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Comment: Industrial Strength VEDA

Forrest W. Young

Multivariate visual exploratory data analysis
(VEDA) has withstood its “test of fire”: Weihs
and Schmidli are the first to try multivariate VEDA
methods in an industrial applied statistics setting, and
the methods proved useful. They are to be commended
for their bravery in implementing and carrying out
such a project, and are to be congratulated both on
their successful application and on providing us with
a model paper which shows how to turn the process
of data visualization into a readable and informative
report.

As one of the developers of multivariate VEDA
methods, I am, naturally, very pleased with this paper.
It is exciting to see that our methods can be used, in
the words of Weihs and Schmidli, by “the investigator
faced with an ongoing stream of many data sets,
limited time and the need for a fairly general single
routine strategy,” and not just by developers who are
“presenting just one more method - - - (with) examples
particularly fitted to demonstrate their usefulness.”

My excitement stems from three aspects of the
Weihs and Schmidli paper: 1) the example, 2) the
confirmatory use of exploratory methods, and 3) the
emphasis on the independence of the visual methods
from the multivariate methods. I will discuss these
points in the next three sections of this comment. My
excitement is tempered somewhat, however, by one
major shortcoming: When “variables can be naturally
attached to more than one group, and the predictabil-
ity of one group by another is of interest” (to quote
the authors), then redundancy aralysis (Lambert,
Wildt and Durand, 1988) should be used, not canonical
analysis as suggested by the authors. I will discuss this
shortcoming in the fourth section of this comment.
Since no plotting tools have been proposed for redun-
dancy analysis, in the fifth section I present the
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triplot a new VEDA tool for redundancy analysis
with certain similarities to the biplot (Gabriel, 1971),
comparing it to biplots and to the authors’ approach
to simplification.

1. ILLUSTRATION

The application used by Weihs and Schmidli to
illustrate OMEGA involves searching for structure in
multivariate data arising in the context of a major
pharmaceutical, dyestuffs and agrochemical company.
The data, which concern the quality of dyestuffs, are
used by Weihs and Schmidli to illustrate the kind of
problem for which a routine online multivariate
VEDA strategy is required in the industrial data
analysis context.

The illustration of multivariate VEDA methods
provided by Weihs and Schmidli is exciting because it
reports the process of a real visual exploratory data
analysis, not just the conclusions of the process nor a
“cleaned-up” mythical version of the process. The
illustration shows the dead-ends, the surprises, and
the excitement of VEDA being applied to a typically
messy set of data.

One of the major strengths of the analysis is that
the authors begin with Principal Components Analy-
sis (PCA), even though the fact that the variables fall
into two groups suggests immediately that Canonical

- Correlation Analysis (CCA) be used. They ask the

rhetorical question “But is it really justified to impose
variables grouping at the beginning of the analysis?”
to which they answer no, saying that they might “miss
something.” Thus, “following this feeling” they post-
poned CCA until later. My own experience is that this
strategy is the best to follow. PCA is, I believe, the
single most powerful multivariate exploratory tool
that we have, and is nearly always my first choice with
a new and unfamiliar set of data. I also find it very
refreshing to see a phrase such as “following this
feeling” being presented without embarrassment,
since informed, scientifically based feelings—hunches,
if you will—are a very important aspect of VEDA.
They note that “we were lucky” that PCA helped them
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discover an important feature of their data. To my
thinking, they were not so much lucky as they were
smart to follow their hunch that PCA would be a good
tool to start with.

According to the true nature of data visualization,
the PCA showed Weihs and Schmidli something sur-
prising. They checked the finding by resampling and
trying again. Still, the same result. They then com-
pared it to the first result by using procrustean rota-
tion. They then tried to simplify the loadings by
making some zero and rounding others to 1 significant
digit, only to continue seeing the same structure.
Apparently, the finding is robust. Not only is the result
surprising and robust, but it is also interpretable. The
end result is that the authors suggested to the producer
of the dyestuff that these results must be a measure-
ment artefact. This was confirmed by the producer,
who in turn revised the measurement process. These
are very good steps to take, and should be a typical
set of steps to follow when exploring data visually. It
is particularly refreshing to see all these steps in the
real analysis reported. In many cases, this whole initial
visual exploration of the data would not be reported.

2. EXPLORING DATA TO CONFIRM HYPOTHESES

One of the most interesting aspects of this paper is
that the authors use exploratory tools for confirmatory
purposes. They state that

a graphical test on point symmetry about zero
for - - - residuals was carried out to test for bivar-
iate normality. Indeed this hypothesis is sup-
ported, since the corresponding strategic random
fluctuations appear to be qualitatively the same
as in the original plot.

It is very refreshing to see such a description made
without qualification or embarrassment. Indeed, it is
my experience that when I use exploratory tools (vis-
ual or not) I often use them this way, even though, at

least in North America, most of us have been taught -

that one only supports hypotheses by using a specified
, significance test and obtaining a significant p-value.
To me, this is an important point in the philosophy
of data analysis. I may very well have a specific
structural hypothesis in mind. For example, I might
believe that the points in the data space form a specific
hierarchical structure, or that they fall in a circle
(Young, 1974). I then go looking for that structure in
the data. When I see the hypothesized structure, I
certainly believe that I have “confirmed” the hypoth-
esis, and it can be very easy to convince others that I
have confirmed the hypothesis, even though there is
no formal statistical test involved, and even though
no p-values are calculated or reported.

