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OMEGA (Online Multivariate Exploratory
Graphical Analysis): Routine Searching

for Structure

Claus Weihs and Heinz Schmidli

Abstract. A strategy for online multivariate exploratory graphical analysis
is presented and illustrated, motivated by the need for a routine procedure
for searching for structure in multivariate data sets arising in the context
of a major pharmaceutical, dyestuffs and agrochemical company.
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1. INTRODUCTION

1.1 Background and Motivation

Multivariate exploratory data analysis is an area of
user-oriented applied statistical research of consider-
able interest to the Mathematical Applications group
of CIBA-GEIGY in Basel, whose members, serving as
internal statistical consultants, are faced with devel-
oping statistical methodologies routinely applicable in
a wide range of industrial settings. In this context,
where sizeable data bases are now being routinely
generated as a consequence of technological advance
in information systems and data collection techniques,
statistical investigations are aimed both at initially
uncovering structure and eventually proposing models
in a variety of application contexts. Examples of such
applications include:

e identification of structure-activity relationships,
e.g., relating molecular structure with biological
properties;

e relating product quality, e.g., of dyestuffs and
pigments, to the mix or characteristics of the
chemical compounds in different stages of the
production process; ’

e understanding the relationships among different
possible measures of the same phenomenon; e.g.,
can spectroscopic techniques replace the human
eye in assessing color quality of dyestuffs.
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The industrial and scientific motivations in these
and numerous other applications include the desire to
improve design and control of production processes,
to identify uninformative variables in order to reduce
the scale of data recording and monitoring, and to
obtain greater scientific insight into relationships be-
tween physicochemical and biological or other quality
characteristics of a product at and between different
production stages.

Algebraic dimension reducing Multivariate Explor-
atory Data Analysis (MEDA) methods and interactive,
dynamical graphical analysis of their outcome by
means of Visual Exploratory Data Analysis (VEDA)
methods provide the two starting points for the analy-
sis of the kinds of multivariate data sets encountered
over and over again in CIBA-GEIGY applications.
Young, Kent and Kuhfeld (1988) are primarily re-
sponsible for the terms MEDA and VEDA as they are
used here, and also for the proposal of combining
these two kinds of methods. The paper by Young,
Kent and Kuhfeld is part of a recent overview by
Cleveland and McGill (1988) of the history and the
state of the art of VEDA techniques. Unfortunately,
most of the exposition in this book and elsewhere is
largely technical, presenting just one more method or
software tool, illustrated by examples particularly fit-
ted to demonstrate their usefulness. From the per-
spective of an industrial applied statistics group, such
presentations proceed as if, given an individual data
set, the investigator has virtually unlimited time and
creative energy to try out a wide variety of methods.
In contrast, in industrial practice the investigator is
faced with an ongoing stream of many data sets,
limited time and the need for a fairly general single
routine strategy. It is this latter “gap” between meth-
odological exposition and applied exigencies which
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motivates this paper, in which we describe and illus-
trate a strategy (OMEGA), combining MEDA and
VEDA techniques, that has been found to be an
effective routine research tool in our own industrial
context.

1.2 Outline of the Paper

In Section 2, we give an overview of the OMEGA
strategy. Sections 3 and 4 describe the dimension-
reducing MEDA tools and the VEDA tools for dy-
namic graphics which are the building blocks of the
strategy. In Section 5, the practical use of the strategy
is demonstrated with an extended analysis of a CIBA-
GEIGY application. Section 6 concludes the paper
with a short discussion of the generality of the strategy
and of possible extensions.

2. THE OMEGA STRATEGY

2.1 The Concept

The strategy of Online Multivariate Exploratory
Graphical Analysis (OMEGA strategy) combines di-
mension reduction methods (MEDA techniques) with
dynamic graphics methods (VEDA techniques) within
the framework of an overall data analysis perspective.
OMEGA is an atttempt to meet the need implic-
itly identified by Young, Kent and Kuhfeld (1988,
page 422): “A highly interactive, highly integrated
MEDA/VEDA system that incorporates all of the
MEDA models and all of the ... VEDA notions ...
would indeed be a ... very useful tool for exploring,
understanding, and forming hypotheses about the
structure of multivariate data.” The organization of
an OMEGA is very much motivated by the concept of
a viewing pipeline as introduced by Buja, Asimov,
Hurley and McDonald (1988) for graphical analyses.
Indeed, insofar as it proposes a sensible ordering for
using the involved MEDA/VEDA techniques, an
OMEGA can also be looked at as a data analysis
pipeline corresponding to a sensible organization for
exploratory data analysis.

Let us now introduce the OMEGA concept and
the OMEGA pipeline in more detail. The term
Online Multivariate Exploratory Graphical Analysis
(OMEGA) describes an online study of relationships
in a multivariate data set, where, rather than testing
one specific property, as many clues as possible for
interesting structures are searched for by different
dimension reductions and succeeding graphical analy-
sis. At least three characteristic aspects of such an
OMEGA should be emphasized:

1. the experimental character of the search, in which
the data are analyzed by interactively (online)
switching between different approaches;

2. the dimension reduction, i.e., the transition from
high-dimensional data to a low-dimensional
transformation which represents the properties
of interest of the data as well as possible;

3. the interactive, dynamical graphical analysis of
the low-dimensional data, exploiting the great
perspective power of the human eye for the iden-
tification of structure.

Interactive, dynamic computer graphics is a rela-
tively young field of research mainly due to previously
restricted access to suitable hardware. However, since
about 1984 a generation of low-cost computer graphics
systems has become available, giving the user the
capability to realize virtually instantaneous graphical
changes on a display. This is sometimes called “real-
time-graphics: plots are recomputed and redrawn so
rapidly that the visual effect of smooth motion can be
achieved” (Buja, Asimov, Hurley and McDonald, 1988,
page 278). If this is combined with a user-friendly
control device like a mouse or well arranged keys,
dynamic high-interaction graphical methods are at
hand, the importance of which for exploratory data
analysis can hardly be overestimated.

