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VANISHING THEOREMS ON COMPLETE
MANIFOLDS WITH WEIGHTED

POINCARÉ INEQUALITY AND APPLICATIONS

HAI-PING FU and DENG-YUN YANG

Abstract. Two vanishing theorems for harmonic map and L2 harmonic 1-form
on complete noncompact manifolds are proved under certain geometric assump-
tions, which generalize results of [13], [15], [18], [19], and [20]. As applications,
we improve some main results in [2], [4], [6], [9], [12], [20], [22], [24], and [25].

§1. Introduction

Let Mn be a minimal hypersurface in R
n+1. M is said to be stable if

0 ≤
∫

M
(|∇ϕ|2 − |A|2ϕ2), ∀ϕ ∈ C∞

0 (M),

where |A| is the norm of the second fundamental form of M . For some
number 0 < δ ≤ 1, it is defined that M is δ-stable if

(1) 0 ≤
∫

M
(|∇ϕ|2 − δ|A|2ϕ2), ∀ϕ ∈ C∞

0 (M).

Obviously, given δ1 > δ2, δ1-stable implies δ2-stable. So, that M is stable
implies that M is δ-stable.

In [20], using harmonic map techniques, Schoen and Yau studied the
fundamental group of a manifold of nonnegative Ricci curvature and of a
stable minimal hypersurface immersed into nonpositively curved ambient
space. Pigola, Rigoli, and Setti ([18], [19]) proved a Liouville-type theorem
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for harmonic maps on complete manifolds with weighted Poincaré inequal-
ity which generalizes, in some respects, classical work due to Schoen and
Yau [20].

On the other hand, Cheng and Zhou [5] proved that if M is an ((n − 2)/n)-
stable complete minimal hypersurface in R

n+1 and has bounded norm of the
second fundamental form, then M must either have only one end or be a
catenoid. This result for minimal hypersurfaces relies on the study of com-
plete manifolds with weighted Poincaré inequality which is of independent
interest. In [17], Li and Wang studied complete manifolds with satisfying
property (Pρ) and obtained many theorems on rigidity. Cheng and Zhou [5]
generalized one result of [17]. Li and the first author in [10] recently refined
the main results due to Cheng and Zhou [5].

In this paper, we study an n-dimensional complete noncompact Riemann-
ian manifold with weighted Poincaré inequality. As applications, we study
complete noncompact submanifolds. To state some results, we recall some
notation and definitions.

Let M be an n-dimensional complete oriented submanifold isometrically
immersed in an (n+p)-dimensional Riemannian manifold Nn+p. Fix a point
x ∈ M , and choose a local orthonormal frame {e1, e2, . . . , en+p} such that
{e1, e2, . . . , en} are tangent fields. For each α, n + 1 ≤ α ≤ n + p, define a
linear map Aα : TxM → TxM by

〈AαX,Y 〉 = 〈 ∇̃XY, eα〉,

where X,Y are tangent fields and where ∇̃ denotes the Riemannian con-
nection on Nn+p. We denote by H the mean curvature vector of M :

H =
1
n

n+p∑
α=n+1

(TrAα)eα.

For each α, n + 1 ≤ α ≤ n + p, define a linear map φα : TxM → TxM by

〈φαX,Y 〉 = 〈X,Y 〉 〈H,eα〉 − 〈AαX,Y 〉,

and a bilinear map φ : TxM × TxM → TxM ⊥ by

φ(X,Y ) =
n+p∑

α=n+1

〈φαX,Y 〉eα.
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It is easy to see that the tensor φ is traceless. Denote by A the second
fundamental form of M . We have

|A|2 = |φ|2 + n|H|2.

For Nn+p, we say that the (n − 1)th Ricci curvature of N satisfies
Ric(n−1)(N) ≥ c if, for all points x ∈ N and for all n-dimensional subspaces
V ⊂ Tx(N), the curvature tensor R satisfies

n∑
i=1

〈R(ei, v)v, ei〉 ≥ c, v ∈ V,

where {e1, . . . , en} is an orthonormal basis for V . Then Ric(n−1)(N) ≥ (n −
1)c implies that Ricn(N) ≥ nc.

