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Comment

William E. Strawderman

This article was-a pleasure for me to read. I thank
the authors for giving the time and effort required to
present a thorough and efficient development of the
key decision-theoretic aspects of variance estimation.

I would like to elaborate somewhat on the authors’
comments “concerning practical improvements by
drawing some parallels with the problem of esti-
mating a mean vector. Additionally, I would like to
briefly discuss the problem of estimating variance
components.

Consider the model of the second paragraph of
Section 5. For simplicity I'll assume o> = 1 when
discussing estimation of u with loss equal to || 6 — u || 2
In both problems (estimating u and estimating ¢?),
the potential gains in risk over the best equivariant
estimator increase with the dimension p of u. For the
case of estimating u, the James-Stein estimator

(here p = 3) has minimum risk equal to 2 when p = 0
rising as a function of || u||2to p as || u||2 — «. Hence
the maximum relative savings is (p — 2)/p which
increases from 3 to 1 as p increases. The larger the
dimension p, the more one is able to “borrow strength”
across coordinates. In this case, as well as for the
estimator (5.1) of the variance, meaningful gains (for
large p) will result only if our prior guess (of u = 0)
for the true mean vector is accurate. In either case, if
our guess is poor and || u || is large, X5 X, will be large
with high probability. Hence both the James-Stein
estimator and (5.1) will, with high probability, be equal
(or close) to the respective best equivariant estimators
and little improvement will result.

It is still possible to achieve meaningful gains in the
two problems (for large p) even if we are unable to
accurately guess the true value of u. For example, if

. we (accurately) guess that all of the components are
equal but can’t guess what the common value is, the
Lindley-Smith estimator of u (see Lindley and Smith,
1972) will work well. This estimator shrinks all com-
ponents of X, toward the average of these compo-
nents and results in an estimator of u with risk equal
to 3 when all components of u are exactly equal and
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increases to p as the variance of {u,, - -, p,} tends to
o, Similarly in the problem of estimating o2 an esti-
mator similar to (5.1) but with

Y= | X - X1

and

. 1+ 22
9s2) = mln<u+2’u+p+ 1)
will achieve meaningful gains for p large relative to »
provided the coordinates of u are all equal. Again gains
will not be substantial unless the prior guess is accu-
rate.

Similar parallel estimators are possible in the two
problems based for example on guesses that the mean
vector u lies in a given subspace and the relative gains
will be large provided the co-dimension of the subspace
is large and the prior guess is good.

Of course, the parallels in the two problems are
imperfect. In the problem of estimating the mean
vector, the dimensions of the estimator and estimand
are also growing as is the minimax risk. In the variance
estimation problem, the corresponding values are
fixed. In the variance estimation problem if » is fixed,
p— o, and u = (0, ---, 0) the estimator (5.1) —
min(S2/(v + 2), ¢2), and hence the relative savings in
risk do not approach 1 even when the prior guess for
u is correct.

I believe it is also worthwhile to mention some work
in variance component estimation that is directly
related to Stein’s method. Klotz, Milton and Zacks
(1969) (KMZ) studied estimation of ¢2 and o2 for
squared error loss in the balanced random effects one

way layout.
Sufficiency reduces the problem to consideration of
Y~N(u,c2+Jo2/1J),
St~ (e2+Jo2)xia
and

2 2.2
Se ~O0eXI(J-1s

where Y, S2 and S? are independent. One aspect of
this problem that is of interest as it contrasts with the
fixed effects model of Section 5 is that location and
scale invariance are not enough to produce a best
equivariant estimator.

The fully invariant estimators of the o2 are of the
form S2g(S2/S2). “Reasonable” estimators in this
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class include the UMVUE (S2/I(J — 1)) and the

: S;  Si+S:
MLE(mm(I(J TRy >)

KMZ use a version of Stein’s method to show that the
MLE dominates,the UMVUE. The authors go on to
show, again using Stein’s method, that any equivariant
estimator of o2 which is greater than the sum of
squares of all observations divided by IJ + 2 (i.e.,
[IJY? + 82 + S2]/(IJ + 2)) with positive probability,
is inadmissible. This last result implies that there is
additional information about ¢Z in the overall mean
Y even though the variance of Y is a multiple of
o2 + Jo2 and not of ¢2.

Estimation of ¢2, of course, involves the additional
wrinkle that the

1( S2 S2
V E el a — a
uMvu E(J(I—l I(J—n))
is negative with positive probability. KMZ use Stein’s
method to investigate dominance relations among

several estimators and show that the overall mean
can sometimes be used to construct improvements.

Rejoinder

Jon M. Maatta and George Casella

To begin, we thank all discussants for their kind
remarks and stimulating comments. This project was
started to enhance our understanding of the topic, but
also helped to improve our knowledge and perspective.
As mentioned by several discussants, the scope of our
work was limited. This work was an intentional deci-
sion, because our relatively narrow focus presented a
reasonable size task, and allowed us a fuller under-

standing of one part of this complicated subject. Many-

of the discussants had similar concerns, and we will
structure our rejoinder to respond to the major topics
mentioned.

PRACTICAL CONSIDERATIONS

Though somewhat surprising to us, much concern
was expressed over the magnitude of possible improve-
ment. A major point was that the possible improve-
ments in variance estimation seem small when
compared to those possible in the estimation of means.
This is true, but we feel that the improvement here is
still worthy of consideration.

Berger expresses concerns about this and, in his
inimitable way, anticipates some of our rejoinder.

Portnoy (1971) and others have constructed Bayes
equivariant estimators with good sampling properties.
Loh (1986) has studied the problem of estimating
o2/0? using similar methods.

In this setup, since there is only one degree of
freedom for the grand mean, the likely improvement
is small (once one has selected a good equivariant
estimator). It is possible that larger gains could occur
in higher way mixed models where several degrees of
freedom are available for the mean vector.

Presumably extensions of Brown’s and Zidek’s
methods can be applied in these models and improved
confidence intervals can be constructed as well.
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While the magnitude of improvement is small (as
demonstrated by other discussants), it does increase
in the generalized linear model case, which we do not
consider “less realistic,” but useful in practice. Very
interesting calculations are provided by both Hwang
and Rukhin, showing the limiting amount of improve-
ment possible, approximately 25% in practical cases.
Rather than interpreting these findings in the pessi-
mistic way of Professor Hwang, however, we find more
hope for future improvements (although we certainly
agree that greater improvement seems possible in the
estimation of means).

Some of our optimism is supported, and Hwang’s
pessimism negated, by the comments of George and
Strawderman. They suggest that we have not yet fully
exploited the structure of the problem. The risk (or
interval length) improvement in variance estimation
obtains when the means are close to the point to
which we are shrinking. George and Strawderman
each point out ways to shrink toward subspaces, and,
further, George suggests that we can shrink toward
multiple subspaces. Such estimators may provide sub-
stantial practical gains, since the region of improve-
ment will be expanded. Another interesting possibility