2.2 The OMEGA Pipeline

At the time of writing, our OMEGA pipeline at
CIBA-GEIGY includes only a selection of the classical
linear MEDA techniques, but most of the new
interactive VEDA techniques. The available MEDA
techniques are: Principal Components Analysis
on COVariances (PCA-COV), Principal Components
Analysis on CORrelations (PCA-COR), Canonical
Discriminant Analysis (CDA), Canonical Correlation
Analysis (CCA), and Successive OrthoGonalization
(SOG). Possible extensions to the MEDA-tool box
will be discussed in Section 6. The available VEDA
techniques may be classified in broad terms as: one-
window techniques, such as rotation, interpolation,
and viewport transformations such as scaling, trans-
lating, subsetting, marking and identifying; multiwin-
dow techniques, such as brushing in scatterplot
matrices, as well as parallel analyses of nonlinear
transformations and of pseudo-samples generated for
graphical testing or for studying variation of the out-
comes of the MEDA techniques with resampling.
Since the MEDA techniques are well-discussed in the
literature, we will give here only a short unified de-
scription, sufficient to form the basis for the exposi-
tion of some extensions and for the discussion of
properties relevant for graphical representation. In
comparison, the VEDA techniques are much less dis-
cussed in the literature and therefore need much more
consideration concerning their merits and drawbacks.
One of the advantages of an integrated look at
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algebraic and graphical methods is that in this way
the relation of some VEDA techniques to practical
problems will immediately become clear. This will also
be illustrated by the discussion of our OMEGA pipe-
line as it is presented in Figure 1.

Let us start the discussion of the pipeline by means
of a very simple application: a scatterplot of two
variables from a multivariate data set. For this, we
need no more than a capability to select two variables
(dimension reduction), and to specify the so-called
window-to-viewport transformation, which affinely
maps a rectangle in the two variable plane to a rectan-
gle in the screen plane (viewporting) (Buja, Asimov,
Hurley and McDonald, 1988, pages 279-280). This
illustrates the general use of the pipeline: no step
between “raw data” and “plot” is indispensable except
“viewporting,” and “dimension reduction” if more
than two dimensions are involved. All the other steps
are optional. Moreover, the ordering of the building
blocks in the pipeline is just one of several reasonable
forms of organization; others may be more adequate
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Fi16. 1. OMEGA pipeline.

for other kinds of problems. For the rest of this
section, the building blocks will be surveyed one by
one, starting from the blocks which are the most
important and most central in the pipeline, and elab-
orating more on new ideas than on ideas already well-
rehearsed in the literature.

For dimension reduction (from an initial hD space,
say) parallel projections are used. Thus the projections
have to be orthogonal with regard to some reasonable
scalar product in the full AD space. In some
cases, one would like to declare the original raw vari-
ables to be orthogonal (see Buja, Asimov, Hurley and
McDonald, 1988, page 280). However, this typically
implies a scalar product different from the Euclidean
one, which may cause troubles with distance judg-
ments. Fortunately, use of the MEDA techniques
PCA, CDA and SOG leads to orthogonal directions
corresponding to the Euclidean scalar product. But
this is not true for CCA, since the corresponding
canonical variables of the two groups are, on the
contrary, constructed to be as highly correlated as
possible. See Sections 3.2 to 3.5 for a more detailed
discussion.

All MEDA techniques suffer from at least one
drawback: the resulting variables are usually linear
combinations of many original variables, the interpre-
tation of which may be difficult, if not impossible, if
the original variables do not all measure the same
phenomenon. Suitably defined “simplified” represen-
tations of these resulting variables would therefore be
helpful for interpretation. One possible interpretation
aid is the so-called biplot (Gabriel, 1971), in which not
only the observation scores are plotted, but also the
projections of the original variables are indicated (see,
e.g., Young, Kent and Kuhfeld, 1988, page 339). In
this way, variables important for the two directions
projected upon can be identified. In our OMEGA we
use a different technique for simplification. We have
developed an importance criterion for the original
variables in the linear combinations resulting from
the different MEDA techniques, in order to eliminate
the effect of unimportant variables. The relevance of
such a simplification is then judged by a graphical
interpolation of the projection on the full linear com-
binations and on the simplifications, respectively. In-
deed, this combination of simplification and graphical
interpolation very nicely illustrates how graphical
techniques may support the understanding of alge-
braic techniques. Since interpolation moves each ob-
servation in a smooth motion from one projection to
the other, with an individual but constant speed de-
pending only upon the distance of the observations in
the two projections, interpolation quite obviously
helps to judge the similarity of the two projections.
See Section 3.6 for the importance criteria and Section
4.3 for definition and discussion of interpolation.
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Sometimes, graphical methods are seen as suspect
because of the potential problem of overexploring data
and finding spurious structure. However, in our case
this is only rarely likely to be a serious issue, partic-
ularly because the insights of exploratory data analysis
are mainly more or less qualitative (see Buja, Asimov,
Hurley and McDonald, 1988, page 292). In any case,
tools for judging stability under strategic and random
fluctuations in the data may sharpen one’s ideas about
properties and relevance of structure. Following Buja,
Asimov, Hurley and McDonald (1988, pages 293-295),
in an OMEGA strategic fluctuations are used to graph-
ically “test” for some very crude nonparametric hy-
potheses such as independence of variables and some
types of distributional symmetry. Testing for inde-
pendence appears to be very useful in an exploratory
setting, e.g., for identification of nonpredictors. Dis-
tributional symmetry is particularly important in re-
sidual analysis. Generating random fluctuations in
the original sample, e.g., by resampling using cross
validation or bootstrapping, can allow one to study
the stability of the projection resulting from the
MEDA techniques. This may help to distinguish rel-
evant from irrelevant structure. For a graphical study
of fluctuations, there are at least two different possible
approaches: either the different samples are studied
in parallel, or the distribution of (the outcome of the
analysis of ) all samples together is displayed by some
suitable form of superposition. Parallel analyses re-
quire a multiwindow facility; superposition does not.
But adequate superposition requires careful reasoning
about equivalence of projections and identification of
the distributions corresponding to different original
observations. See Section 3.7 for resampling, Section
4.6.2 for graphical tests, and Section 4.6.3 for resam-
pling.

