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TATE PROPERTIES, POLYNOMIAL-COUNT
VARIETIES, AND MONODROMY

OF HYPERPLANE ARRANGEMENTS

ALEXANDRU DIMCA

Abstract. The order of the Milnor fiber monodromy operator of a central
hyperplane arrangement is shown to be combinatorially determined. In partic-
ular, a necessary and sufficient condition for the triviality of this monodromy
operator is given.

It is known that the complement of a complex hyperplane arrangement is
cohomologically Tate and, if the arrangement is defined over Q, has polynomial

count. We show that these properties hold for the corresponding Milnor fibers
if the monodromy is trivial.

We construct a hyperplane arrangement defined over Q, whose Milnor fiber
has a nontrivial monodromy operator, is cohomologically Tate, and has no
polynomial count. Such examples are shown not to exist in low dimensions.

§1. Introduction

Let A be a central arrangement of d hyperplanes in Cn+1, with d ≥ 2 and
n ≥ 1, given by a reduced equation Q(x) = 0. Consider the corresponding
global Milnor fiber F defined by Q(x) − 1 = 0 in Cn+1 with monodromy
action h : F → F , h(x) = exp(2πi/d) · x.

A general investigation line is to check whether certain properties of the
associated projective hyperplane arrangement complements M(A) in Pn

extend to the Milnor fiber F . For instance, note the following.

(i) The cohomology ring H∗(M(A),Z) is determined by the combina-
torics (see [20]), but the same question for the Betti numbers of the Milnor
fiber F is widely open (see, e.g., [16]).

(ii) H∗(M(A),Z) is torsion-free (see [20]), and there is the open question
about the torsion-freeness of H∗(F,Z) (see [2]).
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(iii) The complement M(A) is formal in the sense of Sullivan ([28], [4]),
and it was recently shown that the Milnor fiber F may be not even 1-formal
(see [30]).

We say that a complex variety Y is cohomologically Tate if for any
cohomology group Hm(Y,C), one has the following vanishing of mixed
Hodge numbers: hp,q(Hm(F,C)) = 0 for p �= q. The fact that the hyper-
plane arrangement complements M(A) are cohomologically Tate has been
known for a long time: any cohomology group Hm(M(A),Q) is a pure Hodge
structure of type (m,m) (see [14], [12], [25]).

When the monodromy action h∗ is trivial on all the cohomology groups
H∗(F,C), it follows that we have an equality Hm(F,Q) = Hm(M(A),Q) for
any 0 ≤ m ≤ n, and hence in this case F is cohomologically Tate. One may
ask whether this is the only possibility for a hyperplane arrangement Milnor
fiber F to be cohomologically Tate. The claim that F cohomologically Tate
implies h∗ trivial is shown to be true in the case n = 1 (obvious, using the
mixed Hodge structure (MHS) on the Milnor fiber of an isolated homoge-
neous hypersurface singularity, given by Steenbrink [27] and recalled in [5,
pp. 243–244]) and n = 2, that is, for plane arrangements, and negative in
general. We do not know whether there is a similar result to Theorem 1.1
for 2 < n < 7, and this explains why we go to dimension 7 to construct our
example.

To state our results in this direction, we need some preliminaries.
In studying the cohomology H∗(F,Q) of the Milnor fiber, the monodromy

action h∗ : H∗(F,Q) → H∗(F,Q), or the number of points in |F (Fp)|, we can,
without any loss of generality, suppose that the arrangement A is essential;
that is,

⋂
H∈ A H = 0. This is the same as supposing that the polynomials Q

involve in an essential way all the variables x0, . . . , xn; that is, one cannot
choose the coordinates x on Cn+1 such that Q(x0, . . . , xn) = R(x0, . . . , xu)
for some 0 ≤ u < n and a homogeneous polynomial R ∈ C[x0, . . . , xu].

The properties of the monodromy h∗ : H∗(F,Q) → H∗(F,Q) are rather
mysterious, and many things that we know in general are related to the
spectrum

(1.1) Sp(A) =
∑
α∈Q

mαtα,

with mα =
∑

j(−1)j−n dimGrp
F H̃j(F,C)β , where p = [n + 1 − α] and β =

exp(−2πiα), which is combinatorially determined (see [1]). Surprisingly,
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note that for most arrangements the situation is rather simple; namely,
hm : Hm(F,Q) → Hm(F,Q) is trivial (i.e., the identity) for 0 ≤ m < n,
and dimHn(F,C)β = |χ(M(A))|, for any β ∈ μd = {z ∈ C | zd = 1} with
β �= 1 (see, e.g., [3], [15], [6, Propositions 2.5.4, 6.4.6, Example 6.4.14, The-
orem 6.4.18]).

Theorem 1.1. Let A be an essential central arrangement of d planes
in C3. The following conditions are equivalent.

(i) The mixed Hodge numbers hp,q(H2(F,C)) vanish for p �= q.
(ii) The arrangement A is reducible.
(iii) The monodromy action h∗ is trivial on all the cohomology groups

H∗(F,C).
(iv) The spectral numbers mα in Sp(A) vanish for all α ∈ (0,1).

Geometrically, property (ii) means the following: in the projective line
arrangement A ′ associated to A, (d − 1) lines meet in one point, say, A, and
the remaining line Ld does not contain A.

In terms of coordinates, this means that one may choose the coordinates
(x : y : z) on P2 such that A = (0 : 0 : 1) and Ld : z = 0. With this choice, one
has Q(x, y, z) = Q1(x, y)z, where Q1 is a degree (d − 1) reduced homogeneous
polynomial in x, y. This property is exactly the definition of a reducible
arrangement when n = 2.

To discuss the higher-dimensional case, we need the following precise
characterization of arrangements with a trivial monodromy.

Theorem 1.2. For an essential central arrangement A, the following
conditions are equivalent.

(i) The monodromy action h∗ is trivial on all the cohomology groups
H∗(F,C).