Let M be a complete Riemannian manifold, and let q : M → R be a
differentiable function. Consider the elliptic operator L = Δ + q associated
to the quadratic form

(ϕ, −Lϕ) = −
∫

M
ϕLϕ =

∫
M

(|∇ϕ|2 − qϕ2), ∀ϕ ∈ C∞
0 (M).

Here Δ is the Laplacian, and ∇ϕ is the gradient of ϕ. The index of L is
defined to be the supremum, over compact domains of M , of the number
of negative eigenvalues of L with Dirichlet boundary condition. If M is an
n-dimensional constant mean curvature hypersurface in Nn+1 of constant
curvature c and if q = nc + |A|2, then to say that M is strongly stable is
equivalent to saying that the index of L is zero.

Let H1(L2(M)) denote the space of L2 harmonic 1-forms on M . For
convenience, throughout this article we assume that (δ −

√
δ2 − (n − 2)δ)/

(n − 1) < β < (δ +
√

δ2 − (n − 2)δ)/(n − 1).
Now we can mention our results as follows.

Theorem 1.1. Let M be an n-dimensional complete noncompact Rie-
mannian manifold, and let W be a manifold of nonpositive sectional curva-
ture. If the Ricci curvature of M has the lower bound

(2) RicM (x) ≥ −(n − 1)τ(x), x ∈ M,

where τ(x) satisfies Poincaré inequality

(3) δ

∫
M

τϕ2 ≤
∫

M
|∇ϕ|2, ∀ϕ ∈ C∞

0 (M),
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where the constant δ is more than (n − 2), then any harmonic map f : M →
W is constant, provided that its energy density satisfies

∫
B(R) |df |2β = o(R).

Remark 1.2. The statement of Theorem 1.1 still holds when τ(x) satis-
fies Poincaré inequality

∫
M

((n − 1)2

n
τ + ε

)
ϕ2 ≤

∫
M

|∇ϕ|2, ∀ϕ ∈ C∞
0 (M),

for some ε > 0. Theorem 1.1 extends [20, Theorem 1], [18, Theorem 2.3],
and [19, Theorem 6.1].

Theorem 1.3. Let M be an n-dimensional complete noncompact Rie-
mannian manifold. If the Ricci curvature of M has the lower bound

RicM (x) ≥ −(n − 1)τ(x), x ∈ M,

where τ(x) satisfies Poincaré inequality

δ

∫
M

τϕ2 ≤
∫

M
|∇ϕ|2, ∀ϕ ∈ C∞

0 (M),

where the constant δ is more than (n − 1)2/n, then H1(L2(M)) = 0.

Remark 1.4. The statement of Theorem 1.3 still holds when τ(x) satis-
fies Poincaré inequality

∫
M

((n − 1)2

n
τ + ε

)
ϕ2 ≤

∫
M

|∇ϕ|2, ∀ϕ ∈ C∞
0 (M),

for some ε > 0. Theorem 1.3 is rewritten as follows.

Theorem 1.3′
. Let M be an n-dimensional complete noncompact Rie-

mannian manifold. For some ε > 0, ∀x ∈ M , if one of the following cases
occurs:

(1) RicM (x) ≥ −(n/(n − 1) − ε)ρ(x);
(2) RicM (x) ≥ −(n/(n − 1)ρ(x))+ ε, where ρ(x) satisfies Poincaré inequal-

ity ∫
M

ρϕ2 ≤
∫

M
|∇ϕ|2, ∀ϕ ∈ C∞

0 (M);

then H1(L2(M)) = 0.
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So Theorem 1.3 can be regarded as generalizations of Lam [13, Theo-
rems 0.5, 3.4, 3.5] since the ρ in Lam’s theorem satisfies some conditions
(see [15, Theorem 4.2], [12, Theorem 1.1]).

As applications of Theorem 1.1 and 1.3, we obtain the following.