Another kind of parallel analysis is the study of the
linear MEDA techniques after a set of different non-
linear transformations. This may support the identi-
fication of “optimal” transformations for different
purposes (see Section 4.6.1).

A multiwindow technique used for purposes other
than parallel analyses is that of scatterplot mat-
rices. This consists of looking at more than one 2D
projection of the AD space simultaneously, in order to
discover multidimensional outliers and surfaces. Here
a linked analysis is particularly useful, marking cor-
responding observations in the different scatterplots
by brushing (see Section 4.5 for both scatterplot mat-
rices and brushing). Another means of identifying 3D
outliers, clusters and surfaces is 3D rotation (see Sec-
tion 4.3, particularly for the relation between rotation
and interpolation).

As we have indicated before, the one block in the
OMEGA pipeline which is always used is viewporting,
or more specifically, the “window-to-viewport trans-

formation,” although viewporting will also be under-
stood to include viewport transformations such as
rescaling, translating, etc. (see Section 4.4 for a dis-
cussion).

This concludes the survey of the pipeline. We will
now discuss the building blocks in detail.

3. ALGEBRAIC TECHNIQUES

3.1 An Overview

The main purpose of this paper is to demonstrate
the usefulness of the various techniques for practical
purposes. Let us begin therefore with a classification
of the linear techniques involved according to the
preinformation available to us about the objects or
variables involved in the problem. An overview can be
found in Table 1.

If no preinformation is available, particularly if one
is not willing to ignore the effect of the different
scaling of the variables, then PCA-COV is a candidate
method for representing the variation in the data by
as few as possible linear combinations of the variables.
Obviously, if the scaling of the variables is very differ-
ent, one should expect variables with large variation
to be important in determining at least the first prin-
cipal component. This effect can be avoided by de-
claring the scaling of variables to be unimportant and
using PCA-COR. If there is one variable available
which classifies the objects into a small number of
classes, and the ability of the other variables to predict
this classification is of interest, CDA can be used for
class discrimination by as few as possible linear com-
binations of the variables. If the variables can be
naturally attached to more than one group and the
predictability of one group by another is of interest,
CCA can be used for identification of corresponding
linear combinations of the variables within the groups
which maximize between-group correlation. If there
exists a natural ordering of the variables, and the
predictability of a variable by its predecessors is of
interest, SOG can be used to generate successive re-
siduals. Obviously, PCA, CDA and SOG provide nat-
ural dimension reduction criteria, in that it is their
common intention to represent as much information

TABLE 1
Classification of linear multivariate techniques

Analysis Pre-information Representation of
PCA-COV data variation
PCA-COR scaling unimportant data variation
CDA object classification class discrimination
CCA variables grouping between-group correlation

SOG variables ordering successive residuals
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as possible in as few dimensions as possible. For CCA,
dimension reduction may not be that obvious, since it
is the intention of CCA to provide as many as possible
“independent” corresponding combinations with high
correlation. However, one natural dimension reduc-
tion is to concentrate on just one pair of corresponding
linear combinations to demonstrate predictability.

The rest of this section will be organized as follows.
In Sections 3.2-3.5 a unified representation of PCA,
CDA, CCA and SOG will be given, including dimen-
sion reduction criteria. In Section 3.6 simplification
procedures of the full linear combinations will be
described, and in Section 8.7 equivalent projections
will be characterized. The presentation here is heuris-
tic and mathematically informal. Full technical details
are provided in Appendices 1.2-1.7.

3.2 Principal Components Analysis

The basic idea of principal components analysis is
to describe the dispersion of an array of m observa-
tions in h-dimensional space by introducing a new set
of coordinates, the principal components, which are
(in the Euclidean sense) orthogonal linear combina-
tions of the original coordinates. These principal com-
ponents are ordered so that the sample variances of
the observations with respect to these derived coor-
dinates are maximal regarding the orthonormality
restrictions and in decreasing order of magnitude
(see, e.g., Gnanadesikan, 1977, page 7).

By considering the first k& such principal compo-
nents which explain 95%, say, of the variation, we
achieve a dimension reduction from an h- to a k-
dimensional space. Both the new coordinates and the
projections of all the observations on the correspond-
ing subspace are orthogonal (in the Euclidean sense).

Principal components analyses are typically based
on either the covariance matrix (PCA-COV) or the
correlation matrix (PCA-COR).

3.3 Canonical Discriminant Analysis

Given a set of m observations in hD space and a
classifier for these observations, the basic idea of
canonical discriminant analysis (CDA) is to introduce
a new ordered set of coordinates, the discriminant
coordinates, which are linear combinations of the orig-
inal variables and orthogonal corresponding to the
within-class sample covariance matrix, so that class
separation is maximal regarding the orthonormality
restrictions and decreasing, in the sense that the sam-
ple variances of the discriminant coordinates are suc-
cessively decreasing (see, e.g., Gnanadesikan, 1977,
pages 84-85).