A data analyst often explores data with some idea
about what type of structure is being sought. The idea,
if it exists, is an informal hypothesis, and the process
of exploring data is focused on trying to find evidence
to “support the hypothesis.” The hypothesis is
“tested” via the “inter-ocular-impact test”: If the evi-
dence “hits you between the eyes,” then the hypothesis
is supported; otherwise, it is not. This is the route
taken by Weihs and Schmidli in Section 5.3, where
they have developed an idea (hypothesis) that the
three variables measuring color strength are redun-
dant, and that one of these variables is the most
fundamental. They then “test” the hypothesis by com-
puting residuals that should be distributed bivariate
normally if the hypothesis is correct. The resulting
plots “hit them between the eyes,” leading them to
conclude “this hypothesis is supported.” Of course, I
have nothing at all against formal statistical tests
being used in the ordinary confirmatory way to yield
p-values. My point here is simply that it is very nice
to see visual data exploration 1»ading to hypothesis
confirmation.

3. INDEPENDENCE OF THE MULTIVARIATE
FROM THE VISUAL TOOLS

In several places throughout their paper, Weihs and
Schmidli mention that the multivariate exploratory
data analysis (MEDA) techniques which have become
fairly familiar to many of us can be visualized by using
them in conjunction with many of the VEDA tech-
niques. For example, in Section 3.7, where they are
discussing resampling and procrustean rotation, they
mention that a method for constructing confidence
ellipsoids

can be applied to projections from PCA-COR,
CDA, the two groups of variables in CCA individ-
ually, and SOG, since in every case projections
are represented corresponding to an orthogonal
basis.

This is a very important point which should not be
overlooked by the reader. The basic point is that all
of these methods involve orthogonal projections and
that any visualization tool which uses orthogonal pro-
jections and which has been proposed in the context
of one of these multivariate tools can be legitimately
used with others of the multivariate tools mentioned
in the quote (and with redundancy analysis, men-
tioned below). In particular, the rotation and inter-
polation visualization tools discussed in Section 4.3,
and the scatterplot-matrix tool discussed in Sec-
tion 4.5 can be used with either the original data, or
with any linear combinations resulting from one of
the above analyses.
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4. REDUNDANCY ANALYSIS

Redundancy analysis (RDA) has been presented
recently in a very readable article by Lambert, Wildt
and Durand (1988) as an alternative to canonical
correlation analysis (CCA) (and to multivariate mul-
tiple regression, whieh we will not discuss here). The
most complete technical accounts of RDA have been
presented by Muller (1981, 1982). Like CCA, RDA
can be used when there are two sets of variables. The
crucial distinction, however, between CCA and RDA
is that CCA is appropriate when neither set of vari-
ables is seen to be dependent on the other, whereas
RDA is appropriate when one set of variables is being
predicted from the other set, the Weihs and Schmidli
situation.

The two analyses have the following relationship:
CCA estimates two sets of mutually orthogonal linear
combinations which have the strongest possible asso-
ciation. One set is the “predictor” variates (linear
combinations of the “predictor” variables), while the
other is the set of “criterion” variates (linear combi-
nations of the “criterion” variables). In no way does
CCA explain variance in the criterion variables.
Rather, CCA maximizes association between orthog-
onal linear combinations of one set of variables with
orthogonal linear combinations of another set of vari-
ables. In fact, since both sets of variables are treated
identically, neither set can be viewed as criterion nor
predictor (which explains my use of quotation marks
in this paragraph).

On the other hand, RDA estimates one set of mu-
tually orthogonal linear combinations, the set of pre-
dictor variates (no quotation marks) called the
redundancy variates. The redundancy variates are
computed successively so that each one explains the
maximum proportion of the variance of the entire set
of criterion variables which is unexplained by the pre-
vious predictor variates. That is, the first redundancy
variate is the linear combination of the predictor
variables which explains as much of the variance in
the entire set of criterion variables as can be explained
by any linear combination of the predictor variables.
The next redundancy variate is the linear combination
of the predictor variables which is orthogonal to the
first and which explains as much of the unexplained
variance in the set of criterion variables as can be
explained by any linear combination of the predictor
variables. Successive redundancy variates have similar
properties.

As you might expect, the equations for solving the
two problems are quite similar. For RDA, the vectors
of standardized weights are the eigenvectors of
RLR.,R,., arrayed in decreasing order of the magni-
tude of the eigenvalues (R,, is the correlation matrix
for the predictor variables, and R,, and R,, are the

intercorrelation matrices of the predictor and criterion
variables). However, for CCA the standardized
weights are the eigenvectors of R R, R, R,,, for the
“predictor” variates and the eigenvectors of
R,,R, R, R,, for the “criterion” variates.