(ii) The arrangement A is reducible and satisfies the following: if A =
A1 × · · · × Aq is the decomposition of A as a product of irreducible arrange-
ments, and if dj = |Aj | denotes the number of hyperplanes in Aj , then
GCD(d1, . . . , dq) = 1.

Moreover, if A is defined over Q (i.e., each hyperplane in A is defined
over Q), then all the irreducible arrangements Aj are also defined over Q.

We show below (see Lemma 2.1) that in the (unique) decomposition A =
A1 × · · · × Aq of A as a product of irreducible arrangements Aj , the integers
q, d1, . . . , dq are determined by the combinatorics, that is, by the intersection
lattice L(A) (see [21]).
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We recall that a central arrangement A as above is reducible if one can
choose the coordinates x on Cn+1 such that Q(x0, . . . , xn) = R1(x0, . . . , xu) ×
R2(xu+1, . . . , xn) for some 0 ≤ u < n and homogeneous nonconstant polyno-
mials R1 and R2. We then write A = A1 × A2, with Aj : Rj = 0.

It is known that an essential arrangement A is reducible if and only if
χ(M(A)) = 0 (see [24]). On the other hand, a trivial monodromy action h∗

implies that χ(M(A)) = 0, as a simple consequence of the general formula

(1.2)
∑

j

(−1)j dimHj(F,C)β = χ
(
M(A)

)

for any β ∈ μd (see [6, Propositions 2.5.4, 6.4.6]; see also [1, (1.4.2)]).

Remark 1.3. All compact Kähler manifolds are formal spaces (see [4]).
When the monodromy h∗ is trivial, the corresponding Milnor fiber is clearly
a formal space in Sullivan’s sense (see [28], [9]). Hence, Theorem 1.2 yields
a wealth of new examples of formal spaces in the class of smooth affine
varieties. Note also that there are examples of nonformal smooth affine
surfaces, related either to Milnor fibers of central plane arrangements (see
[30]), or to isolated weighted homogeneous singularities (see [10]).

Theorem 1.2 is an obvious consequence of the following Thom-Sebastiani-
type result, where the sum of polynomials in disjoint sets of variables is
replaced by their product. This result plays also a key role in the construc-
tion of our examples below.

Theorem 1.4. Let A = A1 × · · · × Aq be the decomposition of the central
essential arrangement A as a product of irreducible arrangements, let dj =
|Aj | denote the number of hyperplanes in Aj , and let d0 = GCD(d1, . . . , dq).
Then the following hold.

(i) There is a natural identification of graded MHS defined over R,

H∗(F,C) = H∗(T,C) ⊗
( ⊕

β∈μd0

(H∗(F1,C)β ⊗ · · · ⊗ H∗(Fq,C)β)
)
.

More precisely, for any β ∈ μd0 , there is an identification

H∗(F,C)β = H∗(T,C) ⊗ H∗(F1,C)β ⊗ · · · ⊗ H∗(Fq,C)β.

(ii) The monodromy operator h∗ : H∗(F,C) → H∗(F,C) has order d0,
which is determined by the intersection lattice L(A).
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Since each Aj is irreducible, it follows from (1.2) that each H∗(Fj)β which
occurs in Theorem 1.4 is nonzero.

Remark 1.5. There are a number of papers dealing with Thom-
Sebastiani-type results for the product of two polynomials f and g (or,
more generally, for h(f, g), with h a function of two variables) (see, e.g.,
[18], [23], [17], [29]). The decomposition in our Theorem 1.4(i) appears in
Tapp [29]. However, in all of these papers there is no reference to the MHS
involved, and the methods used, being purely topological, do not allow us in
a direct way to derive such conclusions. Since these MHS play a central role
in the remainder of our paper, we give below a proof of this decomposition
rather different from that in [29], carefully handling the corresponding MHS.

We have noticed already that F is a cohomologically Tate variety when
the monodromy action h∗ is trivial. We give below an example showing that
the converse claim is false in general (see Example 4.3). Example 4.3 is also
interesting since it shows that the part H<top(F,C) �=1 of the Milnor fiber
cohomology can be rather big, unlike all the previously known examples.

Corollary 1.6. Consider the central rational hyperplane arrangement
Au,v in Cn+1 defined in Example 4.3, for any u, v ∈ Z>0. Then n = 3u +
5v − 1, the only eigenvalues of the monodromy operator h∗ are ±1, and
dimH∗(Fu,v,C)−1 = 2u+v−1. More precisely, the nontrivial (−1)-eigenspaces
are exactly H2u+4v+j(Fu,v,C)−1 for 0 ≤ j ≤ u + v − 1 and

dimH2u+4v+j(Fu,v,C)−1 =
(

u + v − 1
j

)
.

The smallest n for which our construction yields a counterexample is
n = 7; the Milnor fiber of the corresponding hyperplane arrangement A1,1

is cohomologically Tate, but h∗ is not trivial.
Recall that the (compactly supported) Hodge-Deligne polynomial (or E-

polynomial) associated to a complex variety Y is given by

(1.3) HDX(x, y) =
∑
u,v

(∑
j

(−1)jhu,v
(
Hj

c (Y,C)
))

xuyv.

Assume that Y is in fact defined over Q. We say that Y has polynomial
count with count polynomial PY if there is a polynomial PY ∈ Z[t], such
that for all but finitely many primes p, for any finite field Fq with q = ps

and s ∈ N∗, the number of points of Y over Fq is precisely PY (q). As an
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example, if the hyperplane arrangement A is defined over Q, then M(A)
has polynomial count (see, e.g., [7, Section (5.3)], [26, Theorem 5.15]). The
above rationality assumption is essential; indeed, the line arrangement A :
x2 + y2 = 0 is defined over Q(i), and the corresponding complement M(A)
satisfies |M(A)(Fp)| = p − 1 if p ≡ 1 mod 4 and |M(A)(Fp)| = p + 1 if p ≡ 3
mod 4. Note that in this case Q(x) has integer coefficients and A is reducible,
but the corresponding splitting A = A1 × A2 is not defined over Q.

