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Selection Models and the File Drawer
Problem

Satish lyengar and Joel B. Greenhouse

Abstract. Meta-analysis consists of quantitative methods for combining
evidence from different studies about a particular issue. A frequent criticism
of meta-analysis is that it may be based on a biased sample of all studies
that were done. In this paper, we use selection models, or weighted distri-
butions, to deal with one source of bias, namely, the failure to report studies
that do not yield statistically significant results. We apply selection models
to two approaches that have been suggested for correcting the bias. The
fail-safe sample size approach calculates the minimum number of unpub-
lished studies showing nonsignificant results that must have been carried
out in order to overturn the conclusion reached from the published studies.
The maximum likelihood approach uses a weighted distribution to model
the selection bias in the generation of the data and estimates various
parameters of interest. We suggest the use of families of weight functions
to model plausible biasing mechanisms to study the sensitivity of inferences
about effect sizes. By using an example, we show that the maximum
likelihood approach has several advantages over the fail-safe sample size
approach.
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1. INTRODUCTION

The application of statistical procedures to collec-
tions of results from individual studies for integrating,
synthesizing and advancing a research domain is com-
monly known as meta-analysis. The objective of a
meta-analysis is to summarize quantitatively a re-
search literature with respect to a particular question
and to examine systematically the manner in which a
collection of studies contributes to knowledge about
that question. An early and well known example of
a method for synthesizing evidence from independ-
ent studies is Fisher’s method (1932) for combining
p-values. Recently, interest in the application of
meta-analysis as a primary research tool has grown
considerably and with it a corresponding interest in
related statistical and methodological problems.
Books by Glass, McGaw and Smith (1981), Cooper
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(1984), Light and Pillemer (1984), Rosenthal (1984)
and Wolf (1986) provide extensive discussions on the
various aspects of the practice of meta-analysis. In
addition, Hedges and Olkin (1985) address the statis-
tical issues involved in integrating independent
studies. Applications of meta-analysis as a tool for
investigating scientific questions and for guiding
public policy decisions are diverse and include, for ex-
ample, the analysis of the efficacy of psychotherapy
(Smith, Glass and Miller, 1980), the assessment of
human lung cancer risks from various environmen-
tal emissions (DuMouchel and Harris, 1983), and
the United States Department of Education study on
school desegregation and black achievement (1984).
In practice, the major steps in doing a meta-analysis
include identifying, reviewing, abstracting and synthe-
sizing studies from the literature. There are many
important issues and difficulties associated with each
of these steps, many of which are discussed in the
references cited above. In this paper we focus on an
issue related to the identification of articles to be
included in a meta-analysis. Specifically, a concern in
meta-analysis is that studies included in a quantitative
literature review may be a biased selection of all
studies that were done. There are, of course, many
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possible sources of biased reporting. A frequently cited
one is that published research is biased in favor of
statistically significant findings. Rosenthal (1979)
called this publication bias the “file drawer problem,”
as he imagined these unreported statistically nonsig-
nificant studies sitting in investigators’ file drawers.
Surveys by Greenwald (1975) and Chase and Chase
(1976) amply demonstrate the presence of this publi-
cation bias. Moreover, Hedges and Olkin (1985) note
that publication bias arises not only out of editorial
policy favoring statistically significant results, but also
from the reluctance of investigators to report results
when p-values do not reach statistical significance.

It is preferable, of course, to eliminate or minimize
the file drawer problem from the outset through
changes in the attitudes of editors and investigators
toward statistical significance. One approach that has
been suggested is to establish guidelines for the pub-
lication and reporting of the results of studies. An-
other is to create registries of research studies to use
as a sampling frame from which to retrieve studies to
include in a meta-analysis (see Chalmers, Hethering-
ton, Newdick, Mutch, Grant, Enkin, Enkin and Dick-
ersin, 1986; Begg and Berlin, 1987). However, such
registries are rare, and until better reporting proce-
dures are instituted, it is necessary to consider other
approaches.

Our objective in this paper is to provide a framework
for modeling the selection of studies for publication
by using weighted distributions. We investigate two
approaches for dealing with the file drawer problem.
The first, suggested by Rosenthal (1979), assesses the
magnitude of the file drawer problem by calculating
the minimum number of unpublished studies showing
null results there must be to overturn the conclusion
reached from a meta-analysis based on published stud-
ies. The second approach based on selection models
explicitly incorporates the reporting process into the
likelihood function through the use of a weight func-
tion and uses maximum likelihood to estimate the
parameters of the model.