Dimension reduction can be performed as for PCA.
Note, however, that the discriminant coordinates are
orthonormal corresponding to the within-class sample

covariance matrix, but the corresponding projections
are orthogonal in the Euclidean sense.

3.4 Canonical Correlation Analysis

Given two sets of variables and m observations
corresponding to the same m objects for all variables,
the basic idea of canonical correlation analysis (CCA)
is to introduce two ordered sets of pairwise corre-
sponding new coordinates, the canonical variables,
which are linear combinations of the original coordi-
nates of the corresponding set and orthonormal cor-
responding to within-group sample covariance matrix,
respectively, so that correlation between correspond-
ing coordinates is maximal regarding the orthonor-
mality restrictions and decreasing. For an extension
of this concept to more than two groups, see, e.g.,
Gnanadesikan (1977); for the applications in this
paper two groups are sufficient.

Interest in high predictability may lead to a dimen-
sion reduction criterion of keeping the k first pairs of
canonical variables with a correlation of at least 0.9,
say. Note that the two sets of canonical variables are
orthonormal corresponding to the two sample within-
group covariance matrices, respectively, but that the
projections with respect to them are orthogonal in
the Euclidean sense, not only inside the groups but
also with respect to the noncorresponding canonical
variables in different groups. Indeed, only projections
on corresponding pairs of canonical variables are
correlated.

3.5 Successive Orthogonalization

Given m observations of a set of h variables for
which a natural ordering exists, the basic idea of
successive orthogonalization (SOG) is to introduce new
coordinates which are free of all (linear) information
“explained” by their predecessors. The dimension re-
duction works as for PCA. Note that the new coordi-
nates are not orthogonal in the Euclidean sense, but

that the corresponding projections are.

3.6 Simplification

All linear multivariate techniques suffer from the
drawbacks that the resulting new coordinates are typ-
ically linear combinations of all the original variables,
the interpretation of which may be difficult, if not
impossible, if the original variables are not all meas-
uring the same phenomenon. What would be helpful
to a user is a “slight” change of the new coordinates,
which results in a more interpretable transformation.
What we shall look for, therefore, for each of the
techniques we have discussed is a simplification cri-
terion, indicating the “importance” of the original
variable for the linear combination, in order to elimi-
nate the effect of unimportant variables. In practice,
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simplification will be achieved by setting as many
“nonimportant” loadings as possible to zero, and by
rounding. After this has been done for, say, the first
new coordinate, the whole orthogonal system has to
be rotated so that the first axis coincides with the
“simplified” first new coordinate. This is carried out
by a procedure analogous to SOG. For PCA the im-
portance criterion is identical with the absolute values
of the elements of the new coordinates themselves.

The PCA simplification is implemented as follows:
Let 0 < p < 100, and 0 < s be given integers. Set to
zero those elements of the new coordinate with abso-
lute value < p% of the maximal absolute value of the
elements. Round the unchanged elements to s signif-
icant digits, and re-normalize.

Note that the adequacy of the resulting simplifica-
tion, particularly of the chosen parameters p, s, needs
to be checked by a graphical technique, e.g., by inter-
polation of the original and “simplified” projections
(see Section 4.3). In order to more or less automate
the selection of p, the following procedure appears to
be helpful. Increase p stepwise from 10 to 90 by 10.
For each p, regress the observations of the principal
component v; upon the observations of the selected
variables. Select that p after which the corresponding
goodness of fit substantially drops for the first time.

After having selected in this way the important
variables, a new analysis is performed on the selected
variables. This then takes care of the fact that not all
members of a highly correlated subset of variables
may have been selected, and that the loadings are
highly correlated if the corresponding original vari-
ables are highly correlated.

For CDA and CCA the above simplification proce-
dure is also used in"principle. Only the importance
criteria will be different. At first glance, the problem
seems to be easy to solve. Indeed, after certain trans-
formations, for both methods the PCA situation ap-
plies in that the first r new coordinates deliver the rD
best approximation to the data. Unfortunately, those
transformations already correspond to linear combi-
nations of the original variables. Thus, simplifications
of the transformed variables do not tend to solve the
> interpretation problem. What is also needed, is a
simplification of the transformations (see Appendix
1.6 for details). Last, but not least, note that for SOG
simplification makes no sense, since the interpretation
of the new coordinates is obvious. They are just the
residuals orthogonal to their predecessors. Other
simplification procedures are indicated at the end of
Section 3.7.

3.7 Resampling and Procrustes Transformation

Most of the time, the outcomes of a multivariate
analysis are interpreted to be valid not only for the

objects for which data are available, but for all objects
“of a similar type.” In statistical terms, this relates to
thinking of the observed objects as a representative
sample of a relevant population. The question natu-
rally arises: How sensitive are the outcomes to resam-
pling; i.e., how much would the outcomes change for
different sets of objects? Unfortunately, most of the
time the actual generation of a reasonable number of
samples with reasonable sample size is too time con-
suming and costly. Thus, sample simulation is the
only possibility. For this, the cross-validation idea is
used in the following way.

p % resampling. Let 0 < p < 100 be a given integer.
Randomly choose (100 — p)% of the objects in the
observed sample. Apply the multivariate method to
this subsample. Project the not included objects into
the kD space defined by dimension reduction with
subsample analysis, where & is defined by dimension
reduction with the whole sample (prediction step).
Repeat this step N times. Display the “distribution”
of the predictions object by object. Note that for an
appropriate uniform random number generator N
replications will produce approximately pN/100 pre-
dictions per object for large enough N.

