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pertaining to the robustness with respect to loss func-
tions and distributions, of the results on estimation in
the present paper.
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Comment

Edward |. George

I would like to begin by congratulating Maatta and
Casella for an extraordinarily lucid and thought-
provoking account of developments in decision-
theoretic variance estimation. By systematically
organizing so many related results, they have success-
fully exposed the main thread of ideas running
through these developments. Effectively, this paper
will serve as a springboard for further research ideas.
To emphasize this point, my comments will focus on
two new directions -along which such ideas might
proceed. The first concerns multiple shrinkage gen-
eralizations, and the second concerns further improve-
ments to shrinkage estimators of the mean.

Let me mention before going on that, although my
comments are limited to suggestions for future devel-
opments in point estimation, I am optimistic that
these may also lead to analogous developments in
interval estimation. I say this in light of the close
connections between developments in these two areas
which is brought out so clearly by Maatta and Casella.

1. MULTIPLE SHRINKAGE GENERALIZATIONS

A key idea behind the improved variance estimators
described by Maatta and Casella is that of adaptively
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pooling possibly related information. In the single
sample setting X, -, X, ~ iid N(u, ¢°), the esti-
mators of Stein, Brown and Brewster and Zidek each
improve on the “straw man” estimator S?/(n + 1),
(82 =73 (X; — X)?), by exploiting the possibility that
u/o = 0. The improved estimators are of the form
#(Z)S2, (Z = YnX/S), where ¢(Z) is bounded above
by 1/(n + 1) and decreases as Z? decreases. When Z?
is small, which is likely when w?/c? is small, these
estimators “shrink” S2/(n + 1), effectively regain-
ing the lost degree of freedom used in estimating u.
Indeed, Stein’s estimator replaces S2/(n + 1) by
Y X?/(n + 2), an appropriate estimator when it is
known that u = 0.

At first glance, this phenomenon may seem to be
only a mathematical curiosity. After all, one degree of
freedom will usually be a minor practical gain. This
is precisely the point of the 4% bound on relative
improvement described by Rukhin (1987a). However,
it is straightforward to generalize these results to the
general linear model case, as Maatta and Casella in-
dicate in Section 5, where there are many more degrees
of freedom and important gains may be realized. In-
deed, the seminal results of Stein (1964) are obtained
in such a case, although he states that “even in this
case . .. the improvement is likely to be slight.”

Unfortunately, there may be good reason to agree
with Stein’s pessimism. This can be seen in the ca-
nonical context of Section 5 where we observe inde-
pendent normal variables X, - - -, X,, X,41, « -+, Xy4p,
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with

X;~N@,o%) fori=1,---,v,

(1.1) and
Xv+1 ~ N(/.ti, 02) fori = 1, <o, D

The means p;, -- -, up are unknown, and the problem
is to estimate o2. Letting

: Xvi
12) S*=3X}, Z=(Z -5, Zi="L,
1

the Stein estimator given in (5.1) of Maatta and
Casella may be expressed as

[ 8% S*P+3¥TXD
(1.3) mm(u+2’ v+p+2 /)

This and the corresponding generalizations of Brown
and Brewster and Zidek for this situation, are all of
the form

(1.4) $(Z)S?,

where ¢(Z) is bounded above by 1/(v + 2) and de-
creases as || Z |2 (= Z’Z) decreases. Analogous to the
univariate case, these estimators improve on the
“straw man” estimator

(1.5) S%/(v + 2)

by exploiting the possibility that 3¢ u7/o? = 0. When
|l Z ||? is small, which is likely when % u?/c? is small,
these estimators “shrink” (1.5), effectively regaining
the p degrees of freedom used in estimating py, - - -,
up. The potential gains from using such improved
variance estimators in this context can be very sub-
stantial, especially if p is large compared to v. The
drawback however, is that every one of u,/a, - - -, uy/c
must be small to insure that Y7 u?/c? will be small.
This will be rare when p is large. The larger the
potential gain, the more unlikely it will be achieved.
The far more common situation in most realistic
general linear model settings is that some unknown
subset of the means pu,, --
neglected. Indeed, the determination of such a subset
is often a principal strategy for building parsimonious
models. Thus, what is needed are improved variance
estimators which exploit the possibility that for any
unspecified subset A C {1, 2, - - -, p}, ¥ 4 u7/o?is small.
Such estimators should be obtainable as generaliza-
tions of the estimators of Stein, Brown and Brewster
and Zidek. These generalizations would be of the form

(1.6) ¥v(Z)S?,

where ¢(Z) is bounded above by 1/(v + 2), and is
decreasing in ¥4 Z? forany A C {1, 2, - --, p}. What
is desired is that when ¥, Z? is small for some
particular A, which would be likely when 3, 4 u?/o® is

-, Mp is small and can be-

small, these estimators would “shrink” S2/(» + 2)
regaining | A | degrees of freedom (| A | is the size of
the set A).