'This paper is organized as follows. In Section 2, we
describe selection models and their application to the
file drawer problem. In Section 3, we define Rosen-
thal’s measure for assessing the magnitude of the file
drawer problem, known as the fail-safe sample size,
and show that Rosenthal’s method for calculating the
fail-safe sample size is based upon the assumption
that the unpublished studies are in fact a random
sample of all studies that were done. We suggest a
modification of Rosenthal’s method and show the
effects of this modification upon the estimated fail-
safe sample size. A maximum likelihood approach for
summarizing the results of -a meta-analysis by using
weighted distributions is described by Hedges and
Olkin (1985). We give extensions of this approach in

Section 4 and apply them to a meta-analysis of the
effects of open versus traditional education on student
creativity. We conclude the paper with a summary
and a discussion of some general issues in meta-
analysis.

2. SELECTION MODELS

For ease of exposition, we assume henceforth that
we have retrieved from the literature several studies
that were done to compare the efficacy of a treatment
relative to a control, and that a meta-analysis is based
on those studies. A data point in the meta-analysis
consists of the results from a single study. We usually
work with a summary measure from each study, say
x, such as a p-value or an estimate of an effect size
that, for instance, may be defined as the standardized
difference between a treatment group and a con-
trol group. We assume further that if there were no
bias in the selection of studies included in the meta-
analysis, x would be governed by the probability
density function f(x; 6), where 0 is some unknown
parameter (for example, 6 may be the effect size). One
objective of a meta-analysis is to obtain an estimate
of 8. For example, the usual estimate of the effect size
defined above is proportional to a noncentral ¢ variate
with noncentrality parameter proportional to 6.

When there is selection bias, however, a more ap-
propriate specification of the probabilistic model is
needed. One way to model the bias is through the use
of weighted distributions; that is, by using the density
proportional to f(x; #)w(x), where w(x) is a non-
negative weight function. We assume that f (x; 8)w (x)
is integrable, so that it can be normalized to yield a
proper density. For example, if we only obtain data
from a subset, A, of the sample space, w would be the
indicator function of that set: w(x) = I,(x). Another
important example arises in renewal theory in con-
nection with the waiting time paradox, where w (x) =
x. Weighted distributions also originate with the work
of Fisher (1934), who recognized the importance of
ascertainment bias in his genetic investigations. How-
ever, it was not until Rao (1965) formalized this idea
that weighted distributions, or selection models, came
into common use. (Some authors reserve the term
selection model for the special case of indicator weight
functions; we use the term in the broader sense of any
appropriate non-negative w(x).) Rao also allowed the
weight function to be only partially specified, so that
it was parametrized by an unknown, say 8. He then
suggested the joint estimation of 3 and 6 from the
data.

More recently, weighted distributions have been
used in many other problems, such as in sample sur-
veys, family studies and geology. A principal contrib-
utor to this field is G. P. Patil, who has applied
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weighted distributions to problems in ecology. He has
also derived characterizations of certain classes of
weighted distributions that have important implica-
tions for other practical applications (see, for instance,
Mahfoud and Patil, 1982). Good overviews of this
topic are given in Patil and Rao (1977), Rao (1985)
and Bayarri and DéGroot (1986¢).

One way to characterize the file drawer problem is
by the following simple weight function w (x; a), where
x is an observed p-value:

(1) w(x; a) = Ijpu(x),

for some o € [0, 1]. A random sample from the
corresponding weighted distribution is obtained if an
investigator does independent replications of an ex-
periment, and only reports the ones that yield results
significant at the level a. As a model for the selection
of studies for publication, the weight function in (1)
is unrealistic because studies showing nonsignificant
results do indeed get published. We discuss other
choices of weight functions in Section 4. In this paper,
we interpret w(x) as the probability of reporting a
study when the data takes on the value x. Thus, all
our weight functions take values between 0 and 1, so
that f(x; #)w(x) can always be renormalized to yield
a proper density. We also consider families of weight
functions: in particular, if there are k studies, we may
have weight functions {w; (x; 8):j =1, ..., k}, where
w; applies to the jth study and 8 is an unknown
parameter. Two examples of just such a family are
given in Section 4 below. The flexibility afforded by
such families of weight functions is important, for it
allows us to investigate the sensitivity of the infer-
ences from a meta-analysis when various weight func-
tions are used to model plausible biasing mechanisms
(see, for example, Greenhouse, Fromm, Iyengar, Dew,
Holland and Kass, 1986).

3. FAIL-SAFE SAMPLE SIZE APPROACH

We start with Rosenthal’s approach to assessing the
magnitude of the file drawer problem. He computes
the number of unpublished studies needed to offset
‘the conclusion reached on the basis of the observed
studies. Cooper (1979) called this number the fail-safe
sample size. Rosenthal uses the inverse normal
method for combining one-tailed significance levels,
which is generally attributed to Stouffer (see Mosteller
and Bush, 1954). Let p,, ..., p: be the significance
levels from k observed studies. Under the null hy-
pothesis that the mean effect size is zero, each p;
is uniformly distributed on [0, 1]. Let Z; be the
standard normal deviate associated with p;; that is,
Z; = ® (1 — p:;), where ® is the standard nor-
mal cumulative distribution function. The inverse
normal method then computes the overall significance

by using S./k'/?, where S, = Z, + --- + Z,. Suppose
now that S,/k'/? = z,,, where 2, is the critical value for
a one-sided level « test of the normal mean. Rosenthal
(1979) assumes that the mean Z value for the unpub-
lished studies is zero, and proposes that the fail-safe
sample size, n(0), is the solution to

(2) Si/(k + n(0))? = z,.