A theorem of Katz in [11] says that if Y has polynomial count with
count polynomial PY , then HDY (x, y) = PY (xy) (see [11, Theorem 2.1.8,
the remark at the bottom of p. 563, and Example 2.1.10] explaining that
there can be allowed finitely many “bad characteristics” p). In particular,
such a variety is not too far from being cohomologically Tate; that is, the
not-Tate part of the cohomology should cancel out in HDY (x, y).

One may ask what happens to the Milnor fibers of hyperplane arrange-
ments. Again, we need a rationality assumption: the Milnor fiber F : x2 +
y2 = 1 satisfies |F (Fp)| = p − 1 if p ≡ 1 mod 4 and |F (Fp)| = p + 1 if p ≡ 3
mod 4. Note that in this example the monodromy operator h∗ is trivial and
F is cohomologically Tate.

When A is defined over Q, we will always choose the defining equation
Q(x) = 0 with integer coefficients. It turns out that the arithmetic properties
of the corresponding Milnor fiber F : Q(x) − 1 = 0 do not depend on the
choice of Q (see, e.g., Corollary 1.7).

So a first naive idea when trying to construct cohomologically Tate Milnor
fibers of rational arrangements which have no polynomial count is to look
for a hyperplane arrangement A with a trivial monodromy h∗ and such that
the corresponding Milnor fiber F has no polynomial count. Such an attempt
cannot succeed in view of the following result, implied by Theorem 1.2.

Corollary 1.7. If the monodromy action h∗ is trivial on all the coho-
mology groups H∗(F,C) of the Milnor fiber F of an essential central arrange-
ment A defined over Q, then F has a polynomial count, with the same count
polynomial as the corresponding projective complement M(A).

In particular, this property of the Milnor fiber having a polynomial count,
and the corresponding count polynomial, does not depend on the choice of
defining equation Q in Z[x].

For n = 2 we have the following.

Corollary 1.8. Consider the following conditions.
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(i) Y has a polynomial count.
(ii) Y is cohomologically Tate.
If Y is a smooth affine surface, then (i) =⇒ (ii). If, in addition, Y is the

Milnor fiber of a central rational plane arrangement in C3, then one also
has (ii) =⇒ (i).

The hyperplane arrangement A1,1 introduced in Example 4.3 is defined
over Q, and the corresponding Milnor fiber is cohomologically Tate but has
no polynomial count (see Theorem 5.2).

§2. Proof of Theorem 1.4 and of Corollary 1.7

Proof. We can, up to a linear coordinate change, write Q(x) = Q1(y1) · · ·
Qq(yq), where x = (y1, . . . , yq) ∈ Cn+1, yj ∈ Cnj such that n1 + · · · + nq =
n + 1, dj = degQj > 0, and Aj : Qj = 0 is an irreducible and essential
arrangement in Cnj for j = 1, . . . , q.

Note that the existence of such a decomposition is equivalent to the fol-
lowing property: there is a partition of the hyperplanes in A in q subsets
A1, . . . ,Aq such that if we define Vj =

⋂
H /∈Aj

H , then there is a direct sum
decomposition Cn+1 = V1 +V2 + · · · +Vq, and this partition is the finest with
this property. More precisely, we have the following result.

Lemma 2.1. Let A = {Hi}i∈I be a central, essential hyperplane arrange-
ment in Cn+1 = V . Consider the set P of partitions I = I1 ∪ · · · ∪ Im of I

satisfying the following condition:
∑

j codim
(⋂

i∈Ij
Hi

)
= dimV . Then the

following hold.
(i) P is nonempty, since the trivial partition I = I is in P .
(ii) If I = I1 ∪ · · · ∪ Im and I = I ′

1 ∪ · · · ∪ I ′
m′ are two partitions in P ,

then their intersection I =
⋃

i,j Ii,j , where Ii,j = Ii ∩ Ij for i = 1,m, j = 1,m′

(the empty intersections Ii,j are discarded), is again a partition in P .
(iii) In the (unique) decomposition A = A1 × · · · × Aq of A as a product

of irreducible arrangements Aj , the integers q, d1, . . . , dq are determined by
the combinatorics, that is, by the intersection lattice L(A).

Proof. Claim (i) is obvious.
Let E be the dual of V , and, for a given partition I = I1 ∪ · · · ∪ Im in

P , let Ei be the vector subspace in E spanned by the equations of the
hyperplanes in Ii. Since A is essential, it follows that

∑
j Ej = E. Since

dimEj = codim
(⋂

i∈Ij
Hi

)
, it follows that the above sum is in fact a direct

sum.
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When we have two partitions as above, we define Ei,j to be the vector
subspace in E spanned by the equations of the hyperplanes in Ii ∩ I ′

j . Then
it follows immediately that the sum

∑
j Ei,j = Ei is again direct sum for

all i. Hence, the sum
∑

i,j Ei,j = V is a direct sum, which proves claim (ii).
Since the set of partitions P is defined only in terms of the intersection

lattice L(A), it follows that the unique minimal element of P (with respect
to the partial order given by refinement) is combinatorially determined.
This minimal element is denoted above by I = A1 ∪ · · · ∪ Aq. The direct sum
decomposition Cn+1 = V1 + V2 + · · · + Vq mentioned above is just the dual
of the direct sum decomposition

∑
j Ej = E. Since dj = |Aj |, they are also

determined by the combinatorics.

Remark 2.2. When A is defined over Q, it follows that all the vec-
tor subspaces Vj are defined over Q. Then the arrangement Aj , which is
essentially given by the traces of H ∈ Aj on Vj , is clearly defined over Q.
Moreover, the coordinate change from the coordinates x to the coordinates
y is defined over Q. This shows that when doing computations for almost
all primes p, we may replace the equation Q(x) = 0 (resp., Q(x) = 1) by the
corresponding equations Q1(y1) · · · Qq(yq) = 0 (resp., Q1(y1) · · · Qq(yq) = 1).