In my experience with these two analyses, CCA very
often does not produce interpretable results, especially
when it is misapplied to a set of criterion variables
and a set of predictor variables. In contrast, RDA
seems to often produce useful results in this situation.
Thus, it may be that the relative paucity of results in
the sections of Weihs and Schmidli’s paper which
involve CCA is due to the inappropriate use of CCA
with criterion and predictor variables. It would be very
interesting to see an RDA of these data.

5. SIMPLIFICATION, BIPLOTS AND TRIPLOTS

Weihs and Schmidli, in Section 2.2, make the point
that the linear combinations of the original variables
computed by multivariate techniques are often diffi-
cult to interpret, especially when the original variables
do not measure the same phenomena. They propose a
method which they call “simplification” to deal with
this problem. This method involves two ways of sim-
plifying the coefficients of the linear combinations.
One simplification is to eliminate effects of unimpor-
tant variables by changing their coefficients to zero.
The other simplification is to round off the coefficients
of important variables to a single decimal place.

They propose this method as an alternative to Ga-
briel’s biplot method (1971), a method which is fre-
quently used for multivariate visualization. The biplot
is a two-dimensional plot whose dimensions are the
first two linear combinations computed by some mul-
tivariate technique (i.e., the first two principal com-
ponents, discriminant variates, canonical variates,
redundancy variates, etc.). The biplot displays the
scores of the observations on the two linear combi-
nations as points and the coefficients of the variables
in the two linear combinations as vectors. The biplot

- is used frequently because it correctly portrays the

geometry of the multivariate analysis: it shows the
two-dimensional projection of the high-dimensional
data space whose dimensions are the original variables
and which contains points for each observation. Some-
times the biplot is three-dimensional, involving the
first three linear combinations. Young and Rheingans
(1990) have created a video of a dynamic six-dimen-
sional biplot using VISUALS.

While I have no argument with the Weihs and
Schmidli simplification technique; I am concerned
that biplots are not also used. Weihs and Schmidli
imply that there is an inherent conflict between the
two techniques. However, they are complimentary and
can be profitably used together, as shown by the work
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of Young and Harris (1990). Once the unimportant
variables have been eliminated by simplification, then
biplots can be used to display not only the distribution
of observations in the two-dimensional multivariate
space (as in the Weihs and Schmidli figures), but also
the distribution of retained variables. This provides a
more informative-plot which displays relationships
within the variables and between variables and obser-
vations, as well as within observations. The paper, the
OMEGA pipeline, and the richness of the results
would be strengthened with the inclusion of biplots.

The biplot can be extended in a very interesting
way for redundancy analysis, as was originally pro-
posed by Young and Sarle (1981). The extension uses
the first two redundancy variates as the dimensions
for a two-dimensional plot of the “redundancy plane.”
This is the plane in the predictor space which shares
the most variance with the criterion space. A biplot
can be constructed in this plane in the ordinary way,
using the scores of the observations on the two redun-
dancy variates as coordinates of observation-points,
and the coefficients of the predictor variables on the
redundancy variates as coordinates of the end points
of predictor-variable-vectors which extend from the
origin of the space. This biplot can be extended to
become a triplot by adding to the biplot the projection
of the criterion variables into the redundancy plane.
They should be displayed as vectors. The plot of the
redundancy plane now contains three kinds of infor-
mation: the observations are represented as points,
while the two sets of variables are represented as
vectors.

The algebra underlying the redundancy triplot is as
follows. The redundancy model is expressed by the
equation Y = XL, subject to suitable restrictions on
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* We would like to thank the discussants for initiating
the debate on our conceptual framework of interactive
data analysis. Our responses cover five areas: the
actual implementation of the OMEGA pipeline con-
cerning software and methods, the data analysis ex-
ample, possible extensions of the tool box, and a
desirable ideal strategy.

SOFTWARE IMPLEMENTATION

The implementation of the OMEGA pipeline has
always been, and remains, restricted by the graphical
power of the underlying software (ISP). We have never

L. Since L is nonnegative definite, it is the case that
L = AB, and we can re-express the model by the
fundamental RDA equation Y = XAB. The rank two
approximation to the criterion variables Y is given by
the approximation Y =~ XA,B, where the subscript 2
indicates we are using only the two sets of linear
combinations that correspond to the largest two eigen-
vectors. The redundancy model can now be re-written
as Y = Z,B, where Z, = XA,. The values in Z,, which
are the scores on the first two redundancy variables,
are displayed as points in the triplot, whereas the
values in A, (the coefficients of the predictor variables)
and B, (the coefficients of the criterion variables)
specify the endpoints of vectors emanating from the
origin of the biplot.
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attempted to program our own graphics system.
Therefore, the concept of the OMEGA pipeline goes
far beyond our implementation (as described in Ap-
pendix 2). We were not intending to describe one more
software tool, as Gower seems to assume, but rather a
working implementation of a concept. Nevertheless,
even the capabilities of the implemented version can-
not be demonstrated on paper (see also Section 4.2).
In fact, no real attempt was made to illustrate dynam-
ics or to describe details of the software, like variable
selection or interactive elimination of observations.
Instead, we tried to demonstrate the power of the
concept by showing what actions lead to which results.