In practice, n(0) is assessed informally by using
one’s knowledge of the particular field of study. If n(0)
is large, then one may argue that it is unlikely that so
many unpublished studies exist. Alternatively, if n(0)
is small, the result of the combined significance test
may well be due to the biased ascertainment of the
studies. Now, if there were publication bias in favor
of studies with statistically significant findings, then
the Z values for the unpublished studies would not be
a sample from the standard normal distribution. In-
stead, they would be selected from the part of the
population of studies whose significance levels exceed
a, and hence, whose Z values are less than z.. If ¢
denotes the standard normal density, then this se-
lected variate has a truncated normal density

@(x)
®(z.)’

0, otherwise.

for x =< z,,
(3) g(x; z.) =

The mean value under the density g(x; z,) is M(a) =
—$(2.)/®(2,). For commonly used values of «,
Table 1 gives values of M(«).

Following Rosenthal, if the mean Z value for the
unpublished studies is M(«), then the equation for
the fail-safe sample size, n(a), becomes

@ (S + n(@M()/(k+ n() = z.

It is easy to see that equation (2) is a special case of
equation (4), indicating that Rosenthal’s calculation
of the fail-safe sample size assumes that there is no
bias among the unpublished studies. Also, equation
(4) always yields a smaller estimate of the fail-safe
sample size than does equation (2). Notice that for the
given values of a, the values of M(a) in Table 1 are
not very different from zero. However, their effect
upon the estimate of the fail-safe sample size can be
quite large. This can be seen by considering the de-
pendence of the ratio n(a)/k upon the overall standard
normal deviate S,/k/2. Simple algebra shows that for

TABLE 1
Mean value for normal density truncated at z,

a PA M(a)
0.01 2.326 —0.0269
0.05 1.645 -0.1085
0.10 1.282 —0.1949
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Rosenthal’s method, n(a)/k is a quadratic function of
S,/k?, whereas for the modification given in equation
(4), n(a)/k is approximately linear.

Table 2 provides a comparison of the fail-safe n
values calculated from Rosenthal’s method and from
equation (4). Both examples in Table 2 are taken from
Rosenthal (1979) and come from his studies of the
effects of interpersonal expectations. Both examples
show that this method is quite unstable with respect
to the choice of the mean Z value of the unpublished
studies: the two estimates can differ by an order of
magnitude. In many applications; (4) is probably a
better approximation than (2), because the unpub-
lished studies showing significant results probably
number far less than the nominal 5% of all unpub-
lished studies.

Hedges and Olkin (1985) list other methods of com-
bining significance levels. A well known one is Fisher’s
method, which computes S, = — ¥, log(p;), and refers
S, to a x? distribution with 2k degrees of freedom
(d.f.). Our modification described above can also be
applied to these methods. For instance, for Fisher’s
method (3) would be replaced by a truncated exponen-
tial distribution, which is the null distribution of
—log(p).

Orwin (1983) proposed a procedure analogous to
Rosenthal’s, but which is based upon effect size esti-
mates. Recall that an effect size may be defined as the
standardized difference between a treatment group
and a control group. His criterion is the number of
unpublished studies showing null results needed to
bring an observed effect size estimate, d, down to some
negligible level, d.. This critical level d. is presumably
determined by subject matter considerations. Denot-
ing the mean effect size of the unpublished studies by
u, his fail-safe sample size, m(u), is the solution to

)] (kd + pm(p))/(k + m(u)) = d.,

where k is once again the number of observed studies.

Orwin did not address the problem of how to specify
u. He only said that “a researcher may have reason to
believe that the file drawer studies have a non-zero
mean effect size” (page 158). An argument similar to
the one leading to (4) implies that p = M(«a) is an
appropriate choice when, once again, the statistical
significance criterion is the main source of biased
reporting. Because the ratio m(u)/k depends linearly
upon d for all u, the choice of u does not dramatically
affect the estimated fail-safe sample size, as it did in
(4). This is seen in Table 3, which compares the fail-
safe sample size estimates for u = 0 and p = M(.05).
The first two rows of Table 3 come from the meta-
analysis of psychotherapy outcomes by Smith, Glass
and Miller (1980), whereas the last one comes from
Cooper’s (1979) meta-analysis of research on gender
differences in conforming in face to face situations. It

TABLE 2
Comparison of fail-safe sample sizes from (2) and (4)

3 S n(0) n(.05)

94 95.32 3263 507

345 420.90 65123 3002
TABLE 3

Fail-safe sample sizes from (5)

k d d. m(0) m(M(.05))
1766 0.85 0.5 1236 1015
1766 0.85 0.2 5740 3720

16 0.28 0.2 6 2

is clear that Orwin’s scheme is more stable with re-
spect to the choice of the mean of the unreported
studies than Rosenthal’s scheme.

