pm \overline{6}) \in I$. From this, we can check that I, I_{2} generate $f_{2}\left(\mathrm{O}\left(L_{2}\right)\right) \times N_{3}$.

Now we have proved Theorem 7.1.
§8. Uniqueness of symplectic actions on the $K 3$ lattice
In this section, we use the results in the previous sections to prove the main theorem.

8.1. Case $c(G) \leq 18$

Proposition 8.1. The natural map

$$
\begin{equation*}
\{G \in \mathcal{L} \mid c(G) \leq 18\} / \text { conj } \rightarrow\{(G, S) \in \mathcal{S} \mid c(G) \leq 18\} / \text { isom } \tag{8.1}
\end{equation*}
$$

is bijective.
Proof. The surjectivity follows from the definition of \mathcal{S} (see (4.1)). Let $(G, S) \in \mathcal{S}$ such that $c(G) \leq 18$. Suppose that $G_{i} \in \mathcal{L}$ and $\left(G_{i}, \Lambda_{G_{i}}\right) \cong(G, S)$ for $i=1,2$. To prove the injectivity, it is sufficient to show that G_{1} and G_{2} are conjugate in $\mathrm{O}(\Lambda)$. By Proposition 6.1, $\Lambda^{G_{1}} \cong \Lambda^{G_{2}}$. By Theorem 7.1, $\overline{\mathrm{O}\left(\Lambda^{G_{1}}\right)}=\mathrm{O}\left(q\left(\Lambda^{G_{1}}\right)\right)$. Therefore, a primitive embedding $\Lambda_{G_{1}} \rightarrow \Lambda$ such that $\left(\Lambda_{G_{1}}\right) \frac{\perp}{\Lambda} \cong \Lambda^{G_{1}}$ is unique up to isomorphism, and the restriction map

$$
\begin{equation*}
\pi: \mathrm{O}\left(\Lambda, \Lambda_{G_{1}}\right) \rightarrow \mathrm{O}\left(\Lambda_{G_{1}}\right) \tag{8.2}
\end{equation*}
$$

is surjective by Lemma 1.2. Hence, we may assume that $\Lambda_{G_{1}}=\Lambda_{G_{2}}$ by replacing G_{2} by $\varphi G_{2} \varphi^{-1}$ for some $\varphi \in \mathrm{O}(\Lambda)$ if necessary. Since $\left(G_{1}, \Lambda_{G_{1}}\right) \cong$ $\left(G_{2}, \Lambda_{G_{2}}\right) \cong(G, S), G_{1}$ and G_{2} are conjugate as subgroups of $\mathrm{O}\left(\Lambda_{G_{1}}\right)$. Since π is surjective, G_{1} and G_{2} are conjugate in $\mathrm{O}(\Lambda)$.

8.2. Case $c(G)=19$

Lemma 8.2. Let $G_{1}, G_{2} \in \mathcal{L}$ such that $\left[G_{1}\right]=\left[G_{2}\right], \operatorname{Clos}\left(G_{1}\right)=\operatorname{Clos}\left(G_{2}\right)$, and $c\left(G_{i}\right)=19$. If $\left[\operatorname{Clos}\left(G_{i}\right)\right] \neq \mathfrak{A}_{4,4}, F_{384}$, then G_{1} and G_{2} are conjugate in $\operatorname{Clos}\left(G_{i}\right)$.

Proof. It is sufficient to consider the case $G_{i} \subsetneq \operatorname{Clos}\left(G_{i}\right)$. By Tables 10.2 and 10.4, we find that $\mathfrak{H}:=\left[\operatorname{Clos}\left(G_{i}\right)\right]=T_{48}, H_{192}, T_{192}, M_{20}$. Using GAP [12], we can check that there exists a unique subgroup \mathfrak{G} of \mathfrak{H} up to conjugacy in \mathfrak{H} such that $\mathfrak{G}=\left[G_{i}\right]$ (see Appendix). The assertion follows from this.

Now we consider subgroups \mathfrak{G} of $\mathfrak{A}_{4,4}$ or F_{384} such that $c(\mathfrak{G})=19$. Mukai [18] constructed $K 3$ surfaces with maximal finite symplectic actions. We use two $K 3$ surfaces with symplectic actions of $\mathfrak{A}_{4,4}$ or F_{384} from [18].

Let X be a surface in \mathbb{P}^{5} defined by the following equations:

$$
\begin{align*}
x^{2}+y^{2}+z^{2} & =\sqrt{3} u^{2} \tag{8.3}\\
x^{2}+\zeta y^{2}+\zeta^{2} z^{2} & =\sqrt{3} v^{2} \tag{8.4}\\
x^{2}+\zeta^{2} y^{2}+\zeta z^{2} & =\sqrt{3} w^{2} \tag{8.5}
\end{align*}
$$

where $\zeta=\exp (2 \pi \sqrt{-1} / 3)$ and where x, y, z, u, v, w are homogeneous coordinates of \mathbb{P}^{5}. Since X is a smooth complete intersection of type $(2,2,2)$ in \mathbb{P}^{5}, X is a $K 3$ surface. Let G denote a subgroup of $\operatorname{PGL}(6, \mathbb{C})$ generated by

$$
\begin{align*}
& (x: y: z: u: v: w) \mapsto(-x:-y: z: u: v: w) \tag{8.6}\\
& (x: y: z: u: v: w) \mapsto(x: y: z:-u:-v: w) \tag{8.7}\\
& (x: y: z: u: v: w) \mapsto\left(y: z: x: u: \zeta v: \zeta^{2} w\right) \tag{8.8}\\
& (x: y: z: u: v: w) \mapsto\left(x: \zeta^{2} y: \zeta z: v: w: u\right) \tag{8.9}\\
& (x: y: z: u: v: w) \mapsto(-x:-z:-y: u: w: v) \tag{8.10}
\end{align*}
$$

Then G acts on X symplectically, and $[G]=\mathfrak{A}_{4,4}$. Moreover, let \widetilde{G} denote the group generated by G and

$$
\begin{equation*}
g:(x: y: z: u: v: w) \mapsto(u: v: w: x: z: y) \tag{8.11}
\end{equation*}
$$

Then \widetilde{G} acts on X, and $g^{*} \omega_{X}=\sqrt{-1} \omega_{X}$. Using GAP, we can show the following (see Appendix).

LEmmA 8.3. Suppose that $\mathfrak{G} \in \mathfrak{G}_{K 3}^{\text {symp }}$ is a subgroup of $\mathfrak{A}_{4,4}$ and that $c(\mathfrak{G})=$ 19. Then there exists a unique subgroup K of G such that $[K]=\mathfrak{G}$ up to conjugacy in \widetilde{G}.

Let Y be a surface in \mathbb{P}^{3} defined by the following equation:

$$
\begin{equation*}
x^{4}+y^{4}+z^{4}+t^{4}=0 \tag{8.12}
\end{equation*}
$$

where x, y, z, t are homogeneous coordinates of \mathbb{P}^{3}. Since Y is a smooth quartic surface in \mathbb{P}^{3}, Y is a $K 3$ surface. Let H denote a subgroup of $\operatorname{PGL}(4, \mathbb{C})$ generated by

$$
\begin{align*}
& (x: y: z: t) \mapsto(i x:-i y: z: t) \tag{8.13}\\
& (x: y: z: t) \mapsto(y:-x: z: t) \tag{8.14}\\
& (x: y: z: t) \mapsto(y: z: t:-x) \tag{8.15}
\end{align*}
$$

where $i=\sqrt{-1}$. Then H acts on Y symplectically, and $[H]=F_{384}$. Moreover, let \widetilde{H} denote the group generated by H and

$$
\begin{equation*}
h:(x: y: z: t) \mapsto(i x: y: z: t) \tag{8.16}
\end{equation*}
$$

Then \widetilde{H} acts on Y, and $h^{*} \omega_{Y}=i \omega_{Y}$. Again using GAP, we can show the following (see Appendix).

Lemma 8.4. Suppose that $\mathfrak{G} \in \mathfrak{G}_{K 3}^{\text {symp }}$ is a subgroup of F_{384} and that $c(\mathfrak{G})=19$. Then there exists a unique subgroup K of H such that $[K]=\mathfrak{G}$ up to conjugacy in \widetilde{H}.