Unfortunately, the resampled projections cannot be
compared directly. Indeed, experienced PCA users will
doubtless be aware that even small changes in the
data can lead to a change in orientation of the prin-
cipal components. But how much do the projections
really differ? Having fixed the dimension of the space
to be projected on, we shall assume that translation,
rotation/reflection, and global scale change do
not change a projection qualitatively. The process of
constructing an optimal matching of “configurations”
under such operations is called Procrustes analysis,
and the optimal transformation in our case is excel-
lently reviewed by Sibson (1978).

After all resampled projections have been optimally
matched with the original projections, the distribu-
tions of the projections corresponding to one object
are approximated by normal distributions with the
simulated sample means and variances. This provides
the basis for constructing confidence ellipsoids (see
Section 4.6.3).

Note that the same method can be applied to pro-
jections from PCA-COR, CDA, the two groups of
variables in CCA individually, and SOG, since in every
case projections are represented corresponding to an
orthogonal basis. In the case of a 2D projection in
CCA, the projection corresponding to an individual
group will be 1D and normalized, so that matching
consists of translation and reflection only.

Let us finish with some comments. First, the size of
resampling-ellipsoids should depend upon the chosen
projection dimension k. The less information is lost
by reduction, the smaller the size to be expected. This
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may also give a dimension reduction criterion analo-
gous to the Predictive Residual Error Sum of Squares
(PRESS) suggested by Wold (1978), and Eastment
and Krzanowski (1982). Secondly, instead of studying
distributions by simulation, it may be worth looking
for analytic expressions derived from data disturb-
ances analogously to Sibson (1979). Thirdly, Procustes
analysis may even be used for simplification of the
outcome of linear multivariate techniques. Indeed,
Krzanowski (1987) proposed using it to identify that
subset of p = k original variables which generate kD
projections best-matching to the corresponding kD
projections of all original variables, where %k was fixed
beforehand by dimension reduction. Note that this,
in a way, relates to “biplot simplification” (see Section
2.2). Fourthly, types of transformations other than
those considered in “standard” Procrustes analysis
appear to be more appropriate if the variables should
form “smooth” curves when plotted against an appro-
priate other variable, e.g., time. For such cases,
Arbuckle and Friendly (1977) proposed simplification
by rotation of the new coordinate vectors such that
they are as smooth as possible in a least-squares sense,
subject to orthogonality. Note that here it is not the
projections which are transformed (as with the other
methods in this section) but the coordinate vectors
(as with the simplification techniques in Section 3.6).

This completes the discussion of the linear multi-
variate analyses which are currently part of our
OMEGA pipeline. In the following sections the VEDA
techniques will be discussed.

4. GRAPHICAL TECHNIQUES

4.1 An Overview

Before discussing the different graphical methods
in detail, we will give a rough classification of the
techniques, basically distinguishing static and dy-
namic techniques (see Young, Kent and Kuhfeld,
1988, pages 393-394).

Static techniques generate 2D snapshots of the AD
space.

- Dynamic techniques generate 2D movies. At best,
these are perceived by a user as smooth motions of
point clouds. One can trace premarked objects across
changing views. The speed of moving points can give
information in addition to location for the identifica-
tion of clusters and outliers (see Section 4.3). Dynamic
techniques can be further subclassified as active and
passive.

Active dynamic techniques require the user to create
the movie interactively, e.g., by stepwise controlling
direction and speed of rotation (see Section 4.2).

Passive dynamic techniques only require the user
passively to watch the movie that is created automat-

ically. Again, there are at least two kinds of passive
techniques. The first where only the algorithm for
generating the movie is stored before execution and
one observes the algorithm working on a given data
set (as with iterative dimension reduction algorithms,
not discussed here, like projection pursuit of Huber,
1985; or the grand tour of Asimov, 1985); the second
where the sequence of views itself is precomputed,
stored and only replayed at the time of viewing. For
both kinds of techniques the term animation is used.

The classification used for presentation in this pa-
per is different. Here, we subdivide the methods into
one-window and multiwindow techniques. Obviously,
techniques available for one-window can, at least in
principle, also be used simultaneously in a multiwin-
dow environment.

4.2 Interactive User Control

Unfortunately, writing about dynamic graphics is a
very frustrating business, since writing is static and
nongraphical. While some “intellectual” understand-
ing can be gained from the words, equations and static
graphics presented in what follows; true insight about
dynamic graphics can only be obtained by seeing the
movie (see Young, Kent and Kuhfeld, 1988, page 394).
This is particularly true for the understanding of the
various active dynamic techniques for controlling a
movie.

A valuable technique for controlling dynamic graph-
ics is the good old menu. Typical situations for using
it are the selection of colors, variables, subsets, obser-
vations or transformations. In all these cases, the
cursor is moved by a key, or the mouse, or whatever,
to a field representing the choice. Then key strokes or
mouse clicks will start the action, e.g., coloring a
subset of observations by two mouse clicks. Imagine
now that you want to rotate the (projected) 3D point
cloud tracing that subset across changing views. For
such rotations there are at least three types of control

_in use.

With stop control one initiates a rotation of a pre-
fixed angle in a prefixed direction around a prefixed
screen axis by one key stroke or mouse click. Then,
motion stops immediately. By changing the direction
one obtains a rocking motion.

With animated control repeated steps are initiated
by holding down the key or mouse button. This may
be implemented with constant prefixed speed or as an
increasing-step-and-reversal control, where rotation
starts slowly and then accelerates to some maximum
speed. Releasing the key or mouse button stops the
motion, and pressing it down again resumes rotation
in the other direction.

Finally, with lasting control the motion is initiated
by one key stroke or mouse click and is continued
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until deactivation or the choice of another action.
Again, increasing-step-and-reversal control may be
implemented, where change of direction may be acti-
vated by another key stroke or mouse click. For more
details on user control, see, e.g., Cleveland and McGill
(1988). .