Perhaps the most straightforward such generaliza-
tion would be that of Stein’s estimator (1.3) to

S?+ 3 4 X0si
v+ |Aj|+2°

where A;, - -, Ay are the N = 27 distinct subsets of
the integers {1, 2, - - -, p}. Brown’s estimator can also
be straightforwardly generalized to one of the form

(18) CjS2 when Z € Bj,

where B,, ---, By are a partition of R?, and ¢, ---,
¢y are fixed prespecified constants whose selection
could be based on risk calculations similar to those of
Brown. Of course, any such estimators would be non-
analytic and hence inadmissible.

I believe a more promising approach would be to
consider what I would call multiple shrinkage gen-
eralizations of the Brewster-Zidek estimators. As
opposed to the estimators of Stein and Brown, the
Brewster-Zidek estimators “shrink” S%/(v + 2)
smoothly as a function of | Z|% Furthermore, the
Brewster-Zidek estimator for the general linear model
context (1.1) can be obtained as a generalized Bayes
estimator for o2 using a prior on n = (u1/0, -+ -, up/c)’.
Thus, it may be possible to obtain a multiple shrinkage
estimator as a Bayes estimator for a finite mixture of
related priors. What is needed is for each subset A; C
{1,2, - -+, p}, a prior 7; on n which yields as the Bayes
estimator, a Brewster-Zidek analog which “shrinks”
S?/(v + 2) whenever ¥ 4, Z? is small. If such priors
could be found, the multiple shrinkage generalization
of the Brewster-Zidek estimator could be obtained as
a Bayes rule for a mixture prior of the form

(1.7) min{Ty,.--,Tn}, T;=

N
(1.9) T (n) = g‘,pﬂrj(n),

where py, - - -, pn, (N = 2P), are a set of prespecified
prior weights. The resulting estimator would be an
adaptive convex combination of different Brewster-
Zidek estimators which would put most weight on
the estimator “shrinking” most. My experience with
related multiple shrinkage estimators in the context
of estimating a multivariate normal mean (see George,
1986a, b), suggests that such estimators might offer
substantial risk reduction in a much larger region of
the parameter space compared to any one Brewster—
Zidek estimator.

2. FURTHER IMPROVEMENTS TO SHRINKAGE
ESTIMATORS OF THE MEAN

The second research direction I would like to discuss
concerns bringing the improved variance estimators
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discussed by Maatta and Casella to bear on a different
problem. I would like to consider using these variance
estimators to further improve shrinkage estimators of
a multivariate normal mean in the following context.
Suppose we have n multivariate normal observations,

(2.1) Yy, -+, Yo ~ iid Np(p, o*I),

where the p X 1 vector of means u and the scalar o°
are unknown. The problem here is to find an estimator
8 of u which yields small risk

(2.2) - R(g, 8 =E,|lp— 3|

By sufficiency, this problem can be reduced to esti-
mating u on the basis of

(2.3) 7=%z¥,~ and S2=3 1Y - 7|2
1 1

where Y and S are independently distributed as

(24) Y ~ N,(y, (¢*/n)I) and S%~ ¢*Xx}n-1)-

The traditional “straw man” for this problem has
been the MLE and worst minimax estimator, namely
SMLE = ¥ When o2 is known, 6M'E is uniformly
dominated in risk by shrinkage estimators such as the
James—Stein estimator

s_ (p — 2)o’/n)\ o
(2.5) 5 —<1— 4k )Y.
When o2 is unknown, the recommended substitute for
(2.5) which also dominates ™%, is
s (p — 2)6%/n\ o
®e 0 ’(1_ Bk )Y’
where
(2.7) 62=8%(p(n—1) +2)

(see Stein, 1966). One can think of 55 as an estimate
of 6% based on estimating o2 by ¢°.

Notice however that the context (2.4) is (after suit-
able transformation), just the canonical context (1.1).
In fact, the estimator 62 is precisely the “straw man”
S%/(v + 2) in (1.5) which is dominated by the esti-
mators of Stein, Brown, and Brewster and Zidek. I

"would like to suggest that it may be possible to further
improve (2.6) by using one of these estimators in place

of 42. More precisely, letting Z = vn Y/S, it would be
interesting to consider shrinkage estimators of the
form

R (p— 2)&i/n> -
2.8 o* =1 - ——==-—)Y,
@8 ( I1Y|?
where
(2.9) 6% = ¢(2)S?

is one of the improved estimators of Stein, Brown, or
Brewster and Zidek. A reason to suspect that 5* may
be successful is that both 6° and % operate by ex-
ploiting the possibility that || u||/¢ is small. Indeed,
both of these estimators shrink the traditional esti-
mates when | Z [|? is small. Thus, 6* will shrink less
abruptly than §5. Note that 55 and é* will differ most
when n is small and p is large.

Of course, the proof of the pudding is whether or
not an estimator of the form 6* will yield desirable
risk reduction over 6 £, An advantage of considering
estimators like 8 is that Y and &2 are independent,
so that the same risk calculations used to evaluate §°
may be carried out conditionally. Unfortunately, Y
and 62 are not independent so that more formidable
risk calculations will probably be required. Nonethe-
less, shrinkage domination can be shown in situations
with dependent variance estimates (see George, 1988).

3. CONCLUSION

In closing, I hope my comments have under-
scored the potential of the contribution by Maatta and
Casella for stimulating new ideas. There are now many
new directions to explore.
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