Remark 8.5. We can show that the projective automorphism groups of X and Y are \widetilde{G} and \widetilde{H}, respectively (see [13]). However, since X and Y have Picard number 20, the automorphism groups of X and Y are infinite groups by [27].

By considering induced actions on $H^{2}(X, \mathbb{Z})$ and $H^{2}(Y, \mathbb{Z})$, which are isomorphic to Λ, we have the following.

Lemma 8.6. Consider G (resp., H) as a subgroup of $\mathrm{O}(\Lambda)$. Suppose that \mathfrak{G} is a subgroup of $\mathfrak{A}_{4,4}$ (resp., F_{384}) such that $c(\mathfrak{G})=19$. Then there exists a unique subgroup K of G (resp., H) up to conjugacy in $\mathrm{O}(\Lambda)$ such that $[K]=\mathfrak{G}$.

We use the following lemma in the proof of Theorem 4.1.
Lemma 8.7. There exists an element $G_{43} \in \mathcal{L}$ which satisfies the following.
(1) We have $\left[G_{43}\right]=\mathfrak{G}_{43}$.
(2) There exists a unique subgroup G_{58} of $\mathrm{O}_{0}\left(\Lambda_{G_{43}}\right)$ such that $\left[G_{58}\right]=\mathfrak{G}_{58}$ up to conjugacy in $\mathrm{O}\left(\Lambda_{G_{43}}\right)$.

Proof. We fix an identification $H^{2}(Y, \mathbb{Z})=\Lambda$. By Table 10.4, there exists a subgroup G_{43} of H such that $\left[G_{43}\right]=\mathfrak{G}_{43}$. Since $c\left(\mathfrak{G}_{43}\right)=c(H)=19$, we have $\Lambda_{G_{43}}=\Lambda_{H}$. Since $[H]=F_{384}$ is a maximal element in $\mathfrak{G}_{K 3}^{\text {symp }}$, we have $\left[\mathrm{O}_{0}\left(\Lambda_{H}\right)\right]=[H]$. Since $H \triangleleft \widetilde{H}$, we have $\widetilde{H} \subset \mathrm{O}\left(\Lambda, \Lambda^{H}\right)$. By Lemma 8.4 and Table 10.4, condition (2) is satisfied.

We have the following by the above lemmas.
Proposition 8.8. Set $E=\left\{\mathfrak{S}_{5}, L_{2}(7), \mathfrak{A}_{6}\right\} \subset \mathfrak{G}_{K 3}^{\text {symp }}$. The natural map

$$
\begin{align*}
& \{G \in \mathcal{L} \mid c(G)=19,[G] \notin E\} / \text { conj } \tag{8.17}\\
& \quad \rightarrow\{(G, S) \in \mathcal{S} \mid c(G)=19,[G] \notin E\} / \text { isom }
\end{align*}
$$

is bijective.
Proof. The surjectivity follows from the definition of \mathcal{S} (see (4.1)). Let $(G, S) \in \mathcal{S}$ such that $c(G)=19$ and $[G] \notin E$. Suppose that $G_{i} \in \mathcal{L}$ and
$\left(G_{i}, \Lambda_{G_{i}}\right) \cong(G, S)$ for $i=1,2$. To prove the injectivity, it is sufficient to show that G_{1} and G_{2} are conjugate in $\mathrm{O}(\Lambda)$. By Proposition 6.1, $\Lambda^{G_{1}} \cong$ $\Lambda^{G_{2}}$. By Theorem 5.1, $\overline{\mathrm{O}\left(\Lambda_{G_{1}}\right)}=\mathrm{O}\left(q\left(\Lambda_{G_{1}}\right)\right)$. Therefore, a primitive embedding $\Lambda_{G_{1}} \rightarrow \Lambda$ such that $\left(\Lambda_{G_{1}}\right)_{\Lambda}^{\perp} \cong \Lambda^{G_{1}}$ is unique up to isomorphism by Lemma 1.2. Hence, we may assume that $\Lambda_{G_{1}}=\Lambda_{G_{2}}$ by replacing G_{2} by $\varphi G_{2} \varphi^{-1}$ for some $\varphi \in \mathrm{O}(\Lambda)$ if necessary. Thus, $\left[\operatorname{Clos}\left(G_{1}\right)\right]=\left[\operatorname{Clos}\left(G_{2}\right)\right]$.
(1) The case $\left[\operatorname{Clos}\left(G_{i}\right)\right] \neq \mathfrak{A}_{4,4}, F_{384}$. By Lemma 8.2, G_{1} and G_{2} are conjugate in $\operatorname{Clos}\left(G_{i}\right)(\subset \mathrm{O}(\Lambda))$.
(2) The case $\left[\operatorname{Clos}\left(G_{i}\right)\right]=\mathfrak{A}_{4,4}$ (resp., F_{384}). By the above argument, we have $\Lambda_{G_{i}}=\Lambda_{G}$ (resp., Λ_{H}) for some identification $\Lambda=H^{2}(X, \mathbb{Z})$ (resp., $H^{2}(Y, Z)$). Hence, $\operatorname{Clos}\left(G_{i}\right)=G$ (resp., H). By Lemma 8.6, G_{1} and G_{2} are conjugate in $\mathrm{O}(\Lambda)$.

Proposition 8.9. For $\mathfrak{G}=\mathfrak{S}_{5}, L_{2}(7), \mathfrak{A}_{6}$, there exist exactly two elements G_{1}, G_{2} in \mathcal{L} up to conjugacy in $\mathrm{O}(\Lambda)$ such that $\left[G_{i}\right]=\mathfrak{G}$. We have $\Lambda_{G_{1}} \cong$ $\Lambda_{G_{2}}, q\left(\Lambda^{G_{1}}\right) \cong q\left(\Lambda^{G_{2}}\right)$ and $\Lambda^{G_{1}} \not \not 二 \Lambda^{G_{2}}$.

Proof. By Proposition 3.8 and Theorem 4.1, there exists a unique element $\left(G_{0}, S\right) \in \mathcal{S}$ up to isomorphism such that $\left[G_{0}\right]=\mathfrak{G}$. Since \mathfrak{G} is a maximal element in $\mathfrak{G}_{K 3}^{\text {symp }}$, we have $\mathrm{O}_{0}(S)=G_{0}$. By Theorem 5.1, $\overline{\mathrm{O}(S)}=\mathrm{O}(q(S))$. By Lemma 1.2 and Proposition 6.1, there exist exactly two primitive sublattices S_{1}, S_{2} of Λ such that $S_{i} \cong S$ up to $\mathrm{O}(\Lambda)$. The action of $G_{i}:=\mathrm{O}_{0}\left(S_{i}\right)$ on S_{i} is extended to that on Λ such that $\Lambda_{G_{i}}=S_{i}(i=1,2)$. Let $G \in \mathcal{L}$ such that $[G]=\mathfrak{G}$. Then $\Lambda_{G} \cong S$. Hence, we may assume that $\Lambda_{G}=S_{i}(i=1,2)$ by replacing G by $\varphi G \varphi^{-1}$ for some $\varphi \in \mathrm{O}(\Lambda)$ if necessary. Then we have $G=G_{i}$. This implies the assertion.

8.3. Proof of the main theorem

Theorem 8.10. Let $\mathfrak{G} \in \mathfrak{G}_{K 3}^{\text {symp }}$.
(1) If $\mathfrak{G}=Q_{8}, T_{24}$, there exist exactly two elements $G_{1}, G_{2} \in \mathcal{L}$ such that $\left[G_{i}\right]=\mathfrak{G}$ up to conjugacy in $\mathrm{O}(\Lambda)$. We have the following table, by changing the numbering of G_{1}, G_{2} if necessary (see Corollary 4.7):

\mathfrak{G}	n	$\left[\operatorname{Clos}\left(G_{1}\right)\right]$	$\operatorname{disc}\left(\Lambda_{G_{1}}\right)$	n	$\left[\operatorname{Clos}\left(G_{2}\right)\right]$	$\operatorname{disc}\left(\Lambda_{G_{2}}\right)$
Q_{8}	12	Q_{8}	-512	40	$Q_{8} * Q_{8}$	-1024
T_{24}	77	T_{192}	-192	54	T_{48}	-384

Here n is determined by $\left(\left[G_{i}\right], q\left(\Lambda_{G_{i}}\right)\right) \sim\left(\mathfrak{G}_{n}, q_{n}\right)$.
(2) If $\mathfrak{G}=\mathfrak{S}_{5}, L_{2}(7), \mathfrak{A}_{6}$, there exist exactly two elements $G_{1}, G_{2} \in \mathcal{L}$ such that $\left[G_{i}\right]=\mathfrak{G}$ up to conjugacy in $\mathrm{O}(\Lambda)$. We have $\Lambda_{G_{1}} \cong \Lambda_{G_{2}}, q\left(\Lambda^{G_{1}}\right) \cong$ $q\left(\Lambda^{G_{2}}\right)$, and $\Lambda^{G_{1}} \not \not 二 \Lambda^{G_{2}}$.
(3) Otherwise, there exists a unique $G \in \mathcal{L}$ such that $[G]=\mathfrak{G}$ up to conjugacy in $\mathrm{O}(\Lambda)$.