The rest of this section will be organized as follows.
In Sections 4.3-4.4, one-window techniques will be
discussed, i.e., rotation, interpolation and viewporting.
In Sections 4.5-4.6, multiwindow techniques will be
discussed, i.e., linked analyses by means of brushing
in scatterplot matrices, and parallel analyses corre-
sponding to nonlinear transformations, graphical tests
or resampling.

4.3 Rotation and Interpolation

The most widely available feature of existing inter-
active dynamic graphics packages is 3D rotation. As
an alternative, Young, Kent and Kuhfeld (1988) offer
“3D” interpolation. Let us start with a comparison of
rotation and interpolation in the special case of trans-
formation of the (x, y) plot into the (x, z) plot.

Let us assume that we initially see the projection of
objects onto the first two ccordinates of a 3D space,
the z-axis being vertical to the screen. Then, rotation
around the x-axis corresponds to using a linear com-
bination of the y- and z-axes as the new y-axis. The
new 2D subspace to be projected on is then defined by
the old x-axis and the new y-axis. Again, with stop
control one obtains a rotation by a prespecified angle,
and with animated or lasting control one generates
a scatterplot smoothly spinning around the x-axis.
Interpolation and rotation only differ in the way this
spinning proceeds. _

Let x, v, z be observation vectors corresponding to
the 3 spatial coordinates. Then

yr(t) := y cos(t) + zsin(t), 0=t =< «/2,

are the observations corresponding to the intermedi-
ate vertical axes with rotation, and

yit) ==yl —t)+2t, 0=t=1,

are the observations corresponding to the intermedi-
ate vertical axes with interpolation. The different ef-
fect of rotation and interpolation then becomes clear,
e.g., by discussing speed of motion and norm preser-
vation, elaborating on ideas of Buja, Asimov, Hurley
and McDonald (1988, pages 288-290).

Let us start with motion speed, for which

(d/dt)(y cos(t) + z sin(t)) = z cos(t) — y sin(¢).

With rotation the speed is changing with the rotation
angle and depends upon the size of the coordinate
orthogonal to the screen provided y, z are orthonormal.
In this way, the invisible coordinate is made “visible”

by rotation speed. Note that it is this “parallax effect”
(see Fisherkeller, Friedman and Tukey, 1988, page 98)
that delivers information additional to location during
3D rotation. This cannot be delivered by interpolation,
since

(d/dt)(y(1 = ¢t) + 2t) =z -y,

so that with interpolation the speed is uniformly equal
to the distance between the values in the 2- and y-
direction. Thus, the spatial information delivered by
speed is restricted to the situation at the beginning of
the motion (¢ = 0).

Let us now consider in what senses the axes of the
rotated or interpolated 2D subspaces are normalized.
First, let us again imagine that the variables y, z are
orthonormal. Then for yz(¢), y;(£) one obtains

yr(t)'yr(t) = cos(t)® + sin(¢)* = 1,
and
yit) ) =1 -t +t2=1-2t+ 22 =<1,
whichis =1ifand only ift=0or ¢t = 1.

Thus, rotation is norm-preserving, whereas interpo-
lation leads to an intermediate shrinking of the point
cloud in the interpolated coordinate, which is not
caused by the data structure, but only by the transfor-
mation method. Thus, again interpolation does not
seem to be appropriate if the axes interpolated are
orthogonal.

However, let us also consider the other extreme
y = z. In such a case

ye(t) yr(t) =1 + 2 sin(t)cos(t) = 1,
and
yit) yi(t) =1 —t+¢t)> =1

Thus, if two very similar variables were rotated into
each other, an intermediate bulging in the rotated
coordinate would be obtained, whereas interpolation
would preserve the norm.

Rotation therefore appears to be appropriate if one
is interested in spatial information in an orthogonal
coordinate system, e.g., looking for nonlinear struc-
ture, clusters or outliers, whereas interpolation ap-
pears particularly suitable for illustrating the relation
between two very similar coordinates. Note, e.g., that
in the extreme case y = z the view is not changing
with interpolation for 0 < ¢ < 1, but that this is not
true for rotation.

Generalizations beyond 3D are also discussed in the
literature. Buja, Asimov, Hurley and McDonald (1988,
pages 288-289), e.g., propose a special, but genuine,
4D rotation; here, however, we will only use the “4D”
interpolation technique proposed by Young, Kent and
Kuhfeld (1988, pages 410-411).
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Let (xV, yV) and (x'®, y'?) be the observation
vectors corresponding to 4 spatial coordinates. Then,
by interpolation of the (x*, y) plot and the (x®,
y®) plot one obtains the following observation vectors
corresponding to intermediate coordinates:

x(t) = xP1 — t) + x?Pty,
yl(tZ) = y(l)(]- - tz) + y(Z)t27 O = ti = 17 l = 1’ 2~

Among possible applications of 4D interpolation are
the comparison of projections on two coordinates gen-
erated by a linear multivariate method and on their
simplifications (see Section 3.6), or the comparison of
projections on two similar nonlinear transformations,
or of two samples, respectively (see Section 4.6).

Note that 4D interpolation corresponds to moving
each point in the (xV, y‘¥) plot on an individual
straight line to the corresponding point in the (x'®,
y®) plot (see Young, Kent and Kuhfeld, 1988, page
405). Thus, the dynamic interpolation might be re-
placed by static disconnected arrows in the superim-
posed (xV, yV) and (x?, y®) plots. Another static
substitute for dynamic interpolation is the parallel
view at intermediate phases of the movement (see
Figure 4). For further discussion of the merits and
drawbacks of rotation and interpolation see Goodall
and Thoma (1987).