Theorem 1.5. Let M be an n-dimensional complete noncompact sub-
manifold isometrically immersed in an (n + p)-dimensional manifold Nn+p

with Ric(n−1)(N) ≥ (n − 1)c. Assume that the index of the operator Δ +
(nc + |A|2) is zero. If

(δ2 − 4n + 4)|A|2 ≤ 8n(n − 1)(n + δ)c,

where the constant δ is more than (n − 2), then any harmonic map from
M to a manifold with nonpositive curvature is constant, provided that its
energy density satisfies

∫
B(R) |df |2β = o(R). In particular, if δ is more than

(n − 1)2/n, then H1(L2(M)) = 0 and M has at most one nonparabolic end.

Corollary 1.6. Let Mn (n ≤ 7) be an n-dimensional complete noncom-
pact submanifold isometrically immersed in an (n+p)-dimensional manifold
Nn+p of nonnegative (n − 1)th Ricci curvature. If the index of the opera-
tor Δ + |A|2 is zero, then any harmonic map from M to a manifold with
nonpositive curvature is constant, provided that its energy density satisfies∫
B(R) |df |2β = o(R).

§2. Proof of main theorems

Proof of Theorem 1.1. In [19, Proposition 1.3], Pigola, Rigoli, and Setti
give a refined Kato inequality,

(4) |∇df |2 ≥ n

n − 1

∣∣∇|df |
∣∣2.

Combining with (4), by the Bochner-type formula for harmonic maps between
Riemannian manifolds (see [7]) and the nonpositivity of the sectional cur-
vature of W , we have

(5) |df |Δ|df | ≥ 1
n − 1

∣∣∇|df |
∣∣2 + RicM (df, df).
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By using (5) and (2), we compute

|df |αΔ|df |α

= |df |α
(
α(α − 1)|df |α−2

∣∣∇|df |
∣∣2 + α|df |α−1Δ|df |

)
=

α − 1
α

∣∣∇|df |α
∣∣2 + α|df |2α−2|df |Δ|df |(6)

≥ α − 1
α

∣∣∇|df |α
∣∣2 + α|df |2α−2

( 1
n − 1

∣∣∇|df |
∣∣2 − (n − 1)τ(x)|df |2

)

≥
(
1 − n − 2

(n − 1)α

)∣∣∇|df |α
∣∣2 − (n − 1)ατ(x)|df |2α,

where α is a positive constant.
Let q ≥ 0, and let φ ∈ C∞

0 (M). Multiplying (6) by |df |2qαφ2 and integrat-
ing over M , we obtain(

1 − n − 2
(n − 1)α

)∫
M

|df |2qα
∣∣∇|df |α

∣∣2φ2

≤
∫

M
|df |(2q+1)αΔ|df |αφ2 + (n − 1)α

∫
M

τ(x)|df |2(q+1)αφ2

= (n − 1)α
∫

M
τ(x)|df |2(q+1)αφ2 − (2q + 1)

∫
M

|df |2qα
∣∣∇|df |α

∣∣2φ2

− 2
∫

M
|df |(2q+1)αφ〈 ∇φ, ∇|df |α〉,

which gives (
2(q + 1) − n − 2

(n − 1)α

)∫
M

|df |2qα
∣∣∇|df |α

∣∣2φ2

≤ (n − 1)α
∫

M
τ(x)|df |2(q+1)αφ2(7)

− 2
∫

M
|df |(2q+1)αφ〈 ∇φ, ∇|df |α〉.

Using the Cauchy–Schwarz inequality, we can rewrite (7) as(
2(q + 1) − n − 2

(n − 1)α
− ε

)∫
M

|df |2qαφ2
∣∣∇|df |α

∣∣2
(8)

≤ 1
ε

∫
M

|df |2(q+1)α|∇φ|2 + (n − 1)α
∫

M
τ(x)|df |2(q+1)αφ2.
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On the other hand, replacing ϕ by |df |(1+q)αφ in inequality (3), we have

δ

∫
M

τ(x)|df |2(1+q)αφ2

≤ (1 + q)2
∫

M
|df |2qα

∣∣∇|df |α
∣∣2φ2 +

∫
M

|df |2(1+q)α|∇φ|2(9)

+ 2(1 + q)
∫

M
|df |(2q+1)αφ〈 ∇φ, ∇|df |α〉,

which gives

δ

∫
M

τ(x)|df |2(1+q)αφ2 ≤ (1 + q)(1 + q + ε)
∫

M
|df |2qα

∣∣∇|df |α
∣∣2φ2

(10)
+

(
1 +

1 + q

ε

)∫
M

|df |2(1+q)α|∇φ|2.