Proof. By Theorem 4.1, $(G, S) \in \mathcal{S}$ is determined uniquely by $[G]$ and $q(S)$ up to isomorphism. Assertions (1) and (3) follow from Propositions 8.1 and 8.8 and Table 10.2. Assertion (2) is the same as Proposition 8.9.

§9. Applications

Combining Xiao's result (Theorem 0.3), the following theorem is a consequence of Theorem 8.10 and the global Torelli theorem for $K 3$ surfaces (see [20]).

Theorem 9.1. Let G be a group such that $[G] \in \mathfrak{G}_{K 3}^{\text {symp }}$ (see Notation 2.2). Set $E_{1}=\left\{Q_{8}, T_{24}\right\}, E_{2}=\left\{\mathfrak{S}_{5}, L_{2}(7), \mathfrak{A}_{6}\right\}$.
(1) If $[G] \notin E_{1} \cup E_{2}$, then the moduli space of $K 3$ surfaces with faithful and symplectic G-actions is connected.
(2) If $[G] \in E_{1} \cup E_{2}$, then the moduli space of $K 3$ surfaces with faithful and symplectic G-actions has exactly two connected components.
(3) If X_{i} is a $K 3$ surface with a faithful and symplectic G_{i}-action for $i=1,2$ such that $\left[G_{i}\right] \notin E_{2}$ and $G_{1} \backslash X_{1}, G_{2} \backslash X_{2}$ have the same $A-D$ - E configuration of the singularities, then $\left[G_{1}\right]=\left[G_{2}\right]=: G$ and X_{1}, X_{2} are G deformable (see Section 0).
(4) If X is a K3 surface with a faithful and symplectic action of G of type $(\mathfrak{G}, q) \in \mathcal{Q}$, that is, $\left([G], q\left(H^{2}(X, \mathbb{Z})_{G}\right)\right) \sim(\mathfrak{G}, q)$, then the action is extended to that of type $\operatorname{Clos}(\mathfrak{G}, q)$ (see Section 4 and Table 10.4).

Assertion (4) for some cases was pointed out and studied in detail by Garbagnati ([8], [9]).

$\S 10$. Tables

10.1. Niemeier lattices

We give the list of Niemeier lattices N (see [5, Chapter 16]). Let Δ^{+}be a set of positive roots of N. We denote by $\mathrm{O}\left(N, \Delta^{+}\right)_{1}$ the group which consists of $g \in \mathrm{O}\left(N, \Delta^{+}\right)$preserving each connected component of the Dynkin diagram $R\left(N, \Delta^{+}\right)$. We set $\mathrm{O}\left(N, \Delta^{+}\right)_{2}=\mathrm{O}\left(N, \Delta^{+}\right) / \mathrm{O}\left(N, \Delta^{+}\right)_{1}$. The group $\mathrm{O}\left(N, \Delta^{+}\right)_{2}$ acts on the set of connected components of $R\left(N, \Delta^{+}\right)$.

Table 10.1

i	Root type	$\left\|\mathrm{O}\left(N_{i}, \Delta_{i}^{+}\right)_{1}\right\|$	$\mathrm{O}\left(N_{i}, \Delta_{i}^{+}\right)_{2}$	$\left\|\mathrm{O}\left(N_{i}, \Delta_{i}^{+}\right)\right\|$
1	D_{24}	1	1	1
2	$D_{16} \oplus E_{8}$	1	1	1
3	$E_{8}^{\oplus 3}$	1	\mathfrak{S}_{3}	6
4	A_{24}	2	1	2
5	$D_{12}^{\oplus 2}$	1	\mathfrak{S}_{2}	2
6	$A_{17} \oplus E_{7}$	2	1	2
7	$D_{10} \oplus E_{7}^{\oplus 2}$	1	\mathfrak{S}_{2}	2
8	$A_{15} \oplus D_{9}$	2	1	2
9	$D_{8}^{\oplus 3}$	1	\mathfrak{S}_{3}	6
10	$A_{12}^{\oplus 2}$	2	\mathfrak{S}_{2}	4
11	$A_{11} \oplus D_{7} \oplus E_{6}$	2	1	2
12	$E_{6}^{\oplus 4}$	2	\mathfrak{S}_{4}	48
13	$A_{9}^{\oplus} \oplus D_{6}$	2	\mathfrak{S}_{2}	4
14	$D_{6}^{\oplus 4}$	1	\mathfrak{S}_{4}	24
15	$A_{8}^{\oplus 3}$	2	\mathfrak{S}_{3}	12
16	$A_{7}^{\oplus+\oplus D_{5}^{\oplus 2}}$	2	$\mathfrak{S}_{2} \times \mathfrak{S}_{2}$	8
17	$A_{6}^{\oplus 4}$	2	\mathfrak{A}_{4}	24
18	$A_{5}^{\oplus 4} \oplus D_{4}$	2	\mathfrak{S}_{4}	48
19	$D_{4}^{\oplus 6}$	3	\mathfrak{S}_{6}	2160
20	$A_{4}^{\oplus 6}$	2	\mathfrak{S}_{5}	240
21	$A_{3}^{\oplus 8}$	2	$\mathbb{F}_{2}^{3} \rtimes \mathrm{GL}^{\oplus}\left(3, \mathbb{F}_{2}\right)$	2688
22	$A_{2}^{\oplus 12}$	M_{12}	190080	
23	$A_{1}^{\oplus 24}$	2	M_{24}	244823040

10.2. Abstract groups and discriminant forms

We give the list of a complete representative $\left\{\left(\mathfrak{G}_{n}, q_{n}\right)\right\}$ of \mathcal{Q} / \sim. Recall that

$$
\begin{aligned}
\mathcal{Q} & =\left\{(\mathfrak{G}, q) \mid \exists G \in \mathcal{L} \text { such that } \mathfrak{G}=[G], q \cong q\left(\Lambda_{G}\right)\right\} \\
& =\left\{(\mathfrak{G}, q) \mid \exists(G, N) \in \mathcal{N} \text { such that } \mathfrak{G}=[G], q \cong q\left(N_{G}\right)\right\}
\end{aligned}
$$

and $(\mathfrak{G}, q) \sim\left(\mathfrak{G}^{\prime}, q^{\prime}\right)$ if and only if $\mathfrak{G}=\mathfrak{G}^{\prime}, q \cong q^{\prime}$ (see Section 3.4). For $q: A(q) \rightarrow \mathbb{Q} / 2 \mathbb{Z}$, we denote the order of $A(q)$ by $|q|$. We use the following
notation (see [5]):

$$
\begin{array}{ll}
a^{+n}=q_{+}^{(p)}(a)^{\oplus n}, & a^{-n}=q_{+}^{(p)}(a)^{\oplus n-1} \oplus q_{-}^{(p)}(a), \\
b_{\mathrm{II}}^{+n}=u^{(2)}(b)^{\oplus n}, & b_{\mathrm{II}}^{-n}=u^{(2)}(b)^{\oplus n-1} \oplus v^{(2)}(b), \quad b_{t}^{d r}=q\left(L_{r, d, t, \mathrm{I}}^{(2)}(b)\right),
\end{array}
$$

where p is an odd prime, $a=p^{k}, b=2^{k}$, and $L_{r, d, t, e}^{(2)}$ is a (unique) unimodular lattice over \mathbb{Z}_{2} which has the invariants r, d, t, e defined in Proposition 1.6 (see Section 1). For example,

$$
\begin{aligned}
A\left(q_{63}\right) & \cong(\mathbb{Z} / 2)^{\oplus 3} \oplus \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 9 \mathbb{Z} \\
q_{63} & \cong\langle-1 / 2\rangle \oplus\left(\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right) \oplus\langle 2 / 3\rangle \oplus\langle 2 / 9\rangle .
\end{aligned}
$$

In the list, for example, q_{5} is isomorphic to q_{16}. The column i indicates the catalog number of \mathfrak{G}_{n} in GAP (see Appendix).