4.4 Viewporting

Regardless of which data transformation is applied
to high-dimensional data to portray them in a 2D
plane, one has to address the decision as to what part
of the data is to be displayed on the screen. That is,
one has to decide which rectangle in the 2D data plane
should be mapped onto the screen rectangle assigned
to the plot. This corresponds to an affine transfor-
mation from the data scale to the screen scale and
clipping at the boundaries of the screen rectangle (see
Buja, Asimov, Hurley and McDonald, 1988, page 282).

First, the center of the data rectangle to be displayed
has to be identified. This center may well be different
from the data center, which often is the sample mean
(see Appendix 1.1). Indeed, for graphics the median
or the midrange may be appropriate. The graphical
center is then identified with the screen center. Cen-
tering has to be followed by choosing the initial scale
of the displayed data rectangle. This can be done, e.g.,
by normalization with the standard deviation, the
median absolute deviation or the half-range. Also, one
may wish to use a common scale for several variables.
Graphical centering and normalization can be ade-
quately supported by a menu.

After having had a look at the plot produced by
this window-to-viewport transformation, however, one
might change one’s mind about appropriate centering

and scaling. Then, flexibility in viewport transforma-
tions would be helpful. Buja, Asimov, Hurley and
McDonald (1988, page 283) proposed the most com-
plete class of transformations:

e simultaneous expanding and shrinking in both
directions with the same factor;

e inverse expanding and shrinking: expanding in
one direction, shrinking in the other;

e expanding and shrinking in one direction only;

¢ shifting (translating) in one direction (slicing);

e simultaneous shifting in both directions.

These may be implemented by means of a menu and
animated control. Inverse expanding and shrinking
would be particularly convenient for scaling time se-
ries to obtain quickly a reasonable shape parameter,
which is the physical length of the vertical screen
axis divided by the length of the horizontal axis (see
Cleveland, McGill and McGill, 1986). The shape pa-
rameter appears to be very important in the detection
of such simple structures as trends, periodicities and
exotic points of time series. This is impressively dem-
onstrated by an example of Buja, Asimov, Hurley and
McDonald (1988, page 285).
Other important viewport transformations are:

e marking an observation on the screen (clicking
the observation);

e subsetting, i.e., actively choosing observations
forming a subset (clicking or roping in the obser-
vations, joining or intersecting already built sub-
sets);

¢ identifying observations or the screen corre-
sponding to a variable or a subset (clicking the
variable or subset name in a list).

These operations may result in highlighted, colored,
named or invisible points. In this way, particularly
interesting points may be tracked during transforma-
tions. Last, but not least, a facility for recovering from
accidents is an absolute necessity.

This completes the discussion on one-window tech-
niques. Note that asking for a common scale for sev-
eral variables makes particular sense in a multiwindow
environment.

4.5 Scatterplot Matrices

Often, one is interested in looking at more than one
view at a time. One may, e.g., hope to understand the
high-dimensional space better by inspecting different
2D or 3D projections simultaneously. The basic im-
plementation idea is that of a generalized draftsman’s
plot (front, top and side views). Indeed, adding coor-
dinate-reflected views leads to the concept of scatter-
plot matrices, which seems to be first discussed by
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Chambers, Cleveland, Kleiner and Tukey (1983) (see
Figure 5). A scatterplot matrix of k variables is nothing
other than a “matrix” of graphs with a scatterplot of
the ith variable against the jth as the (i, j )-entry of
the matrix, ; # j, with the diagonal free for additional
information. Since this results in k? plots, such an
approach is only practical if k is not too large. The
most important feature of the scatterplot matrix is
that one can visually scan a row or a column of the
matrix and see one variable graphed against all others.
The diagonal may be utilized to display names and
scale limits of variables (see Becker and Cleveland,
1988), or all the different values of the variables (see
Wang and Gugel, 1988), or histograms of the variables
(see also Stuetzle, 1988). Obviously, there is no need
for the variables represented in a scatterplot matrix
to be the original variables. Indeed, principal compo-
nents may be included or regression residuals (see also
Becker and Cleveland, 1988, page 216). Obviously,
these concepts may be generalized for 3D scatterplots
(see also Stuetzle, 1988).

Now that we have a matrix of views, we may want
visually to link corresponding points on the different
scatterplots. A very convenient linking method is
brushing (see Becker and Cleveland, 1988), in which
the central tool, the brush, is a rectangle superimposed
on the screen. This brush is moved to different posi-
tions on the scatterplot matrix by moving a mouse or
pressing direction keys. There are four basic brushing
operations: highlighting (or coloring), shadow high-
lighting (or shadow coloring), deleting and labeling.
Each operation can be carried out in one of three paint
modes: transient, lasting and undo. Moreover, the
shape of the brush is changeable (see Becker and
Cleveland, 1988, page 203).

With highlighting, the points underneath the brush
are highlighted, at the same time highlighting the
corresponding observations in the other scatterplots.
With shadow highlighting, only highlighted points
appear, in all scatterplots except that one where the
brush is acting. This reduces overlapping and may
help in identifying highlighted observations. With
deletion and labeling, the points underneath the brush
are deleted or labeled, respectively.

In transient mode, the brushing operation is undone
automatically after the brush has left a point. In
lasting mode, the result of a brushing operation lasts
until it is undone in undo mode. Also, added histo-
grams for individual variables (constructed in the free
diagonal) may be linked to a brushed scatterplot,
forming each bar of the histogram from the icons
corresponding to observations falling into the dis-
played class, and highlighting (etc.) those icons in the
histograms corresponding to highlighted points in the
scatterplots (see Stuetzle, 1988).