If 2(q + 1) − (n − 2)/((n − 1)α) − ε > 0, then by introducing (10) to (8), we
obtain

(11) B

∫
M

|df |2qα
∣∣∇|df |α

∣∣2φ2 ≤ D

∫
M

|df |2(1+q)α|∇φ|2,

where

B =
(
2(q + 1) − n − 2

(n − 1)α
− ε

)
δ − (n − 1)(1 + q)(1 + q + ε)α,

D =
δ

ε
+

(n − 1)α(1 + q + ε)
ε

.

Let (1 + q)α = β; thus, for (δ −
√

δ2 − (n − 2)δ)/(n − 1) < β <

(δ +
√

δ2 − (n − 2)δ)/(n − 1), it is easy to see that 2(q + 1) − (n − 2)/
((n − 1)α) > 0 and that (2(q+1) − (n − 2)/((n − 1)α))δ − (n − 1)(1+q)2α >

0. Then we can choose ε > 0 sufficiently small so that 2(q + 1) − (n − 2)/
((n − 1)α) − ε > 0 and B > 0. It follows from (11) that the following inequal-
ity holds:

(12)
∫

M
|df |2qα

∣∣∇|df |α
∣∣2φ2 ≤ C

∫
M

|df |2β |∇φ|2,

where C is a constant that depends on δ,α, ε, and q. Let φ be a smooth
function on [0, ∞) such that φ ≥ 0, φ = 1 on [0,R] and φ = 0 in [2R, ∞) with
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|φ′ | ≤ 2/R. Then considering φ ◦ r, where r is the function in the definition
of B(R), we have from (12)

(13)
∫

M
|df |2qα

∣∣∇|df |α
∣∣2φ2 ≤ 4C

R2

∫
B(2R)\B(R)

|df |2β.

Let R → +∞, by assumption that
∫
B(R) |df |2β = o(R). From (13) we con-

clude that ∇|df |α = 0 and that |df | is constant. Thus, if |df | = 0, from (6)
we get τ(x) ≥ 0. It follows by substituting the above |df | into (9) that

δ

∫
B(R)

τ |df |2β ≤ δ

∫
M

τ |df |2βφ2 ≤ 1
R2

∫
B(2R)(p)

|df |2β.

So we conclude by letting R → +∞ that τ(x) ≡ 0. Thus, by (2), we have
RicM (x) ≥ 0. By [21, Theorem 4.1], we get that the volume of B(R) satisfies
vol(B(R)) ≥ C(n)R, and

∫
B(R) |df |2β ≥ C(n)|df |2βR. This is a contradiction

since
∫
B(R) |df |2β = o(R). Consequently, we have |df | = 0 and df = 0. This

completes the proof of Theorem 1.1.

Proof of Theorem 1.3. For each ω ∈ H1(L2(M)), we have the following
well-known Bochner formula:

(14) Δ|ω|2 = 2
(

|∇ω|2 + RicM (ω,ω)
)
.

On the other hand, we have

Δ|ω|2 = 2
(

|ω|Δ|ω| +
∣∣∇|ω|

∣∣2).(15)

From (14), (15), and the generalized version of Kato’s inequality n/

(n − 1)|∇|ω||2 ≤ |∇ω|2 (see [16]), we obtain

(16) |ω|Δ|ω| ≥ RicM (ω,ω) +
1

n − 1

∣∣∇|ω|
∣∣2.

Combining with (2), we have

(17) |ω|Δ|ω| ≥ 1
n − 1

∣∣∇|ω|
∣∣2 − (n − 1)τ |ω|2.

Using the same argument as Theorem 1.1, one can conclude that
H1(L2(M)) = 0.
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§3. Application to submanifolds

Before proving our results, we list some known facts that we need.