Table 10.2

n	$\left\|\mathfrak{G}_{n}\right\|$	i	\mathfrak{G}_{n}	$\left\|q_{n}\right\|$	q_{n}	$c\left(\mathfrak{G}_{n}\right)$
1	2	1	C_{2}	256	$2_{\text {II }}^{+8}$	8
2	3	1	C_{3}	729	3^{+6}	12
3	4	2	C_{2}^{2}	1024	$2_{\text {II }}^{-6}, 4_{\text {II }}^{-2}$	12
4	4	1	C_{4}	1024	$2_{2}^{+2}, 4_{\mathrm{II}}^{+4}$	14
5	5	1	C_{5}	625	$\sharp 16$	16
6	6	1	D_{6}	972	$2_{\mathrm{II}}^{-2}, 3^{+5}$	14
7	6	2	C_{6}	1296	$\sharp 18$	16
8	7	1	C_{7}	343	$\sharp 33$	18
9	8	5	C_{2}^{3}	1024	$2_{\mathrm{II}}^{+6}, 4_{2}^{+2}$	14
10	8	3	D_{8}	1024	4_{1}^{+5}	15
11	8	2	$C_{2} \times C_{4}$	1024	$\sharp 22$	16
12	8	4	Q_{8}	512	$2_{7}^{-3}, 8_{\text {II }}^{-2}$	17
13	8	4	Q_{8}	512	$\sharp 40$	17
14	8	1	C_{8}	512	$\sharp 26$	18
15	9	2	C_{3}^{2}	729	$\sharp 30$	16
16	10	1	D_{10}	625	5^{+4}	16
17	12	3	\mathfrak{A}_{4}	576	$2_{\text {II }}^{-2}, 4_{\text {II }}^{-2}, 3^{+2}$	16
18	12	4	D_{12}	1296	$2_{\mathrm{II}}^{+4}, 3^{+4}$	16

Table 10.2

n	$\left\|\mathfrak{G}_{n}\right\|$	i	\mathfrak{G}_{n}	$\left\|q_{n}\right\|$	q_{n}	$c\left(\mathfrak{G}_{n}\right)$
19	12	5	$C_{2} \times C_{6}$	1728	$\sharp 61$	18
20	12	1	Q_{12}	432	$\sharp 61$	18
21	16	14	C_{2}^{4}	512	$2_{\text {II }}^{+6}, 8_{1}^{+1}$	15
22	16	11	$C_{2} \times D_{8}$	1024	$2_{\mathrm{II}}^{+2}, 4_{0}^{+4}$	16
23	16	3	$\Gamma_{2} c_{1}$	512	$\sharp 39$	17
24	16	13	$Q_{8} * C_{4}$	1024	$\sharp 40$	17
25	16	2	C_{4}^{2}	1024	$\sharp 75$	18
26	16	8	S_{16}	512	$2_{7}^{+1}, 4_{7}^{+1}, 8_{\text {II }}^{+2}$	18
27	16	12	$C_{2} \times Q_{8}$	256	$\sharp 75$	18
28	16	6	$\Gamma_{2} d$	256	$\sharp 80$	19
29	16	9	Q_{16}	256	$\sharp 80$	19
30	18	4	$\mathfrak{A}_{3,3}$	729	$3^{+4}, 9^{-1}$	16
31	18	3	$C_{3} \times D_{6}$	972	$\sharp 48$	18
32	20	3	$\mathrm{Hol}^{2}\left(C_{5}\right)$	500	$2_{6}^{-2}, 5^{+3}$	18
33	21	1	$C_{7} \rtimes C_{3}$	343	7^{+3}	18
34	24	12	\mathfrak{S}_{4}	576	$4_{3}^{+3}, 3^{+2}$	17
35	24	13	$C_{2} \times \mathfrak{A}_{4}$	576	$\sharp 51$	18
36	24	8	$C_{3} \rtimes D_{8}$	432	$\sharp 61$	18
37	24	3	T_{24}	384	$\sharp 77$	19
38	24	3	T_{24}	384	$\sharp 54$	19
39	32	27	$2^{4} C_{2}$	512	$2_{\text {II }}^{+2}, 4_{0}^{+2}, 8_{7}^{+1}$	17
40	32	49	$Q_{8} * Q_{8}$	1024	4_{7}^{+5}	17
41	32	6	$\Gamma_{7} a_{1}$	512	$\sharp 56$	18
42	32	31	$\Gamma_{4} c_{2}$	256	$\sharp 75$	18
43	32	7	$\Gamma_{7} a_{2}$	256	$\sharp 80$	19
44	32	11	$\Gamma_{3} e$	256	$\sharp 80$	19
45	32	44	$\Gamma_{6} a_{2}$	256	$\sharp 80$	19
46	36	9	$3^{2} C_{4}$	324	$2_{6}^{-2}, 3^{+2}, 9^{-1}$	18
47	36	11	$C_{3} \times \mathfrak{A}_{4}$	432	$\sharp 61$	18
48	36	10	$\mathfrak{S}_{3,3}$	972	$2_{\text {II }}^{-2}, 3^{+3}, 9^{-1}$	18
49	48	50	$2^{4} C_{3}$	384	$2_{\text {II }}^{-4}, 8_{1}^{+1}, 3^{-1}$	17
50	48	3	$4^{2} C_{3}$	256	$\sharp 75$	18
51	48	48	$C_{2} \times \mathfrak{S}_{4}$	576	$2_{\text {II }}^{+2}, 4_{2}^{+2}, 3^{+2}$	18
52	48	49	$2^{2}\left(C_{2} \times C_{6}\right.$	288	$\sharp 78$	19

(continued)

Table 10.2

n	$\left\|\mathfrak{G}_{n}\right\|$	i	\mathfrak{G}_{n}	$\left\|q_{n}\right\|$	q_{n}	$c\left(\mathfrak{G}_{n}\right)$
53	48	30	$2^{2} Q_{12}$	288	\#78	19
54	48	29	T_{48}	384	$2_{7}^{+1}, 8_{\text {II }}^{-2}, 3^{-1}$	19
55	60	5	\mathfrak{A}_{5}	300	$2_{\text {II }}^{-2}, 3^{+1}, 5^{-2}$	18
56	64	138	$\Gamma_{25} a_{1}$	512	$4_{5}^{+3}, 8_{1}^{+1}$	18
57	64	242	$\Gamma_{13} a_{1}$	256	\#75	18
58	64	32	$\Gamma_{22} a_{1}$	256	H80	19
59	64	35	$\Gamma_{23} a_{2}$	256	\#80	19
60	64	136	$\Gamma_{26} a_{2}$	256	\#80	19
61	72	43	$\mathfrak{A}_{4,3}$	432	$4_{\text {II }}^{-2}, 3^{-3}$	18
62	72	40	N_{72}	324	$4_{1}^{+1}, 3^{+2}, 9^{-1}$	19
63	72	41	M_{9}	216	$2_{7}^{-3}, 3^{-1}, 9^{-1}$	19
64	80	49	$2^{4} C_{5}$	160	\#81	19
65	96	227	$2^{4} D_{6}$	384	$2_{\text {II }}^{-2}, 4_{7}^{+1}, 8_{1}^{+1}, 3^{-1}$	18
66	96	70	$2^{4} C_{6}$	384	$\sharp 76$	19
67	96	64	$4^{2} D_{6}$	256	\#80	19
68	96	195	$2^{3} D_{12}$	288	\#78	19
69	96	204	$\left(Q_{8} * Q_{8}\right) \rtimes C_{3}$	192	\#77	19
70	120	34	\mathfrak{S}_{5}	300	$4_{3}^{-1}, 3^{+1}, 5^{-2}$	19
71	128	931	F_{128}	256	\#80	19
72	144	184	\mathfrak{A}_{4}^{2}	288	\#78	19
73	160	234	$2^{4} D_{10}$	160	\#81	19
74	168	42	$L_{2}(7)$	196	$4_{1}^{+1}, 7^{+2}$	19
75	192	1023	$4^{2} \mathfrak{A}_{4}$	256	$2_{\text {II }}^{-2}, 8_{6}^{-2}$	18
76	192	955	H_{192}	384	$4_{4}^{-2}, 8_{7}^{+1}, 3^{-1}$	19
77	192	1493	T_{192}	192	$4_{7}^{-3}, 3^{+1}$	19
78	288	1026	$\mathfrak{A}_{4,4}$	288	$2_{\text {II }}^{+2}, 8_{1}^{+1}, 3^{+2}$	19
79	360	118	\mathfrak{A}_{6}	180	$4_{5}^{-1}, 3^{+2}, 5^{+1}$	19
80	384	18135	F_{384}	256	$4_{7}^{+1}, 8_{6}^{+2}$	19
81	960	11357	M_{20}	160	$2_{\text {II }}^{-2}, 8_{1}^{+1}, 5^{-1}$	19