Rosenthal’s clever formulation of the file drawer
problem, and Orwin’s modification of it yield easily
computed indices of its magnitude. Rosenthal (1984)
has provided a rough guide to help decide what is an
unlikely number of studies in the file drawers, but this
guide does not seem to be used, due to its ad hoc
nature. Instead, in practice the fail-safe sample size is
often used subjectively, relying upon one’s knowledge
of the field in question to assess the magnitude of the
file drawer problem. See, for example, Rosenthal and
Rubin (1978), Booth-Kewley and Friedman (1987)
and Hazelrigg, Cooper and Borduin (1987).

This approach, however, has certain drawbacks that
render it less useful for the broader purposes of meta-
analysis. First, we have shown above that Rosenthal’s
original solution is very sensitive to the choice of
weight function. Also, this approach relies on a com-
bined statistic (S, or d), which assumes that the &
studies are replications of the same experiment. Thus,
important heterogeneities (due to variations in exper-
imental design, subject pool, etc.) among.the studies
are ignored. In the next section, we turn to the maxi-
mum likelihood approach, which is more flexible, be-
cause it can be used to model such heterogeneities in
order to provide a better summary of the data from a
meta-analysis.

4. MAXIMUM LIKELIHOOD APPROACH

As indicated above, one major aim of meta-analysis
is to estimate a treatment or intervention effect from
studies that were done. If the collection of studies
obtained from the literature represents a selected sam-
ple, the estimate of the average effect size will be
biased. Instead of dealing with the problem of publi-
cation bias by using the fail-safe sample size to assess
the magnitude of the effect of the bias, an alternative
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approach is to model the selection process explicitly
by incorporating a weight function into the likeli-
hood function. The maximum likelihood estimate
(MLE) of the effect size can then be obtained, as well
as its approximate variance by using the observed
information.

For the problem of estimating the mean of a normal
distribution with known variance, Bayarri and
DeGroot (1986a) studied the MLE for w(x) =
I, <) (x). For the same problem with unknown vari-
ance, Hedges and Olkin (1985) studied the MLE for
w(t) = Ig(t), where B={t: |t| = t(q, @)}, t(q, a) is
the critical value for a size a two-sided ¢ test with
g d.f. In this case, the observation is, of course, a
t statistic, and the weight function acts upon it.
Hedges and Olkin give a detailed discussion of the
likelihood function and the MLE for the latter case,
when a single study is observed. They note that “More
complicated censoring schemes are possible. In many
practical situations the censoring rule is unknown, so
that the model and results described (above) may not
be applicable. However, it does provide a framework
from which to make modifications” (page 288). Below,
we give examples of such modifications.

To fix ideas, we consider an example given in
Hedges and Olkin (1985, page 303). The data come
from a meta-analysis of ten studies comparing the
effects of experimental open classroom education with
traditional education on student creativity and are
reproduced in Table 4. For illustrative purposes (and
following Hedges and Olkin), we assume that all stud-
ies are estimating the same effect size, denoted by 4.
For the ith study, the second column gives the sample
size, N; in each of the two samples. The third column
gives the effect size estimate, 6;, where 0; is the differ-
ence between the means for each education type di-
vided by a pooled estimate of the standard deviation.
The fourth and fifth columns give, respectively, the ¢
statistic, ¢;, and the corresponding d.f., g; = 2N, — 2
for each study.

Denote the density of a noncentral ¢ distribution
with noncentrality » and ¢ d.f. by f(¢; », q).
If there were no selection bias in the reporting of

" the studies in Table 4, then t; would have density
f(t; (N:/2)"/20, q;). Assuming that the observed studies
are independent, and that the weight function w(t)
models the selection bias in reporting a result for
which the value, t, of the ¢ statistic is observed, the
likelihood function for 8 is given by

0 f(t; (N/2)26, q)w(t:)
}—2—1 A((Ni/2)1/20’ w, ql)

(6 L, w) =

where

(7) A(n, w, q) =J:wf(t;n, q)w(t) dt.