Definition 3.1. Let D ⊂ M be a compact subset of M . An end E of M

with respect to D is a connected unbounded component of M \D. When we
say that E is an end, it is implicitly assumed that E is an end with respect
to some compact subset D ⊂ M .

Definition 3.2. A manifold is said to be parabolic if it does not admit a
positive Green’s function. Conversely, a nonparabolic manifold is one which
admits a positive Green’s function. An end E of a manifold is said to be non-
parabolic if it admits a positive Green’s function with Neumann boundary
condition on ∂E. Otherwise, it is said to be parabolic.

Lemma 3.3 ([14, Theorem 2.1]). Let M be a complete manifold. Let
H0

D(M) denote the space of bounded harmonic functions with finite Dirich-
let integral. Then the number of nonparabolic ends of M is at most the
dimension of H0

D(M).

Lemma 3.4 ([1, Section 2], [3, p. 22], [16, Corollary 4]). Let E be an end of
a complete manifold. Suppose that for some ν ≥ 1, E satisfies a Sobolev-type
inequality of the form

(∫
E

|f |2ν
) 1

ν ≤ C

∫
E

|∇f |2, ∀f ∈ C1
0 (E).

Then (1) if ν = 1, then E must either have finite volume or be nonparabolic;
(2) if ν > 1, then E must be nonparabolic.

Theorem 3.5. Let M be an n-dimensional complete noncompact sub-
manifold isometrically immersed in an (n + p)-dimensional Riemannian
manifold Nn+p with Ric(n−1)(N) ≥ (n − 1)c. Assume that the index of the
operator Δ + (nc + |A|2) is zero. If

0 ≤
[√

n − 1(n − δ)|φ|2 − (n − 2)
√

nδ|φ||H| + n
√

n − 1(n + δ)(|H|2 + c)
]
,

where δ is more than (n − 2), then any harmonic map from M to a manifold
with nonpositive curvature is constant, provided that its energy density sat-
isfies

∫
B(R) |df |2β = o(R). In particular, if δ is more than (n − 1)2/n, then

H1(L2(M)) = 0 and M has at most one nonparabolic end.
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Proof. Shiohama and Xu [23] proved that the following estimate holds
for Ricci curvature of a submanifold M in a Riemannian manifold Nn+p

with Ric(n−1)(N) ≥ (n − 1)c:

RicM ≥ n − 1
n

(
nc + 2n|H|2 − n(n − 2)√

n(n − 1)
|H|

√
|A|2 − n|H|2 − |A|2

)
.

Applying the above inequality to the traceless second fundamental form |φ|
and using the identity |A|2 = |φ|2 + n|H|2, we get

RicM ≥ (n − 1)c + (n − 1)|H|2
(18)

− (n − 2)
√

n(n − 1)|φ||H|
n

− (n − 1)|φ|2
n

.

Let us choose τ = |φ|2/n + ((n − 2)|φ||H|)/
√

n(n − 1) − c − |H|2 in Theo-
rem 1.1; thus, RicM (x) ≥ −(n − 1)τ(x).

On the other hand,∫
M

(nc + |A|2 − δτ)ϕ2

=
∫

M

(
(n + δ)(c + |H|2) +

n − δ

n
|φ|2

)
ϕ2 −

∫
M

(n − 2)δ|φ||H|√
n(n − 1)

ϕ2

=
∫

M

((√
n − 1(n − δ)|φ|2 − (n − 2)

√
nδ|φ||H|

+ n
√

n − 1(n + δ)(|H|2 + c)
)
/(n

√
n − 1)

)
ϕ2.

By assumption, from the above inequality we obtain

δ

∫
M

τϕ2 ≤
∫

M
(nc + |A|2)ϕ2 ≤

∫
M

|∇ϕ|2.

Hence, by Theorems 1.1 and 1.3 and Lemma 3.3, we complete the proof of
Theorem 3.5.

By Theorem 3.5, and using the Schwarz inequality, we get the following.