10.3. Invariant lattices Λ^{G}

For $G \in \mathcal{L}$, there exists a number n such that $\left([G], q\left(\Lambda_{G}\right)\right) \sim\left(\mathfrak{G}_{n}, q_{n}\right)$ (see Table 10.2). Here we give the invariant lattices Λ^{G} for each n. We set

$$
r=\operatorname{rank} \Lambda^{G}=22-c(G), \quad d=\operatorname{disc} \Lambda^{G}, \quad q=-q_{n} \cong q\left(\Lambda^{G}\right)
$$

In the table, we set

$$
U=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right), \quad D_{4}=\left(\begin{array}{cccc}
2 & 0 & 0 & -1 \\
0 & 2 & 0 & -1 \\
0 & 0 & 2 & -1 \\
-1 & -1 & -1 & 2
\end{array}\right)
$$

and E_{8} denotes the root lattice of type E_{8}, as usual. For abelian $G \in \mathcal{L}$, the Gramian matrices of Λ^{G} were determined in [11].

Table 10.3

n	r	d	q	Gramian matrix
1	14	-256	$2_{\text {II }}^{+8}$	$U^{\oplus 3} \oplus E_{8}(-2)$
2	10	-729	3^{+6}	$U \oplus U(3)^{\oplus 2} \oplus A_{2}(-1)^{\oplus 2}$
3	10	-1024	$2_{\text {II }}^{-6}, 4_{\text {II }}^{-2}$	$U \oplus U(2)^{\oplus 2} \oplus D_{4}(-2)$
4	8	-1024	$2_{6}^{+2}, 4_{\text {II }}^{+4}$	$U \oplus U(4)^{\oplus 2} \oplus\langle-2\rangle^{\oplus 2}$
6	8	-972	$2_{\text {II }}^{-2}, 3^{-5}$	$U(3) \oplus A_{2}(2) \oplus A_{2}(-1)^{\oplus 2}$
9	8	-1024	$2_{\text {II }}^{+6}, 4_{6}^{+2}$	$U(2)^{\oplus 3} \oplus\langle-4\rangle^{\oplus 2}$
10	7	1024	4_{7}^{+5}	$U \oplus\langle 4\rangle^{\oplus 2} \oplus\langle-4\rangle^{\oplus 3}$
12	5	512	$2_{1}^{-3}, 8_{\text {II }}^{-2}$	$\left(\begin{array}{ccc}6 & 2 & 2 \\ 2 & 6 & -2 \\ 2 & -2 & 6\end{array}\right) \oplus\langle-2\rangle^{\oplus 2}$
16	6	-625	5^{+4}	$U \oplus U(5)^{\oplus 2}$
17	6	-576	$2_{\text {II }}^{-2}, 4_{\text {II }}^{-2}, 3^{+2}$	$U \oplus A_{2}(2) \oplus A_{2}(-4)$
18	6	-1296	$2_{\text {II }}^{+4}, 3^{+4}$	$U \oplus U(6)^{\oplus 2}$
21	7	512	$2_{\text {II }}^{+6}, 8_{7}^{+1}$	$U(2)^{\oplus 3} \oplus\langle-8\rangle$
22	6	-1024	$2_{\text {II }}^{+2}, 4_{0}^{+4}$	$U(2) \oplus\langle 4\rangle^{\oplus 2} \oplus\langle-4\rangle^{\oplus 2}$
26	4	-512	$2_{1}^{+1}, 4_{1}^{+1}, 8_{\text {II }}^{+2}$	$U(8) \oplus\langle 2\rangle \oplus\langle 4\rangle$
30	6	-729	$3^{+4}, 9^{+1}$	$U(3))^{\oplus 2} \oplus\left(\begin{array}{ll}2 & 3 \\ 3 & 0\end{array}\right)$
32	4	-500	$2_{2}^{-2}, 5^{+3}$	$U(5) \oplus\left(\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right)$
33	4	-343	7^{-3}	$U(7) \oplus\left(\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right)$
34	5	576	$4_{5}^{+3}, 3^{+2}$	$U \oplus A_{2}(4) \oplus\langle-12\rangle$
39	5	512	$2_{\text {II }}^{+2}, 4_{0}^{+2}, 8_{1}^{+1}$	$U(2) \oplus\langle 4\rangle \oplus\langle-4\rangle \oplus\langle 8\rangle$
40	5	1024	4_{1}^{+5}	$\langle 4\rangle^{\oplus 3} \oplus\langle-4\rangle^{\oplus}{ }^{\text {a }}$
46	4	-324	$2_{2}^{-2}, 3^{+2}, 9^{+1}$	$A_{2} \oplus\langle 6\rangle \oplus\langle-18\rangle$
48	4	-972	$2_{\text {II }}^{-2}, 3^{-3}, 9^{+1}$	$U(3) \oplus A_{2}(6)$
49	5	384	$2_{\text {II }}^{-4}, 8_{7}^{+1}, 3^{+1}$	$U(2) \oplus A_{2}(2) \oplus\langle-8\rangle$

(continued)

Table 10.3

n	r	d	q	Gramian matrix
51	4	-576	$2_{\text {II }}^{+2}, 4_{6}^{+2}, 3^{+2}$	$U(2) \oplus\langle 12\rangle^{\oplus 2}$
54	3	384	$2_{1}^{+1}, 8_{\text {II }}^{-2}, 3^{+1}$	$\left(\begin{array}{cccc}2 & 0 & 0 \\ 0 & 16 & 8 \\ 0 & 8 & 16\end{array}\right)$
55	4	-300	$2_{\text {II }}^{-2}, 3^{-1}, 5^{-2}$	$U \oplus A_{2}(10)$
56	4	-512	$4_{3}^{+3}, 8_{7}^{+1}$	$\langle 4\rangle^{\oplus 3} \oplus\langle-8\rangle$
61	4	-432	$4_{\text {II }}^{-2}, 3^{+3}$	$U(3) \oplus A_{2}(4)$
62	3	324	$4_{7}^{+1}, 3^{+2}, 9^{+1}$	$\left(\begin{array}{llll}6 & 0 & 3 \\ 0 & 6 & 3 \\ 3 & 3 & 12\end{array}\right)$
63	3	216	$2_{1}^{-3}, 3^{+1}, 9^{+1}$	$\left(\begin{array}{cccc}2 & 0 & 0 \\ 0 & 12 & 6 \\ 0 & 6 & 12\end{array}\right)$
65	4	-384	$2_{\text {II }}^{-2}, 4_{1}^{+1}, 8_{7}^{+1}, 3^{+1}$	$A_{2}(2) \oplus\langle 4\rangle \oplus\langle-8\rangle$
70	3	300	$4_{5}^{-1}, 3^{-1}, 5^{-2}$	$\left(\begin{array}{ccc}4 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 20\end{array}\right),\left(\begin{array}{llll}4 & 2 & 2 \\ 2 & 6 & 1 \\ 2 & 1 & 16\end{array}\right)$
74	3	196	$4_{7}^{+1}, 7^{+2}$	$\left(\begin{array}{llll}2 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 28\end{array}\right),\left(\begin{array}{llll}4 & 2 & 2 \\ 2 & 8 & 1 \\ 2 & 1 & 8\end{array}\right)$
75	4	-256	$2_{\text {II }}^{-2}, 8_{2}^{-2}$	$\left(\begin{array}{lllll}4 & 0 & 2 & 0 \\ 0 & 4 & 2 & 0 \\ 2 & 2 & 4 & 4 \\ 0 & 0 & 4 & 0\end{array}\right)$
76	3	384	$4_{4}^{-2}, 8_{1}^{+1}, 3^{+1}$	$\left(\begin{array}{llll}4 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 12\end{array}\right)$
77	3	192	$4_{1}^{-3}, 3^{-1}$	$\left(\begin{array}{llll}4 & 0 & 0 \\ 0 & 8 & 4 \\ 0 & 4 & 8\end{array}\right)$
78	3	288	$2_{\text {II }}^{+2}, 8_{7}^{+1}, 3^{+2}$	$\left(\begin{array}{llll}8 & 4 & 4 \\ 4 & 8 & 2 \\ 4 & 2 & 8\end{array}\right)$
79	3	180	$4_{3}^{-1}, 3^{+2}, 5^{+1}$	$\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 8 & 0 \\ 0 & 0 & 12\end{array}\right),\left(\begin{array}{llll}6 & 0 & 3 \\ 0 & 6 & 3 \\ 3 & 3 & 8\end{array}\right)$
80	3	256	$4_{1}^{+1}, 8_{2}^{+2}$	$\left(\begin{array}{llll}4 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right)$
81	3	160	$2_{\text {II }}^{-2}, 8_{7}^{+1}, 5^{-1}$	$\left(\begin{array}{lll}4 & 0 & 2 \\ 0 & 4 & 2 \\ 2 & 2 & 12\end{array}\right)$