TABLE 4
Studies of effects of open vs. traditional education on creativity

A

i N; 0; t; q;
1 90 —0.583 -3.91 178
2 40 0.535 2.39 78
3 36 0.779 3.31 70
4 20 1.052 3.33 38
5 22 0.563 1.87 42
6 10 0.308 0.69 18
7 10 0.081 0.18 18
8 10 0.598 1.34 18
9 39 —-0.178 -0.79 76
10 50 —0.234 -1.17 98

We note that the independence assumption may be
violated if, for example, several studies came from the
same investigator or laboratory; in such cases we can
make appropriate modifications by modeling the
dependence explicitly. Four of the ten studies in
Table 4 yielded results that were significant at the
.05 level, so an appropriate weight function for this
data should be non-zero everywhere. To examine dif-
ferent possible selection schemes and to examine the
effect of the choice of the weight function upon our
inferences about 6, we consider the following two
parametric families of weight functions:

[x]”
t(g,.05)°"

1, otherwise,

if <t(q,.05),
8) wi(x;B,q9)= i |x]=¢(g,.00)

and
e, if |x| = t(q, .05),
1, otherwise.

9 wix;v,q9) = {

In both cases, P(| T, | = t(q, .05)) = 0.05 where T, has
a central ¢ distribution with ¢ d.f. For w;, 8 = 0, and
for w,, v = 0. Henceforth, we write L(6, 3) and
L(6, v) for L(6, w,) and L (6, w:), respectively.

Both families of weight functions imply that all
studies showing statistically significant results will be
reported. In addition, these families have the following
features: when 8 and v are zero, the weight functions
indicate no selection bias; when 8 and v are infinite,
the weight functions become the Hedges-Olkin scheme
described above, in which only statistically significant
results were reported. The two weight function fami-
lies differ only for nonsignificant results: w; says that
the reporting probability increases as the outcome
approaches statistical significance, whereas w, says
that the reporting probability is constant for all non-
significant results. .

The maximum likelihood estimates, (f, 3) and
(@, %), of the vector parameters (4, 8) and (6, v),
respectively, along with their estimated standard
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deviations and their estimated covariance matrices
(V) are obtained from equations (6) and (7) and
presented in Table 5. Computational details are given
in the appendix. For (8, ), we define the relative log
likelihood function r(6, 8) = log L(6, 8) — log L(d, 8)
and similarly define r(6, v). Contour plots for r(6, 8)
and r(0, v) near the MLEs are given in Figures 1 and
2, respectively.

Inspection of Figures 1 and 2 suggests that the log
likelihood contours are approximately elliptical in the
neighborhoods of the MLEs, supporting the use of the
normal approximation for making inferences about
the parameters. Hodges (1987) discusses several meth-
ods for assessing the adequacy of this approximation.
Application of his method further supports the normal
approximation; we omit the details here. Notice that
the estimates of # and its standard deviation and the
log likelihood contours are virtually the same for the
two weight functions. Thus, for these data the infer-
ences about the effect size seem to be insensitive to
the choice of weight function. Also, the intervals 8 +
2(SD(B)) and ¥ % 2(SD(¥)) do not include zero,
suggesting the presence of some selection bias. Per-
haps the most interesting feature of the log likelihood
contours is their width. The log likelihood surface is
not very sharp in the neighborhoods of (4, 8) and
(6, ), indicating that this meta-analysis based on ten
studies is not very informative for the parameters and
in particular 6.

We now compare the maximum likelihood estimate

of 6 with other estimates that are often used in meta-
analysis. The unweighted average of all ten effect size
estimates is 0.291, with a standard error of 0.162. The
sample size weighted average of all effect size esti-
mates is 0.057, with a standard error of 0.080, which
is approximately the MLE if we assume no publication
bias (8 = y = 0). At the other extreme, there is the
estimate based only upon the four studies showing
statistically significant results. Hedges and Olkin
(1985) provide tables to compute an MLE of 6 approx-
imately the sample size weighted average of the indi-
vidual MLEs. They report that this weighted average
is 0.01, which is very close to the actual MLE, 0.011.
.They do not, however, provide a standard error for
their approximate MLE; the details described in the
Appendix give a standard error of 0.035 for this case.
Large sample 95% confidence intervals for all the
estimators of # include zero.

TABLE 5
MLE:s of effect size and weight function parameters from (6) to (9)

@, %) = (0.022, 2.53)
(SD(@), SD(%)) = (0.049, 0.65)
~ .. [0.002 0.000
v, v = [0.000 0.417]

@, 8) = (0.026, 1.33)
(SD(9), SD(8)) = (0.052, 0.59)
~ | 0.003 —0.003
Ve, p) = [—0.003 0.348]

C.15

0.10

0.05

0.0

-0.05

-0.10

Fi1G. 1. Contours of the relative log likelihood function, r(6, 3), for
weight function w,.