Proof of Theorem 1.4. Let Fj : Qj = 1 and hj : Fj → Fj be the corre-
sponding Milnor fibers and monodromy homeomorphisms. Let us consider
the corresponding least common multiple m = LCM(d1, . . . , dq) and set wj =
m/dj for j = 1, . . . , q.

Our first aim is to obtain a description of the (total) Milnor fiber F in
terms of the collection of Milnor fibers F1, . . . , Fq. For this we consider the
affine torus

(2.1) T =
{
t = (t1, . . . , tq) ∈ (C∗)q

∣∣ t1t2 · · · tq = 1
}
.

Consider the mapping

(2.2) f : T × F1 × · · · × Fq → F

given by

(2.3) (t, y1, . . . , yq) �→ (tw1
1 y1, . . . , t

wq
q yq).

It is easy to check that this mapping f is surjective and that one has

f(t, y1, . . . , yq) = f(t′, y′
1, . . . , y

′
q)
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if and only if the points (t, y1, . . . , yq) and (t′, y′
1, . . . , y

′
q) are in the same

G-orbit, where the group

(2.4) G =
{
g = (g1, . . . , gq) ∈ μq

m

∣∣ g1g2 · · · gq = 1
}

acts on X = T × F1 × · · · × Fq via

(2.5) g ·
(
(t1, . . . , tq), y1, . . . , yq

)
=

(
(g−1

1 t1, . . . , g
−1
q tq), gw1

1 y1, . . . , g
wq
q yq

)
.

It follows that F = X/G and, in particular, that H∗(F,Q) = H∗(X,Q)G,
the G-fixed part of the cohomology of X under the induced G-action. This
is an isomorphism of MHS, since the G-action is algebraic. Note that

(2.6) H∗(X,C) = H∗(T,C) ⊗ H∗(F1,C) ⊗ · · · ⊗ H∗(Fq,C).

Moreover, the group G acts trivially on the factor H∗(T,C), since T is a
connected algebraic group and G ⊂ T. If we set

H∗ = H∗(F1,R) ⊗ · · · ⊗ H∗(Fq,R),

then it follows that

H∗(F,R) = H∗(T,R) ⊗ (H∗)G.

The G-action on H∗
C, the complexification of H∗, is given by the following:

if η = η1 ⊗ · · · ⊗ ηq, then

(2.7) gη = (h1)k1(η1) ⊗ · · · ⊗ (hq)kq(ηq).

Here g = (λk1 , . . . , λkq) with λ = exp(2πi/m) and k1 + · · · +kq is divisible by
m, the kj being otherwise arbitrary integers.

Let ηj ∈ H∗(Fj ,C) be now chosen such that for any j = 1, . . . , q there
is a βj ∈ μdj

⊂ μm with h∗
jηj = βjηj , and look at η = η1 ⊗ · · · ⊗ ηq. Such

elements form a C-basis of H∗
C, and hence to determine (H∗

C)G is the same
as finding all η of this form which are fixed under the G-action. By choosing
kq = m − k1 − · · · − kq−1, we get from (2.7) the following:

gη =
(β1

βq

)k1

· · ·
(βq−1

βq

)kq−1

η,

where now there is no condition on the integers k1, . . . , kq−1. By taking one
of them equal to 1 and the rest zero, we see that η ∈ (H∗

C)G implies that β1 =
· · · = βq. Call this common value λ0, and note that λ0 ∈ μd0 =

⋂
j=1,q μdj

.
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Conversely, for any λ0 ∈ μd0 and any η ∈ H∗(F1,C)λ0 ⊗ · · · ⊗ H∗(Fq,C)λ0 ,
we see by using (2.7) that η ∈ (H∗

C)G.
Moreover, set Eλ0 = H∗(F1,C)λ0 ⊗ · · · ⊗ H∗(Fq,C)λ0 , and note that Eλ0 =

Eλ0
.

It follows that if we set Mλ0 = Eλ0 when λ0 ∈ R and Mλ0 = Eλ0 + Eλ0

when λ0 /∈ R, then Mλ0 is endowed with a natural R-MHS (see also (4.1)).
To prove the second part of Theorem 1.4(i), we construct a nice G-

equivariant lifting h̃ : X → X of the monodromy morphism h : F → F . We
set

(2.8) h̃(t1, . . . , tq, y1, . . . , yq) = (γ1t1, . . . , γqtq, β1y1, y2, . . . , yq),

where β1 = exp(2πi/d1) and γj = exp(2πiaj) with w1a1 = 1/d − 1/d1 and
wjaj = 1/d for j > 1. Then

∑
j aj = 0; that is, (γ1t1, . . . , γqtq) ∈ T, and

f ◦ h̃ = h ◦ f . Then h̃∗ acts as identity on all the factors in the tensor product
(2.6), except on H∗(F1,C), where it acts via h∗

1. We get the second part of
claim (i) by using the description of the cohomology H∗(F,C) given in the
first part of claim (i).

To prove claim (ii), note that the affine torus T acts on the Milnor fiber
F by

(2.9) t(y1, . . . , yq) = (tw1
1 y1, . . . , t

wq
q yq).

Hence, to show that (h∗)d0 is trivial, it is enough to show the existence of
an element t = (t1, . . . , tq) ∈ T such that t

wj

j = exp(2πid0/d) for j = 1, . . . , q.
Since GCD(d1, . . . , dq) = d0, there are integers kj such that

(2.10) k1d1 + · · · + kqdq = (m − 1)d0.

For j = 1, . . . , q, we set

(2.11) tj = exp
[
2πi

( d0

dwj
+

kj

wj

)]
.

The relations t
wj

j = exp(2πid0/d) are clearly satisfied. Moreover,

t1t2 · · · tq = exp
[
2πi

(∑
j

(d0dj

dm
+

kjdj

m

))]
= exp

[
2πid0

( 1
m

+
m − 1

m

)]
= 1.