10.4. Trees of groups with common invariant lattices

We give the trees of

$$
T_{S}=\left\{\mathfrak{G}_{n} \mid S\left(\mathfrak{G}_{n}, q_{n}\right) \cong S\right\}=\left\{\mathfrak{G}_{n} \mid q_{n} \cong q(S)\right\}
$$

for T_{S} with $\sharp T_{S} \geq 2$. In the table below, $\sharp n$ denotes \mathfrak{G}_{n}. The maximal element in each T_{S} corresponds to an element in $\mathcal{Q}_{\text {clos }}$ defined by (4.7). The
extensions $\sharp 5-\sharp 16, \sharp 7-\sharp 18, \sharp 11-\sharp 22$, and $\sharp 15-\sharp 30$ are studied in detail by Garbagnati ([8], [9]).

10.5. Extensions of $G \in \mathcal{L}$

We give the list of possible extensions of $G \in \mathcal{L}_{\text {clos }}$. For example, let $G \in \mathcal{L}$ of type $\left(\mathfrak{G}_{55}, q_{55}\right)$; that is, $\left([G], q\left(\Lambda_{G}\right)\right) \sim\left(\mathfrak{G}_{55}, q_{55}\right)$. Then, for $i=1,2$, there exists an element $G^{\prime} \in \mathcal{L}_{\text {clos }}$ of type $\left(\mathfrak{G}_{79}, q_{79}\right)$ such that $G \subset G^{\prime}$ and G^{\prime} is conjugate to G_{i} in Theorem $8.10(2)$. We omit the 11 maximal cases, $n=54,62,63,70,74,76,77,78,79,80,81$, for there is no proper extension.

Table 10.5

n	Extensions
1	$\begin{aligned} & 3,4,6,9,10,12,16,17,18,21,22,26,30,32,34,39,40,46,48,49, \\ & 51,54,55,56,61,62,63,65,70,74,75,76,77,78,79,80,81 \end{aligned}$
2	$\begin{aligned} & 6,17,18,30,33,34,46,48,49,51,54,55,61,62,63,65,70,74,75, \\ & 76,77,78,79,80,81 \end{aligned}$
3	$\begin{aligned} & 9,10,17,18,21,22,26,34,39,40,48,49,51,54,55,56,61,62,65, \\ & 70,74,75,76,77,78,79,80,81 \end{aligned}$
4	$10,12,22,26,32,34,39,40,46,51,54,56,61,62,63,65,70,74,75$, $76,77,78,79,80,81$
6	$18,30,34,46,48,51,54,55,61,62,63,65,70,74,76,77,78,79,80,81$
9	$21,22,39,40,49,51,56,65,75,76,77,78,80,81$
10	$22,26,34,39,40,51,54,56,61,62,65,70,74,75,76,77,78,79,80,81$
12	26, 54, 63, 75, 80, 81
16	$32,55,70,79,81$
17	$34,49,51,55,61,65,70,74,75,76,77,78,79,80,81$
18	$48,51,54,61,62,70,76,77,78$
21	$39,49,56,65,75,76,77,78,80,81$
22	$39,40,51,56,65,75,76,77,78,80,81$
26	54, 80
30	46, 48, 61, 62, 63, 78, 79
32	70
33	74
34	51, 61, 65, 70, 74, 76, 77, 78, 79, 80, 81
39	$56,65,75,76,77,78,80,81$
40	56, 76, 77, 80
46	62, 63, 79
48	62
49	65, 75, 76, 78, 80, 81
51	76, 77, 78
55	70, 79, 81
56	76, 77, 80
61	78
65	76, 78, 80, 81
75	80, 81

10.6. Root types of N^{G}

We give the type of the root sublattice of N^{G}, which is generated by vectors $v \in N^{G}$ with $\langle v, v\rangle=-2$, for each $(G, N) \in \mathcal{N}$ such that $[G]=\mathfrak{G}_{n}$ and $q\left(N_{G}\right) \cong q_{n}$ (see Table 10.2). In the list, elements in \mathcal{N}^{\prime} are enclosed by boxes (see Proposition 3.10), and the number of vectors $v \in N^{G}$ with
$\langle v, v\rangle=-4$ or -6 are given for the cases $n=32,41,56,63$. For Niemeier lattices $N=N_{i}$, see Table 10.1.

Table 10.6
$n=1$:

i	3	6	7	8	9
Type	E_{8}	$A_{1}^{\oplus 9} \oplus E_{7}$	D_{9}	$A_{1}^{\oplus 8} \oplus D_{8}$	D_{8}
i	11	12	12	13	14
Type	$A_{1}^{\oplus 6} \oplus D_{4} \oplus D_{6}$	$D_{4}^{\oplus 4}$	$D_{4} \oplus E_{6}$	$A_{1}^{\oplus 10} \oplus D_{6}$	$D_{5}^{\oplus 2}$
i	15	16	16	16	18
Type	A_{8}	$A_{1}^{\oplus 8} \oplus D_{4}^{\oplus 2}$	$A_{1}^{\oplus 4} \oplus A_{7}$	$D_{4} \oplus D_{5}$	$A_{1}^{\oplus 12} \oplus D_{4}$
i	18	19	19	20	21
Type	$A_{1}^{\oplus 3} \oplus A_{3} \oplus A_{5}$	$A_{3}^{\oplus 4}$	$D_{4}^{\oplus 2}$	$A_{4}^{\oplus 2}$	$A_{1}^{\oplus 16}$
i	21	22	23		
Type	$A_{1}^{\oplus 4} \oplus A_{3}^{\oplus 2}$	$A_{2}^{\oplus 4}$	$A_{1}^{\oplus 8}$		

$n=2$:

i	12	14	17	18	19	19	21	22
Type	$E_{6} D_{6}$	A_{6}	$A_{2} \oplus A_{5}$	$A_{2}^{\oplus 6}$	$D_{4} \oplus A_{2}^{\oplus{ }^{2}}$	$A_{3}^{\oplus 2}$	$A_{2}^{\oplus 3}$	$A_{1}^{\oplus 6}$

$n=3:$

i	12	16	16	18	19	19	21
Type	$D_{4}^{\oplus 2}$	$A_{1}^{\oplus 8}$	$D_{4}^{\oplus 2}$	$A_{1}^{\oplus 6} \oplus$	A_{3}	$A_{3}^{\oplus 2}$	$D_{4}^{\oplus 2} A_{1}^{\oplus 4}$
i	21	21	21	22	23	23	
Type	$A_{1}^{\oplus 8}$	$A_{3} \oplus A_{1}^{\oplus 6}$	$A_{3}^{\oplus 2}$	$A_{2}^{\oplus 2}$	$A_{1}^{\oplus 4} A_{1}^{\oplus 8}$		