Two features of the comparison above are interest-
ing. First, the MLE for 6 based upon all the studies
(6 = 0.022 or 0.026) is further away from the null value
(6 = 0) than the MLE (§ = 0.011) derived from just
the statistically significant results. In this case, the
MLEs come from different models: one model assumes
that the weight function is known (that is, either 8 or
v is known), whereas the other estimates all the pa-
rameters. However, this can also happen under the
same model when we have a two-sided weight func-
tion. For example, if the statistically significant results
include both positive and negative values so that the
MLE based upon them is near 0, and if the statistically
nonsignificant results are predominantly positive, say,
then the MLE based upon all the data will be away
from zero. An analytic demonstration of this for the
noncentral ¢ distribution seems difficult; however, a
careful examination of (18) to (21) in the Appendix
shows that this can happen for the normal distribu-
tion. The other interesting comparison is that the
accuracy of the MLE is greater in the presence of
publication bias than otherwise. This empirical result
is consistent with the analytical work of Bayarri and
DeGroot (1986b), who show that in the normal case a
selected sample can have greater Fisher information
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FiG. 2. Contours of the relative log likelihood function, r(8, v), for
weight function w,.

for certain parameter values than an unselected
sample.

5. DISCUSSION

As discussed earlier, the major steps in doing a
meta-analysis include identifying, reviewing, abstract-
ing and synthesizing studies from the literature. To
date, much of the statistical research in meta-analysis
has focused on methods for synthesizing information
from studies retrieved from the literature. In this
paper, we have considered the problem of the selection
of studies to be included in a meta-analysis and the
concern that the published research may be biased in
favor of statistically significant findings. If we think
of the retrieval of studies from the literature as a
sampling experiment, then the problem of selection
bias in meta-analysis arises because the population of
relevant studies is often not well defined. We have
suggested an approach for modeling the selection of
studies for publication using weighted distributions
and maximum likelihood estimation. Our model for
selective reporting is necessarily simple, but can be
modified to include additional information about the
reporting process. We note, however, that the meth-
odology used here is more general and that whenever

the various sources of bias can be assessed, and can
be modeled by a weight function, or a parametric
family of weight functions, the techniques described
above can be applied.

Rosenthal’s fail-safe sample size approach is an
elegant formulation, and it is computationally simple;
yet it has several drawbacks that limit its usefulness.
This approach initially combines the results of the
observed studies as if they constituted an unselected
sample, and then provides ad hoc guides for assessing
the potential effects of selection bias. This second step
becomes unnecessary if we model the selection and
appropriately combine the results from the observed
studies; the maximum likelihood approach is one way
of doing this.

The maximum likelihood approach based on selec-
tion models does involve much more computation, but
that is justified, we believe, by its many advantages.
This approach is flexible: it allows us to see how the
parameter estimates and our inferences change as we
change our assumptions about the selection model.
The accuracy of the parameter estimate is also avail-
able, in contrast to the fail-safe sample size method.
Also, it is possible to examine the log likelihood sur-
face to see how informative the data are about the
parameters of the model. In the example considered,
we found that a meta-analysis based on ten studies
was not very informative for the population effect size.
This raises important questions about design issues in
meta-analysis, a topic that has not received much
attention.

It is clear that meta-analysis, like rock and roll, is
here to stay and that statisticians have made and will
continue to make significant contributions to the the-
ory and practice of meta-analysis. Although here we
have focused on methods for dealing with the bias due
to unpublished studies, others have suggested that
“more research on methods for improving the yield of
published studies which are actually found would be
useful” (Laird, 1986). Presently, this yield typically
includes an estimate of effect size. We have used one

definition of an effect size, but many other measures

have been proposed, and there is much debate about
the use and interpretation of the different measures.
(Rosenthal, 1984; Laird, 1986). The problem of choos-
ing an appropriate effect size measure is yet to be
resolved. Another issue about which we are especially
concerned is the problem of using results from studies
that differ in quality. As Rosenthal (1984) points out,
differing quality may be accommodated within the
formalism of meta-analysis by assigning an appropri-
ate weight to each study. Summaries such as an overall
effect size, may then be computed. The process of
assessing the quality of studies, however, deserves as
much attention as the final result. Efforts should be
made to articulate the criteria used to distinguish the
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good quality studies from the bad. Then, methods for
integrating the results from heterogeneous studies
based on hierarchical models can be applied (see for
example, DuMouchel and Harris, 1983; DerSimonian
and Laird, 1986; Greenhouse, Fromm, Iyengar, Dew,
Holland and Kass, 1986).

APPENDIX

Let T, have a noncentral ¢ distribution with q d.f.
and noncentrality parameter n. Denote the density
and distribution functions of T, by f(t; #, ¢) and
F(t;n, q), respectively. Then

f(t;m, q)
= exp(—n?/2)(x)V2(1 + t%/q)~(a*V/2

(10)
% & b"T'((n+ g+ 1)/2)
nm1 nlq”T(q/2) ~’
where
(11) b= nt2%/(q + t2)2

We need the noncentral ¢ density to perform the
likelihood calculations in Section 5. To do this, we
summed the series in (10) when ¢ < 80; and for larger
g, we used the following saddle-point approximation
due to Resnikoff and Lieberman (1957):

f(t;5m,q)
(12) = Ceexp(—qn*/2(q + 7))
X (1 + t/q) V2 Hy (=tn/(q + t*)'2),

where
(13) C, = 2‘2“‘1)/2I‘(q/2)‘1(1rq)‘1/2,
27u? 1z
=y — 2
H,(x) = ulexp(—(x + u)*/2) (q n u2>
(14)
3q 5q?