Hence, t ∈ T, so it follows that (h∗)d0 is trivial. We conclude using the
following fact: since each Aj is irreducible, it follows from (1.2) that each
H∗(Fj)β which occurs in Theorem 1.4 is nonzero. Hence, each H∗(F )β is
nonzero; that is, the order of h∗ is indeed d0.
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Remark 2.3. Consider the central essential hyperplane arrangement A
in Cn+1 and its decomposition A = A1 × · · · × Aq as a product of irreducible
arrangements Aj for j = 1, . . . , q. Then it is easy to show that

M(A) = T × M(A1) × · · · × M(Aq).

This implies the following for the cohomology of the corresponding projec-
tive complements:

H∗(
M(A)

)
= H∗(C∗)⊗(q−1) ⊗ H∗(

M(A1)
)

⊗ · · · ⊗ H∗(
M(Aq)

)
,

that is, the case β = 1 in Theorem 1.4(iii) (see also [29]).

Now we pass to the proof of Corollary 1.7. Since the monodromy h∗ is
trivial, we know by Theorem 1.2 that GCD(d1, . . . , dq) = 1. Hence, there
exist integers mj such that m1d1 + · · · + mqdq = 1.

Let F be a finite field, and consider the mapping Q : Fn+1 → F induced
by the polynomial Q.

For a ∈ F, denote by F (a) the fiber Q−1(a). Denote also M(A,F) the
corresponding (projective) hyperplane arrangement complement over F. It
is clear that

(2.12) |Fn+1 \ F (0)| = (|F| − 1) · |M(A,F)|.

Consider the following F∗-action on Fn+1:

(2.13) t · x = t · (y1, y2, . . . , yq) = (tm1y1, t
m2y2, . . . , t

mqyq).

The relation Q(t · x) = tQ(x) shows that all the fibers F (a) for a ∈ F∗ have
the same cardinal. Since their disjoint union is exactly Fn+1 \ F (0), (2.12)
yields

(2.14) |F (1)| = |M(A,F)|.

This equality completes the proof of Corollary 1.7.

§3. Proof of Theorem 1.1 and of Corollary 1.8

Proof. It follows from the discussion just after Theorem 1.1 that, assum-
ing Theorem 1.1(ii), the Milnor fiber F is isomorphic to the complement
of the central line arrangement given by Q1 = 0 in C2. (Indeed, the only
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partitions of 3 are 1 + 2 = 2 + 1 = 1 + 1 + 1 = 3.) Hence, the implication (ii)
⇒ (i) is obviously true.

Note that for n = 2 and α ∈ (0,1), the corresponding spectral number is
by definition

(3.1) mα = h2,0
(
H2(F,C)β

)
+ h2,1

(
H2(F,C)β

)

with β = exp(−2πiα). Indeed, h2,2(H2(F,C)β) = 0, as follows from [8, The-
orem 1.3].

Since H2(F,C)1 is known to be of type (2,2), the equivalence of Theorem
1.1(i), (iv) follows. Moreover, the equivalence of claims (ii) and (iii) follows
from Theorem 1.2, using again the partitions of 3.

So from now on we assume that Theorem 1.1(iv) holds, and we prove (ii).
The fact that the arrangement is essential implies that d ≥ 3 and that the
lines in A ′ do not pass all through the same point; that is, there is no point
s of multiplicity ms = d. To prove (ii) we have to show the existence of a
point of multiplicity d − 1.

For d = 3 there are only two types of arrangements, described better in
terms of their associated projective line arrangements A′:

(a) three lines forming a triangle, in which case one may take Q = xyz and
F = C∗ × C∗, and

(b) three lines meeting at one point.

The claim (i) ⇒ (ii) is clear by the previous remark.
We assume from now on that d ≥ 4.
Next we recall the following key formula from [1, Theorem 3] (rewritten

slightly for our needs). If 0 < α = j/d < 1, then

(3.2) mα =
(

j − 1
2

)
−

∑
s;ms≥3

(
�jms/d� − 1

2

)
,

where the sum is over all multiple points s in A′ with multiplicity ms ≥ 3.
By convention, ( a

b ) = 0 if a < b.
If we use the above formula for j = 3, we get that the corresponding

vanishing mα = 0 is equivalent to the existence of a unique point s of mul-
tiplicity ms > 2d/3 in A ′. For d = 4 (resp., d = 5), this means a point of
multiplicity ms ≥ 3 (resp., ms ≥ 4). As above (case d = 3, (b)), the case
ms = 4 (resp., ms = 5) is discarded since A′ is essential. Hence, ms = 3
(resp., ms = 4), which gives exactly an arrangement A′ as claimed in (ii).
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From now on we assume that d > 5. We apply (3.2) for j = d − 1. Since
one clearly has

m − 1 <
(d − 1)m

d
< m,

it follows that �(d − 1)m/d� = m, and hence the vanishing mα = 0 in this
case is equivalent to the equality

(3.3)
(

d − 2
2

)
=

∑
s;ms≥3

(
ms − 1

2

)
.

Similarly, for j = d − 2 we get from mα = 0 the equality

(3.4)
(

d − 3
2

)
=

∑
s;3≤ms<d/2

(
ms − 1

2

)
+

∑
s;ms ≥d/2

(
ms − 2

2

)
.

By taking the difference of (3.3) and (3.4), we get the equality

(3.5) d − 3 =
∑

s;ms≥d/2

(ms − 2).

It follows that, if the set S = {s;ms ≥ d/2} contains exactly one element,
then the corresponding multiple point s satisfies ms = d − 1, and we are
done.

Suppose now that the set S contains at least two elements. Since one of
them has to be the point s with multiplicity ms > 2d/3 obtained above for
j = 3, we get in this case

(3.6) d − 3 > (2d/3 − 2) + (d/2 − 2).

This is equivalent to d < 6, a contradiction with our hypothesis d > 5.