$n=4:$

i	13	18	19	20	21	22
Type	$D_{5} D_{4} A_{3}^{\oplus 2} A_{1}^{\oplus 2} \oplus A_{4} A_{1}^{\oplus 2} \oplus A_{3} A_{1}^{\oplus 2} \oplus A_{2}^{\oplus 2} A_{1}^{\oplus 4}$					

(continued)
$n=5,16$:

$$
\begin{array}{c|llll}
\hline i & 19 & 20 & 22 & \boxed{23} \\
\hline \text { Type } & D_{4} A_{4} & A_{2}^{\oplus 2} & A_{1}^{\oplus 4} \\
\hline
\end{array}
$$

$n=6:$

i	12	12	14	18	18	19
Type	D_{4}	E_{6}	D_{5}	$A_{1}^{\oplus 3} \oplus A_{2}$	$A_{2} \oplus A_{5} A_{2}^{\oplus 4}$	
i	19	19	21	22	22	$\boxed{23}$
Type	$A_{2}^{\oplus 2} \oplus A_{3}$	$D_{4} A_{1}^{\oplus 2} \oplus A_{3}$	A_{2}	$A_{2}^{\oplus 3}$	$A_{1}^{\oplus 4}$	

$n=7,18$:

$$
\begin{array}{c|cccccc|c}
\hline i & 12 & 18 & 19 & 19 & 21 & 22 & \boxed{23} \\
\hline \text { Type } & D_{4} A_{1}^{\oplus 3} \oplus A_{2} & A_{2}^{\oplus 2} A_{3} A_{1}^{\oplus 4} A_{2} A_{1}^{\oplus 2} \\
\hline
\end{array}
$$

$n=8,33$:

i	$21 \boxed{23}$
Type	$A_{3} A_{1}^{\oplus 3}$

$n=9:$

i	21	21	23	23	23
Type	$A_{1}^{\oplus 4}$	$A_{1}^{\oplus 8}$	$A_{1}^{\oplus 2}$	$A_{1}^{\oplus 4}$	$A_{1}^{\oplus 8}$

$n=10$:
$\left.\begin{array}{c|ccccc|c}\hline i & 18 & 19 & 21 & 21 & 22 & \boxed{23}\end{array}\right) 23$.
$n=11,22$:

i	21	$\boxed{23}$
Type	$A_{1}^{\oplus 4} A_{1}^{\oplus 2}$	$A_{1}^{\oplus 4}$

$n=12$:

i	18	22	$\boxed{23}$
Type	$D_{4} A_{1}^{\oplus 3} \oplus A_{2} A_{1}^{\oplus 4}$		

$n=13,24,28,29,37,40,43,44,45,59,60,67,69,71,77,80$:

i	23
Type	$A_{1}^{\oplus 2}$

(continued)
$n=34$:

i	19	19	21	21	21	22	23	23	23	$\boxed{23}$
Type	$A_{2}^{\oplus 2}$	$A_{2} \oplus A_{3}$	$A_{1}^{\oplus 2} A_{1}^{\oplus 2} \oplus A_{3}$	A_{3}	$A_{2}^{\oplus 2}$	$A_{1}^{\oplus 2}$	$A_{1}^{\oplus 2}$	$A_{1}^{\oplus 3}$	$A_{1}^{\oplus 4}$	

$n=35,51$:

| i | 21 | 21 | 23 | 23 | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | $A_{1}^{\oplus 2}$ | $A_{1}^{\oplus 4}$ | A_{1} | $A_{1}^{\oplus 2}$ | $A_{1}^{\oplus 2}$ |

$n=38,54:$

i	$18 \quad 22 \boxed{23}$	
Type	$A_{2} A_{2}$	A_{1}

$n=41$:

i	23	23	$\boxed{23}$
Type	$A_{1}^{\oplus 2}$	$A_{1}^{\oplus 2}$	$A_{1}^{\oplus 2}$
$\sharp\left\{v \in N^{G} \mid\langle v, v\rangle=-4\right\}$	26	26	42

$n=46$:

i	22	22
Type	$A_{1}^{\oplus 2} \oplus A_{2} A_{1} \oplus A_{2}^{\oplus 2} A_{1}^{\oplus 3}$	

$n=48:$

i	19	22
23		
Type	A_{2}	A_{2}

$n=49$:

i	23	23	$\boxed{23}$
Type	$A_{1} A_{1}^{\oplus 4}$	$A_{1}^{\oplus 5}$	

$n=52,53,68,72,78:$

$$
\begin{array}{c|c|}
\hline i & 23 \boxed{23} \\
\hline \text { Type } & A_{1} A_{1}^{\oplus 2} \\
\hline
\end{array}
$$

$n=55$:

i	19	22	22	23	$\boxed{23}$
Type	D_{4}	A_{2}	$A_{2}^{\oplus 2}$	$A_{1}^{\oplus 3}$	$A_{1}^{\oplus 4}$

$$
n=56:
$$

i	2323 Type
$\not A_{1}^{\oplus 2} A_{1}^{\oplus 2}$	
$\sharp\left\{v \in N^{G} \mid\langle v, v\rangle=-4\right\}$	26

$n=58:$

i	23	23
Type	$A_{1}^{\oplus 2} A_{1}^{\oplus 2}$	

$n=62$:

i	$22 \boxed{23}$	
Type	A_{2}	A_{1}

$n=63:$

i	22	22	$\boxed{23}$
Type	$A_{1}^{\oplus 3} A_{1}^{\oplus 2} \oplus A_{2} A_{1}^{\oplus 3}$		
$\sharp\left\{v \in N^{G} \mid\langle v, v\rangle=-6\right\}$	14	26	

$n=64,73,81$:

$$
\begin{array}{c|cc}
\hline i & 23 \boxed{23} \\
\hline \text { Type } & A_{1}^{\oplus 3} A_{1}^{\oplus 4} \\
\hline
\end{array}
$$

$n=65$:

i	23	23	23
23			
Type	A_{1}	$A_{1}^{\oplus 2}$	$A_{1}^{\oplus 3}$

$n=66,76:$

| i | $2323 \boxed{23}$ |
| :---: | :--- | :--- |
| Type | $A_{1} A_{1} A_{1}^{\oplus 2}$ |

$n=70$:

| i | 19 | 22 | $23 \boxed{23}$ |
| :---: | :--- | :--- | :--- | :--- |
| Type | $A_{3} A_{2} A_{1} A_{1}^{\oplus^{2}}$ | | |

$n=74:$

i	21	23	$\boxed{23}$
Type	A_{3}	$A_{1}^{\oplus 2}$	$A_{1}^{\oplus 3}$

$n=79$:

i	22	23	$\boxed{23}$
Type	$A_{2}^{\oplus 2}$	$A_{1}^{\oplus 2}$	$A_{1}^{\oplus 3}$

Appendix: computations using GAP

In this appendix, we briefly explain how to check Lemmas 8.2-8.4 using GAP [12].

For Lemma 8.2, consider the case $\mathfrak{H}=T_{192}\left(=\mathfrak{G}_{77}\right)$. By Table 10.4, it is sufficient to check that there exists only one conjugacy class of subgroups of T_{192} which are isomorphic to $T_{24}=\mathfrak{G}_{37}$ (resp., $\left(Q_{8} * Q_{8}\right) \rtimes C_{3}=$ \mathfrak{G}_{69}). GAP has the catalog of all groups of small orders, and the command $\operatorname{Small} \operatorname{Group}(k, i)$ returns the i th group of order k in the catalog (see [2]). For example, SmallGroup $(192,1493)$ returns T_{192} by Table 10.2. The command IsomorphicSubgroups (G, H) enumerates all conjugacy classes of subgroups of G which are isomorphic to H. Hence, we can check the assertion as follows. ${ }^{*}$

```
gap> h:=SmallGroup(192,1493);;
gap> g1:=SmallGroup(24,3);;
gap> g2:=SmallGroup (96,204);;
gap> Size( IsomorphicSubgroups( h , g1 ) );
1
gap> Size( IsomorphicSubgroups( h , g2 ) );
1
```

Here the command $\operatorname{Size}(a)$ returns the size of the object a. The cases $\mathfrak{H}=T_{48}, H_{192}, M_{20}$ are similar.