Corollary 3.6. Let M be an n-dimensional complete noncompact sub-
manifold isometrically immersed in an (n + p)-dimensional Riemannian
manifold Nn+p with Ric(n−1)(N) ≥ (n − 1)c. Assume that the index of the
operator Δ + (nc + |A|2) is zero. If one of the following cases occurs:
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(1) n2(δ2 − 4n + 4)|H|2 ≤ 4(n − 1)(n2 − δ2)c;
(2) n(δ2 − 4n + 4)|φ|2 ≤ 4(n − 1)(n + δ)2c;
where δ is more than (n − 2), then any harmonic map from M to a manifold
with nonpositive curvature is constant, provided that its energy density sat-
isfies

∫
B(R) |df |2β = o(R). In particular, if δ is more than (n − 1)2/n, then

H1(L2(M)) = 0 and M has at most one nonparabolic end.

Corollary 3.7. Let Mn be an n-dimensional complete noncompact min-
imal submanifold isometrically immersed in an (n+p)-dimensional manifold
Nn+p of nonnegative (n − 1)th Ricci curvature. If the index of the opera-
tor Δ + |A|2 is zero, then any harmonic map with finite energy from M

to a manifold with nonpositive curvature is constant and H1(L2(M)) = 0.
Moreover, M has at most one nonparabolic end.

Remark 3.8. When M is an n-dimensional constant mean curvature
hypersurface in Nn+1 with Ric(n−1)(N) ≥ (n − 1)c, that M is strongly stable
implies that the index of the operator Δ + (nc + |A|2) is zero. Thus, if
Mn in Corollaries 3.6 and 3.7 is a complete strongly stable hypersurface
with constant mean curvature in Nn+1 with Ric(n−1)(N) ≥ (n − 1)c, then
the statements of Corollaries 3.6 and 3.7 are also true. In particular, when
Nn+1 is a space form, by Lemma 3.4, M has only one end. So Corollaries 3.6
and 3.7 can be considered as generalizations of some main results in [4], [9],
[12], and [20].

It is easy to see that we get Theorem 1.5 by Corollary 3.6. By Theo-
rems 1.1 and 1.3, we have the following Corollaries 3.9 and 3.11 by using (18)
and Lemmas 3.3 and 3.4.

Corollary 3.9. Let M be an n-dimensional complete noncompact min-
imal submanifold isometrically immersed in H

n+p. If the index of the oper-
ator Δ + (−n + |A|2) is zero and if

λ1(M) >
2n(n − 1)2

2n − 1
,

then any harmonic map with finite energy from M to a manifold with non-
positive curvature is constant and H1(L2(M)) = 0. Moreover, M has only
one end.

Remark 3.10. Corollary 3.9 is better than the main theorems in [22]
and [11].



36 H.-P. FU AND D.-Y. YANG

Corollary 3.11. Let M be an n-dimensional complete noncompact min-
imal submanifold isometrically immersed in an (n + p)-dimensional Rie-
mannian manifold Nn+p of nonnegative (n − 1)th Ricci curvature. If the
index of the operator Δ + δ|A|2 is zero, where δ is more than (n − 1)2/n2,
then H1(L2(M)) = 0. Moreover, M has only one end.

Remark 3.12. Corollary 3.11 can be regarded as generalizations of [2,
Theorem 1], [24, Theorem 1.2], and [8, Theorem 1.1].

Remark 3.13. Based on Theorems 1.1 and 1.3, by using the same argu-
ments as before, we can improve the main results of [6], [24], and [25].

Acknowledgment. The authors would like to thank the referees for some
helpful suggestions.
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ness of minimal hypersurfaces, Comm. Anal. Geom. 17 (2009), 139–154.

[6] M. P. do Carmo, Q. L. Wang, and C. Y. Xia, Complete submanifolds with bounded
mean curvature in a Hadamard manifold, J. Geom. Phys. 60 (2010), 142–154.

[7] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J.
Math. 86 (1964), 109–160.

[8] H. P. Fu, The structure of δ-stable minimal hypersurface in R
n+1, Hokkaido Math. J.

40 (2011), 103–110.
[9] H. P. Fu and Z. Q. Li, On stable constant mean curvature hypersurfaces, Tohoku

Math. J. (2) 62 (2010), 383–392.
[10] , The structure of complete manifolds with weighted Poincaré inequality and
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