X [1 g+ 0’ Teg+ u)3]’

and
_—x + (x® + 49)"

2

The normalizing constants (7) for the weight func-
tions given in (8) and (9) are '

A(n; wi, q) =1— (F(c; n,q) — F(—c; n, q))

(15) u

(16)
1
+0f | | °f (cx; n, ) dx
J—1
and

A(n; ws, q)

17)
=1—1—e™)(F(c;n q) — F(—c; n, q)),

respectively, where P(| To| = ¢) = 0.05. IMSL’s rou-
tine MDTN gave F(x; 1, q), and the integral in (16)
was evaluated by Gaussian quadrature.

To get the covariance matrices in Table 5, we first
compute the observed information matrices, 1 @, B)
and I(f, 4), which are the Hessians of minus the log
likelihood evaluated at the MLEs. We then invert
them, so that V = I"'. We use second central differ-
ences to evaluate the second derivatives involved here.
The variance of 0 for fixed 8 or v is similarly derived.

We now provide some details for the claims made
at the end of Section 4. When the underlying density
is ¢ (x — 0), and the weight function is

(18) w(x;v,a)=eI(|x| =a)+I(|x| = a),
the normalizing constant is

A0, v, a)

=e "+ (1—e")(P(—a—0) + &(—a + 0)).

For a sample (X;, ---, X,.) from the weighted
djstribption w(x; v, a)p(x — 0)/A@, v, a), the
MLE 6(Xi, ---, X.), is the unique solution to

(19)

(20) X=6+B@,n,a),
where

d
(21) B, v, a) = a0 log A(6, v, a).

Examination of A(6, v, a) shows that 06Xy, -+, Xn)
is closer to the origin than X. Now suppose that
X;, ---, X; are all statistically significant (that is,
| X;| = a for i = j), and denote the MLE based
upon them by 0(Xi, ---, X;). Suppose also that
X;+1, - - -, X; are not significant. It is easy to see that
if the mean of the nonsignificant observations is larger
in absolute value than the mean of the significant
ones, then 6(Xi, ---, X.) can be farther from zero
than 6(X;, - - -, X;).

ACKNOWLEDGMENTS

We would like to acknowledge our gratitude to Pro-
fessors Stephen Fienberg and Kenneth Wachter for
their gracious invitation to participate in the “Work-
shop on the Future of Meta-Analysis,” October 1986,
sponsored by the Committee on National Statistics of
the National Academy of Sciences. This work grew
out of our participation in that meeting. We would
also like to thank Professor Morris DeGroot for many
stimulating discussions on weighted distributions and
for his encouragement and guidance in completing
this paper. This work was supported in part by Na-
tional Institute of Mental Health Grant MH 15758 at
Carnegie-Mellon University, National Institute of
Mental Health Clinical Research Center Grant MH



SELECTION AND THE FILE DRAWER PROBLEM 117

30915 and the John D. and Catherine T. MacArthur
Research Network on the Psychobiology of Depres-
sion.

REFERENCES

BAYARRI, M. J. and DEGROOT, M. (1986a). Bayesian analysis of
selection models. Technical Report 365, Dept. Statistics, Car-
negie Mellon Univ.

BAYARRI, M. J. and DEGROOT, M. (1986b). Information in selection
models. Technical Report 368, Dept. Statistics, Carnegie Mel-
lon Univ. .

BAYARRI, M. J. and DEGROOT, M. (1986¢c). A Bayesian view of
weighted distributions and selection models. Technical Report
375, Dept. Statistics, Carnegie Mellon Univ.

BEGG, C. and BERLIN, J. (1987). Publication bias: A problem in
interpreting medical data. Technical Report 490Z, Dept. Bio-
statistics, Dana-Farber Cancer Institute.

BooTH-KEWLEY, S. and FRIEDMAN, H. (1987). Psychological pre-
dictors of heart disease: A quantitative review. Psychol. Bull.
101 343-362.

CHALMERS, 1., HETHERINGTON, J., NEwWDICK, M., MUTCH, L.,
GRANT, A., ENKIN, M., ENKIN, E. and DICKERSIN, K. (1986).
The Oxford database of perinatal trials: Developing a register
of published reports of controlled trials. Controlled Clin. Trials
7 306-324.

CHASE, L. and CHASE, R. (1976). Statistical power analysis of
applied psychological research. J. Appl. Psychology 61
234-2317.