The proof of Corollary 1.8 is very easy now. If Corollary 1.8(i) holds,
then it follows from Katz’s theorem that the Hodge-Deligne polynomial of
Y contains only the monomials 1, xy, (xy)2. The possible nonzero mixed
Hodge numbers in this situation are

h2,2
(
H4

c (Y,C)
)
, h1,2

(
H3

c (Y,C)
)
, h2,1

(
H3

c (Y,C)
)
,

h1,1
(
H3

c (Y,C)
)
, h2,0

(
H2

c (Y,C)
)
,

h1,1
(
H2

c (Y,C)
)
, h0,2

(
H2

c (Y,C)
)
, h0,1

(
H2

c (Y,C)
)
,
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h1,0
(
H2

c (Y,C)
)
, h0,0

(
H2

c (Y,C)
)
.

It follows that the only cancellations in the Hodge polynomial can occur in
the coefficient of xy. Hence, all the mixed Hodge numbers hu,v(Hm

c (Y,C))
vanish for u �= v; that is, Y is cohomologically Tate.

Now for Milnor fibers of a central plane arrangement, we have seen that
Theorem 1.1(ii) implies that Y is isomorphic to a line arrangement comple-
ment in C2, and hence it has polynomial count.

§4. A purity result and the key example

Let A be a central arrangement of d hyperplanes in Cn+1, with n ≥
1, given by a reduced equation Q(x) = 0. Then clearly Hn(F,Q)1 and
Hn(F,C)−1 are mixed Hodge substructures in Hn(F,Q). Moreover, for
β ∈ μd, β �= ±1, the same is true for the subspace

(4.1) Hn(F,C)β,β = Hn(F,C)β ⊕ Hn(F,C)β = ker[(hn)2 − 2Re(β)hn + Id ],

which is in fact defined over R (as the last equality shows). For β = −1, we
set Hn(F,C)β,β = Hn(F,C)−1 for uniformity of notation.

Let
D = Q−1(0) =

⋃
H∈ A

H.

For a point x ∈ D, x �= 0, let Lx =
⋂

H∈ A,x∈H H , and denote by Ax the
central hyperplane arrangement induced by A on a linear subspace Tx,
passing through x and transversal to Lx. We may choose dimTx = codimLx

and identify x with the origin in the linear space Tx. Let h∗
x : H∗(Fx,C) →

H∗(Fx,C) be the corresponding monodromy operator at x.
With this notation, we have the following result.

Proposition 4.1. Let β ∈ μd, β �= 1 be a root of unity which is not
an eigenvalue for any monodromy operator h∗

x for x ∈ D, x �= 0. Then the
corresponding eigenspace Hn(F,C)β,β is a pure Hodge structure of weight n.

In particular, if β = exp(−2πiα) for some α ∈ Q, then the coefficients in
the corresponding spectrum Sp(A) have the following symmetry property:

(4.2) mα = mn+1−α.

Proof. This result is a direct consequence of [22, Lemma 3.6]. Indeed, our
hypothesis on β implies that the nearby cycle sheaf ψQ,βC is supported at
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the origin, and hence it is identified to Hn(F,C)β . This identification in
turn implies that the logarithm of the unipotent part of the monodromy N

is trivial on ψQ,βC (as this holds for Hn(F,C)β , the monodromy h∗ being
semisimple).

The last claim about the symmetry property in (4.2) is proved in the
usual way. In view of the purity result, we have hp,q(Hn(F,C)β) = 0 for
p + q �= n.

For example, assume that α = j/d with 0 < j < d. It follows from the
definition of the spectrum (1.1) that mα = dimhn,0(Hn(F,C)β), mn+1−α =
dimh0,n(Hn(F,C)β). The claimed equality follows by considering the action
of the complex conjugation on the pure Hodge structure Hn(F,C)β,β .

Corollary 4.2. Assume that A is a generic central hyperplane arrange-
ment; that is, the associated projective divisor in Pn is a divisor with normal
crossing. Then

Hn(F,C) �=1 =
⊕
β �=1

Hn(F,C)β

is a pure Hodge structure of weight n, and for any rational number α ∈ Q \ Z

one has mα = mn+1−α.

This symmetry of the coefficients of the spectrum Sp(A) of a generic cen-
tral arrangement is alluded to in [22] (see the remarks just after Corollary 1
in the introduction). The result above follows from Proposition 4.1 using
the simple fact that in this case all the monodromy operators h∗

x are the
identity. For more on the monodromy of generic arrangements, see [21, pp.
209–210], [1, (3.2)], and [3, Section 3].

Now we pass to our example.

Example 4.3. For n ≥ 2, let Gn be the central arrangement in Cn+1 given
by the equation

Qn(x) = Qn(x0, . . . , xn) = x0 · x1 · · · xn · (x0 + x1 + · · · + xn).

Hence, the degree dn of Qn is n + 2, and clearly Gn is a generic, irreducible
arrangement. Assume that n = 2k is even, and use [3, Theorem 3.2] (or refer
to the original paper [19]) to get that

(4.3) Hm(F,C) = Hm(F,C)1

for 0 ≤ m < n and dimHn(F,C)−1 = 1.
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It follows that all the spectral coefficients in Sp(Gn) corresponding to
the monodromy eigenvalue −1 vanish except for mk+(1/2) = 1 (which is the
only autodual element in the sum with respect to the symmetry given by
Corollary 4.2). It follows that the eigenspace Hn(F,C)−1 is spanned by a
cohomology class ωn of Hodge type (k, k).

Let us return now to the setting of the proof of Theorem 1.2 in Section 2.
Let Au,v be the central hyperplane arrangement obtained by taking the
product of u > 0 copies of the arrangement G2 and v > 0 copies of G4. It
follows that n = 3u + 5v − 1, d = 4u + 6v, q = u + v, and d0 = GCD(d1, . . . ,

dq) = 2.
In this case, the cohomology of the corresponding total Milnor fiber

Fu,v can be described via Theorem 1.4 as the direct sum H∗(Fu,v,C) =
H∗(Fu,v,C)1 ⊕ H∗(Fu,v,C)−1, where

(4.4) H∗(Fu,v,C)1 = H∗(T,C) ⊗ H∗(
M(G2),C

)⊗u ⊗ H∗(
M(G4),C

)⊗v

and

(4.5) H∗(Fu,v,C)−1 = H∗(T,C) ⊗ (Cω2)⊗u ⊗ (Cω4)⊗v.