For Lemma 8.3, we realize G, \widetilde{G} as quotient groups of subgroups of \mathfrak{S}_{36}. For example, the linear transformations

$$
\begin{aligned}
& (x, y, z, u, v, w) \mapsto\left(e^{2 \pi i / 6} x, y, z, u, v, w\right) \\
& (x, y, z, u, v, w) \mapsto(y, x, z, u, v, w)
\end{aligned}
$$

correspond to
(123456),

$$
(17)(28)(39)(410)(511)(612),
$$

respectively. We can check Lemma 8.3 as follows.

[^2]```
a1:=(1,2,3,4,5,6);
a2:=(7,8,9,10,11,12);
a3:=(13,14,15,16,17,18);
a4:=(19,20, 21, 22,23,24);
a5:=(25,26,27,28,29,30);
a6:=(31,32,33,34,35,36);
a123456:=a1*a2*a3*a4*a5*a6;
b123:=(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)*
(6,12,18);
b456:=(19,25,31)(20, 26,32) (21, 27,33) (22, 28,34)*
(23, 29, 35) (24,30, 36);
b23:=(7,13) (8,14) (9,15) (10,16) (11, 17) (12,18);
b56:=(25,31)(26,32) (27,33) (28,34) (29,35) (30,36);
b14:=(1,19) (2,20) (3,21) (4, 22) (5,23) (6,24);
b2536:=(7, 25,13,31) (8, 26,14,32) (9, 27,15,33)*
(10, 28, 16, 34) (11, 29, 17, 35) (12, 30, 18, 36);
g0:=Group(
a1^3*a2^3,
a4^3*a5^3,
a5^2*a6^4*b123,
a2^4*a3^2*b456,
a1^3*a2^3*a3^3*b23*b56,
a123456
);
gg0:=ClosureGroup(gg0, b14*b2536);
n:=Group(a123456);
f:=NaturalHomomorphismByNormalSubgroup(gg0,n);
g:=Image(f,g0);
gg:=Image(f);
list:=[[48,49],[48,30],[96,195],[144, 184]];
 for nn in list do
 subgrps:=IsomorphicSubgroups(gg,SmallGroup(nn));
 subgrps:=Filtered(subgrps,x->IsSubgroup(g,Image(x)));
 Display(Size(subgrps));
od;
```

Here, for example, $\mathrm{a}^{\wedge} 3 * \mathrm{a} 2^{\wedge} 3$ corresponds to the transformation (8.6). The quotient groups g , gg by the group n , which corresponds to the subgroup of homothetic transformations, are $G, \widetilde{G}$, respectively. By Table 10.4, it is sufficient to check that there exists only one conjugacy class of subgroups of $\widetilde{G}$ which are isomorphic to $\mathfrak{G}_{n}$ and contained in $G$ for $n=52,53,68,72$. This is done in the last paragraph of the above program. The result is the following:

Thus, Lemma 8.3 has been checked. Lemma 8.4 is similarly checked.
Acknowledgments. The author would like to express his thanks to his former supervisor Professor Tomohide Terasoma for useful comments on the manuscript. He also wishes to thank A. Garbagnati, S. Kondō, S. Mukai, V. Nikulin, and U. Whitcher for comments and encouragement. Finally, he deeply thanks the referees for helpful comments.

## References

[1] W. P. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact Complex Surfaces, 2nd ed., Ergeb. Math. Grenzgeb. (3), Springer, Berlin, 2004.
[2] H. U. Besche, B. Eick, and E. A. O'Brien, A millennium project: constructing small groups, Internat. J. Algebra Comput. 12 (2002), 623-644.
[3] D. Burns and M. Rapoport, On the Torelli problem for Kählerian K-3 surfaces, Ann. Sci. Éc. Norm. Supér. (4) 8 (1975), 235-273.
[4] J. W. S. Cassels, Rational Quadratic Forms, Lond. Math. Soc. Monogr. Ser. 13, Academic Press, New York, 1978.
[5] J. H. Conway and N. J. Sloane, Sphere Packings, Lattices and Groups, 3rd ed., Grundlehren Math. Wiss. 290, Springer, New York, 1999.
[6] A. G. Earnest and J. S. Hsia, Spinor norms of local integral rotations, II, Pacific J. Math. 61 (1975), 71-86.
[7] A. Garbagnati, Symplectic automorphisms on Kummer surfaces, Geom. Dedicata 145 (2010), 219-232.
[8] - The dihedral group $\mathcal{D}_{5}$ as group of symplectic automorphisms on $K 3$ surfaces, preprint, arXiv:0812.4518 [math.AG]
[9] , Elliptic K3 surfaces with abelian and dihedral groups of symplectic automorphisms, preprint, arXiv:0904.1519 [math.AG]
[10] A. Garbagnati and A. Sarti, Symplectic automorphisms of prime order on K3 surfaces, J. Algebra 318 (2007), 323-350.
[11] , Elliptic fibrations and symplectic automorphisms on K3 surfaces, Comm. Algebra 37 (2009), 3601-3631.
[12] GAP Group, GAP—Groups, Algorithms, and Programming, version 4.4.12, 2008, http://www.gap-system.org
[13] K. Hashimoto, Period map of a certain $K 3$ family with an $\mathfrak{S}_{5}$-action, with an appendix by T. Terasoma, J. Reine Angew. Math. 652 (2011), 1-65.
[14] J. Keum, K. Oguiso, and D.-Q. Zhang, The alternating group of degree 6 in the geometry of the Leech lattice and K3 surfaces, Proc. Lond. Math. Soc. (3) 90 (2005), 371-394.
[15] S. Kondō, Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of $K 3$ surfaces, with an appendix by S. Mukai, Duke Math. J. 92 (1998), 593-603.
[16] ——, The maximum order of finite groups of automorphisms of $K 3$ surfaces, Amer. J. Math. 121 (1999), 1245-1252.
[17] Maxima.sourceforge.net, Maxima, a Computer Algebra System, version 5.17.0, 2009, http://maxima.sourceforge.net/
[18] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988), 183-221.
[19] V. V. Nikulin, Finite groups of automorphisms of Kählerian surfaces of type K3 (in Russian), Uspekhi Mat. Nauk 31 (1976), 223-224.
[20] , Finite groups of Kählerian surfaces of type K3 (English translation), Trans. Moscow Math. Soc. 38 (1980), 71-137.
[21] —— Integral symmetric bilinear forms and some of their applications (English translation), Math. USSR Izv. 14 (1980), 103-167.
[22] K. Oguiso, A characterization of the Fermat quartic K3 surface by means of finite symmetries, Compos. Math. 141 (2005), 404-424.
[23] K. Oguiso and D.-Q. Zhang, "The simple group of order 168 and $K 3$ surfaces" in Complex Geometry (Göttingen, 2000), Springer, Berlin, 2002, 165-184.
[24] I. I. Pjateckiı̆-Šapiro and I. R. Šafarevič, Torelli's theorem for algebraic surfaces of type K3 (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530-572.
[25] A. Schiemann, The Brandt-Intrau-Schiemann table of even ternary quadratic forms, http://www.research.att.com/~njas/lattices/Brandt_2.html
[26] J.-P. Serre, Cours d'arithmétique, Presses Univ. France, Paris, 1970.
[27] T. Shioda and H. Inose, "On singular K3 surfaces" in Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, 119-136.
[28] U. Whitcher, Symplectic automorphisms and the Picard group of a K3 surface, preprint, arXiv:0902. 0601 [math.AG]
[29] G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996), 73-88.
[30] D.-Q. Zhang, The alternating groups and K3 surfaces, J. Pure Appl. Algebra 207 (2006), 119-138.

## Korea Institute for Advanced Study

Seoul 130-722
Korea
hashimoto@kias.re.kr


[^0]:    Received June 3, 2011. Revised September 22, 2011. Accepted October 6, 2011.
    2010 Mathematics Subject Classification. Primary 14J28; Secondary 11H56.
    This work was partially supported by Grant-in-Aid for Japan Society for the Promotion of Science no. 20-56181.

[^1]:    ${ }^{*}$ Note that conjugacy in $\mathrm{O}\left(N_{i}, \Delta_{i}^{+}\right)$is equivalent to conjugacy in $\mathrm{O}\left(N_{i}\right)$, which is a property of semidirect product groups.

[^2]:    *A command terminated by two semicolons does not show the result.