COOPER, H. (1979). Statistically combining independent studies:
A meta-analysis of sex differences in conformity research.
J. Personality Social Psych. 37 131-146.

COOPER, H. (1984). The Integrative Research Review: A Systematic
Approach. Sage Press, Beverly Hills, Calif.

DERSIMONIAN, R. and LAIRD, N. (1986). Meta-analysis in clinical
trials. Controlled Clin. Trials 7 177-188.

DUMOUCHEL, W. and HARRIS, J. (1983). Bayes methods for com-
bining the results of cancer studies in humans and other species
(with discussion). J. Amer. Statist. Assoc. 78 293-315.

FISHER, R. A. (1932). Statistical Methods for Research Workers, 4th
ed. Oliver and Boyd, London.

FISHER, R. A. (1934). The effect of methods of ascertainment upon
the estimation of frequencies. Ann. Eugen. 6 13-25.

GLAsS, G. V. (1976). Primary, secondary, and meta-analysis of
research. Ed. Res. 5 3-8.

GLASS, G. V., McGaw, B. and SmiTH, M. L. (1981) Meta-Analysis
in Social Research. Sage Press, Beverly Hills, Calif.

GREENHOUSE, J. B,, FRoMM, D., IYENGAR, S., DEw, M. A., HoL-
LAND, A. and Kass, R. (1986). The making of a meta-analysis:
A case study of a quantitative review of the aphasia treatment

literature. Technical Report 379, Dept. Statistics, Carnegie
Mellon Univ.

GREENWALD, A. (1975). Consequences of prejudice against the null
hypothesis. Psychol. Bull. 82 1-20.

HAZELRIGG, M., COOPER, H. and BORDUIN, C. (1987). Evaluating
the effectiveness of family therapies: An integrative review and
analysis. Psychol. Bull. 101 428-442.

HEDGES, L. and OLKIN, 1. (1985). Statistical Methods for Meta-
Analysis. Academic, Orlando, Fla.

HODGES, J. (1987). Assessing the accuracy of normal approxima-
tions. J. Amer. Statist. Assoc. 82 149-154.

LAIRD, N. (1986). Discussion on “The making of a meta-analysis:
A case study of a quantitative review of the aphasia treatment
literature.” Presented at CNSTAT Conference on Meta-
Analysis, October 1986.

LIGHT, R. and PILLEMER, D. (1984). Summing Up: The Science of
Reviewing Research. Harvard Univ. Press, Cambridge, Mass.

MAHFOUD, M. and PATIL, G. P. (1982). On weighted distributions.
In Statistics and Probability: Essays in Honor of C. R. Rao
(G. Kallianpur, P. R. Krishnaiah and J. K. Ghosh, eds.) 479-
492. North-Holland, Amsterdam.

MOSTELLER, F. and BusH, R. (1954). Selected quantitative tech-
niques. In Handbook of Social Psychology (G. Lindzey, ed.) 1
289-334. Addison-Wesley, Cambridge, Mass.

ORWIN, R. (1983). A fail-safe N for effect size in meta-analysis.
J. Ed. Statist. 8 157-159.

PATIL, G. P. and RaoO, C. R. (1977). The weighted distributions:
A survey of their applications. In Applications of Statistics
(P. R. Krishnaiah, ed.) 383-405. North-Holland, Amsterdam.

RAO, C. R. (1965). On discrete distributions arising out of methods
of ascertainment. Sankhyd Ser. A 27 311-324.

RAo, C. R. (1985). Weighted distributions arising out of methods
of ascertainment: What population does a sample represent?
In A Celebration of Statistics: The ISI Centenary Volume
(A. C. Atkinson and S. E. Fienberg, eds.) 543-569. Springer,
New York.

RESNIKOFF, G. and LIEBERMAN, G. (1957). Tables of the Non-
Central t-Distribution. Stanford Univ. Press, Stanford, Calif.

ROSENTHAL, R. (1979). The “file drawer problem” and tolerance
for null results. Psychol. Bull. 86 638-641.

ROSENTHAL, R. (1984). Meta-Analytic Procedures for Social Re-
search. Sage Press, Beverly Hills, Calif.

ROSENTHAL, R. and RUBIN, D. (1978). Interpersonal expectancy
effects: The first 345 studies. Behavioral Brain Sci. 3 377-415.

SmiTH, M., GLASS, G. and MILLER, T. (1980). The Benefits of
Psychotherapy. Johns Hopkins Univ. Press, Baltimore, Md.

U.S. DEPARTMENT OF EDUCATION (1984). School Desegregation
and Black Achievement. National Institute of Education, Wash-

~ ington.

WoLr, F. (1986). Meta-Analysis: Quantitative Methods for Research
Synthesis. Sage Press, Beverly Hills, Calif.