It follows that Fu,v is a cohomologically Tate variety of dimension n =
3u + 5v − 1, but the corresponding monodromy action h∗ is not trivial. By
choosing various values for u, v, we can get n = 7 as a minimal value as well
as any integer n ≥ 15.

Remark 4.4. If one is interested only in irreducible arrangements, then
such examples with large cohomology H<top(F,C) can be obtained by tak-
ing a generic hyperplane section of the arrangement Au,v.

§5. Finite field computations

In this section we use the following notation. Let F = F1,1 be the variety
defined over Z by Q(x) = 1, where

Q(x) = x1 · x2 · x3 · (x1 +x2 +x3) · x4 · x5 · x6 · x7 · x8 · (x4 +x5 +x6 +x7 +x8).

For any prime p, we denote by A(p) the number of points of F over Fp =
Z/pZ; that is, the number of solutions of the equation Q(x) = 1 in F8

p. For
a ∈ F∗

p, consider the varieties

F1(a) =
{
(x1, x2, x3) ∈ F3

p

∣∣ x1 · x2 · x3 · (x1 + x2 + x3) = a
}
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and

F2(a) =
{
(x4, x5, x6, x7, x8) ∈ F5

p∣∣ a · x4 · x5 · x6 · x7 · x8 · (x4 + x5 + x6 + x7 + x8) = 1
}
.

Let n1(a) = |F1(a)|, let n2(a) = |F2(a)|, and note that obviously one has

(5.1) A(p) =
∑
a∈F∗

p

n1(a)n2(a).

From now on we assume that p is a prime number in the arithmetic pro-
gression 12b + 11, where b ∈ N.

Lemma 5.1. Consider the group morphism p(k) : F∗
p → F∗

p given by t �→ tk.
Then the following hold.

(i) There is an index 2 subgroup H ⊂ F∗
p such that p(4)(F∗

p) = p(6)(F∗
p) =

H.
(ii) If a and a′ have the same class in F∗

p/H, then n1(a) = n1(a′) and
n2(a) = n2(a′).

Proof. Since the multiplicative group F∗
p is cyclic, of order p − 1 = 12b+10,

it follows that to prove (i) it is enough to show that p(4)(F∗
p) and p(6)(F∗

p)
have both cardinal (p − 1)/2. This is the same as proving that the corre-
sponding kernels have order 2. Note that the equation t4 = 1 (resp., t6 = 1)
is equivalent to t2 = 1 (look at the order of t, which must be a divisor of
12b + 10). Hence, kerp(4) = kerp(6) = {±1} and hence have order 2.

To prove (ii), consider the action of F∗
p on F3

p (resp., F5
p) given by the

usual multiplication of a vector by a scalar. This multiplication by t ∈ F∗
p

induces a bijection F1(a) = F1(t4a) (resp., F2(a) = F2(t6a)). This completes
the proof.

We denote n′
1 = n1(1), n′

2 = n2(1), n′ ′
1 = n1(a), and n′ ′

2 = n2(a), for a ∈
(F∗

p \ H). We also write p = 12b + 11 = 4k + 3; that is, we set k = 3b + 2.
With this notation, (5.1) may be rewritten as

(5.2) A(p) = |H|(n′
1n

′
2 + n′ ′

1n
′ ′
2) = (2k + 1)(n′

1n
′
2 + n′ ′

1n
′ ′
2).

The (affine or projective) hyperplane arrangement complements have
polynomial count (see, e.g., [7, Section (5.3)], [26, Theorem 5.15]). So we
apply this fact to the projective hyperplane arrangement complements A′

1
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in P2 (resp., A ′
2 in P4) corresponding to x1x2x3(x1 + x2 + x3) = 0 (resp.,

x4x5x6x7x8(x4 + x5 + x6 + x7 + x8) = 0). Using the formulas for the Betti
numbers in [3], the fact that each cohomology group Hm is pure of type
(m,m), and the duality between Hm and H2d−m

c (where d is the corre-
sponding (complex) dimension), it follows that

(5.3) HDM(A′
1)(x, y) = (xy)2 − 3(xy) + 3

and

(5.4) HDM(A′
2)(x, y) = (xy)4 − 5(xy)3 + 10(xy)2 − 10(xy) + 5.

It follows that the corresponding counting polynomials are

(5.5) PM(A′
1)

(t) = t2 − 3t + 3

and

(5.6) PM(A′
2)(t) = t4 − 5t3 + 10t2 − 10t + 5.

Using these two polynomials, it follows that, for almost all p = 4k + 3, one
has

(5.7) N ′
1(p) = |M(A ′

1)(Fp)| = p2 − 3p + 3 ≡ 4k + 3 mod 8

and

(5.8) N ′
2(p) = |M(A ′

2)(Fp)| = p4 − 5p3 + 10p2 − 10p + 5 ≡ 4k + 3 mod 8.

Let A1 (resp., A2) denote the corresponding central hyperplane arrange-
ments in C3 (resp., C5) and M(A1) (resp., M(A2)) the associated affine
complements. Then, using (5.7) and (5.8), we get

(5.9) N1(p) = |M(A1)(Fp)| = (p − 1)(p2 − 3p + 3) ≡ 4k + 6 mod 8

and

N2(p) = |M(A2)(Fp)| = (p − 1)(p4 − 5p3 + 10p2 − 10p + 5) ≡ 4k + 6 mod 8.

(5.10)

Now, note that M(A1) (resp., M(A2)) is the disjoint union of all the hyper-
surfaces F1(a) (resp., F2(a)) for a ∈ F∗

p. Lemma 5.1, (5.9), and (5.10) yield

(5.11) n′
1 + n′ ′

1 = 2(p2 − 3p + 3) ≡ 6 mod 8
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and

(5.12) n′
2 + n′ ′

2 = 2(p4 − 5p3 + 10p2 − 10p + 5) ≡ 6 mod 8.

It follows that n′ ′
1 ≡ 6 − n′

1 mod 8 and n′ ′
2 ≡ 6 − n′

2 mod 8. Using (5.2), we
get

A(p) = (2k + 1)(n′
1n

′
2 + n′ ′

1n
′ ′
2) ≡ 2(2k + 1)(2 + n′

1n
′
2 − 3n′

1 − 3n′
2) mod 8.

(5.13)

Now we can state and prove our main result of this section.

Theorem 5.2. The variety F satisfies the following.
(i) F is a cohomologically Tate variety.
(ii) F has no polynomial count.

Proof. The proof of the first claim was given already in Example 4.3.
Moreover, it follows from the description of the cohomology given there that
the corresponding Hodge-Deligne polynomial is

HDF (x, y) = (xy)7 − 9(xy)6 + 36(xy)5 − 82(xy)4
(5.14)

+ 119(xy)3 − 110(xy)2 + 60(xy) − 15.

Assume that (ii) fails, that is, that F has polynomial count with polynomial
PF . Then according to Katz’s theorem (see [11]), we must have

(5.15) PF (t) = t7 − 9t6 + 36t5 − 82t4 + 119t3 − 110t2 + 60t − 15.

We will reach a contradiction by showing that PF (p) �= A(p) for infinitely
many primes, namely, for all the primes p in the progression 12b+11 (Dirich-
let prime number theorem). Let p be such a prime, and write p = 4k + 3 as
above. Then a simple computation (e.g., using Maple) shows that

PF (4k + 3) = 8(2k + 1)(1024k6 + 2560k5 + 2752k4

(5.16)
+ 1632k3 + 584k2 + 129k + 15).

Hence, to complete the proof, it is enough to show that A(p) �≡ 0 mod 8 for
any prime p as above. Using (5.13), this is equivalent to showing that

(5.17) 2 + n′
1n

′
2 − 3n′

1 − 3n′
2 �≡ 0 mod 4.

This in turn follows from the following.
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Lemma 5.3. Let p be a prime number of the form 4k + 3. Then both n′
1

and n′
2 are divisible by 4.

Proof. Consider the group G = {±1} × {1, τ } acting on the (finite) Milnor
fiber F1(1) by

−1 · (x1, x2, x3) = (−x1, −x2, −x3),

τ · (x1, x2, x3) = (x2, x1, x3),

and
−τ · (x1, x2, x3) = (−x2, −x1, −x3).

There are two types of G-orbits. First, we have the orbits Gx, corresponding
to points x such that x1 �= x2. Then the isotropy group Gx is trivial, and the
orbit Gx consists of four points. Since we are interested in a computation
modulo 4, we can forget about such orbits.

The second type of orbit corresponds to points x such that x1 = x2 = t.
Then x ∈ F1(1) is equivalent to

(5.18) (x3 + t)2 = Δ(t),

where Δ(t) = t2 + t−2. There are two possibilities.
(a) Δ(t) /∈ H ; that is, Δ(t) is not a square in F∗

p. Then (5.18) is impos-
sible, and we do not get a point in F1(1).

(b) Δ(t) is a square in F∗
p. Then (5.18) has two solutions, namely, x3 =

−t + y and x3 = −t − y, with y satisfying y2 = Δ(t). In this way we get
two points in F1(1). Note that Δ(t) = Δ(−t); hence, for the point (−t) we
are exactly in the same situation as for the point t. It follows that for each
pair {t, −t} (i.e., orbit of the obvious {±1}-action on F∗

p), we get either 0
points in the (finite) Milnor fiber F1(1), or we get four points. This proves
the claim for n′

1.
Consider next the group G = {±1} × {1, τ } × {1, σ} acting on the (finite)

Milnor fiber F2(1) by

−1 · (x4, x5, x6, x7, x8) = (−x4, −x5, −x6, −x7, −x8),

τ · (x4, x5, x6, x7, x8) = (x5, x4, x6, x7, x8),

and
σ · (x4, x5, x6, x7, x8) = (x4, x5, x7, x6, x8)
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(and their obvious consequences). Since we are interested in a computation
modulo 4, we can forget about all orbits corresponding to points having an
isotropy group of order at most 2. Now let x be a point such that Gx =
{1, τ } × {1, σ}. Then x = (s, s, t, t, x8) and x ∈ F2(1) is equivalent to

(5.19) (x8 + s + t)2 = Δ(s, t),

where Δ(t) = (s+ t)2 +(st)−2. Note that Δ(s, t) = Δ(−s, −t); hence, for the
point (−s, −t) we are exactly in the same situation as for the point (s, t).
It follows that for each orbit of the obvious {±1}-action on (F∗

p)
2, we get

either zero points in the (finite) Milnor fiber F2(1), or we get four points.
This proves the claim for n′

2.

Remark 5.4. Surprisingly, it seems that PF (p) = A(p) for many primes
of the form p = 4k + 1. Indeed, by a computer-aided computation, we have
obtained the equality PF (p) = A(p) for the first 18 prime numbers of the
form p = 4k + 1.

Remark 5.5. Kisin and Lehrer [13] have considered a notion of mixed
Tate variety (imposing conditions on the eigenvalues of Frobenius action
on p-adic étale cohomology) (see [13, Definition (2.6)]) and shown that if a
variety Y is mixed Tate, then Y is cohomologically Tate (see [13, Theorem
(2.2)(2)]). Then in [13, Remark 2.4, p. 213], they discuss the conjectural
equivalence between cohomologically Tate and mixed Tate conditions. Any
hyperplane arrangement complement is mixed Tate (see [13, Proposition
3.1.1]).

We say that Y has weak polynomial count with count polynomial PY if
there is a polynomial PY ∈ Z[t] such that for all but finitely many primes
p, there is an integer kp > 0 satisfying the following: if we set q = pkp , then
for any finite field Fqs with s ∈ N∗, the number of points of Y over Fqs is
precisely PY (qs).

Kisin and Lehrer have shown that if a variety Y is mixed Tate, then Y

has weak polynomial count (see [13, Proposition 3.4]).
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