Becker, Cleveland and Weil (1988) compared brush-
ing a scatterplot matrix with rotation analysis of mul-
tivariate data. Their conclusions were that rotation is
most revealing in those cases where higher than two-
dimensional structure is present, whereas brushing is
particularly appropriate for studying dependencies of
two of the chosen variables for different values of a
third variable.

Scatterplot matrices formed by including both orig-
inal and simplified coordinates (e.g., principal com-
ponents; see Section 3.6) can be used to check the
adequacy of the proposed simplification. For adequate
simplifications, the scatterplot of the original and
corresponding simplified coordinates should be essen-
tially diagonal.

Up to now, only “square” scatterplot matrices have
been considered. But, obviously, the concept can be
easily extended to nonsquare matrices, even with dif-
ferent sets of variables representing rows and columns.
Here, the (i, j )-entry of the matrix is the scatterplot
of the ith row variable against the j th column variable.
In this case, there is no free diagonal for additional
information (see ISP, 1988; Wang and Gugel, 1988),
but marginal histograms, e.g., could be included, using
the margins of the matrix (see S-PLUS, 1988).

4.6 Parallel Analyses

Unfortunately, there are applications of multiple
views for which a more general structure than “rec-
tangular scatterplot matrices” is needed. Examples
include parallel analyses of nonlinear transformations
of the original data, and parallel analyses of pseudo-
samples generated for judging stability under strategic
and random fluctuations. For such analyses, linked
scatterplots are needed, the axes of which do not have
matrix structure, but are different for each scatterplot,
e.g., the first two principal components corresponding
to different nonlinear transformations or pseudo-sam-
ples of the original variables. Also, most of the time
there is no natural ordering of the scatterplots on the
screen. On the contrary, in a multiwindow environ-
ment one may want to place different scatterplots in
individual windows and to be able to shuffle the win-
dows in order that interesting features become clearer,
e.g., by hiding an uninteresting part of a scatterplot
behind another scatterplot (see also Stuetzle, 1988).

4.6.1 Nonlinear Transformations

Nonlinear transformations can often be used for
linearization, variance stabilization or symmetry en-
hancement. A popular class of such transformations
due to Box and Cox (1964) takes the form

xpc(a) :== (x* — 1)/a, a# 0, x5c(0) := log(x),
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(i)

where x is the original variable and the parameter “a
may be chosen to be different for different original
variables. )

In particular, the logarithmic transformation (a =
0) is one of the standard tools of model builders. An
obvious way to implement such transformations as
an active dynamic technique is to specify limits and
increments for “a” and use stop control, activating a
new “a” by one key, and reverse incrementing by
another key. If, instead, animated control is imple-
mented, it may be wise to precompute all possible
transformations before plotting to guarantee a smooth
motion from one transformation to the next (see
Becker, Cleveland and Wilks, 1988, page 41).

Stop control could also be used to generate different
views for different transformations of the original
variables and subsequent dimension reduction, e.g., by
canonical correlation analysis, in order to be able to
compare the outcomes of different transformations by
means of linked scatterplots (see Figure 14). Animated
control can be used to interpolate between the out-
comes of nearby transformations (see Section 4.3).

4.6.2 Graphical Tests

Buja, Asimov, Hurley and McDonald (1988) sug-
gested the use of strategic random fluctuations to test,
graphically, crude nonparametric distribution hy-
potheses, randomizing the data such that its distri-
bution is preserved if an appropriate null hypothesis
is true. Interesting hypotheses are: independence
of variables; symmetry of the distribution of the x-
variable (or the y-variable) about the center; symmetry
of the joint x-y-distribution, so-called 45%-symmetry;
point symmetry, which should be valid for every 2D
normally distributed variable; rotation symmet-
ry, which means that the distribution of (x, y) and
(x cos(t) + vy sin(t), — x sin(¢) + y cos(t)) are the
same.

To clarify the idea behind all these tests, consider
the realization of two of them. In order to check
whether the variable plotted vertically is independent
of the horizontal variable, the y-values are randomly
permuted against the x-values. In order to check sym-
metry about the x-center, the x-values of 50% ran-
domly chosen points are reflected about the center.

Stop control may be used for generating one new
random plot at a time. In this way, different random
plots may be placed into different views (see Figure
10), which may be further analyzed simultaneously.

This may protect one against being trapped by spu-

rious structure if the hypothesis is true. It should also
produce views very different from the original if the
hypothesis is not true. On the other hand, animated
control can be implemented to flash random plots at

the user at maximum speed. This may help to test the
null hypothesis and may help the user in acquiring a
sense of randomness under the null hypothesis. To
understand this, let us imagine the independence test.
Animated control produces a smooth density surface,
where, e.g., on a monochrome screen, high brightness
stands for high density. If the x, y-variables are really
independent, the density surface should qualitatively
coincide with the original data. In a static environ-
ment, some random plots superimposed in one view
may be a substitute. For easy comparison, original and
animated views may be displayed in parallel (see Fig-
ure 11), but obviously linking makes no sense here.

Testing for independence appears to be very useful,
e.g., for the identification of nonpredictors. Distribu-
tional symmetry is particularly important in residual
analysis.

4.6.3 Resampling

Random resampling can be used to study the sta-
bility of the projection resulting from dimension re-
duction by applying resampling together with
optimally matching Procrustes transformations, as
proposed in Section 3.7. Again, stop control may be
used to produce one view per pseudo-sample for later
comparison. But note that linking appears to be prob-
lematic here, also, since in the different views the
represented objects will not be all the same. On the
other hand, because of the optimally matching trans-
formations, superposition, e.g., produced by animated
control, generates a very informative impression of
the (pointwise) distribution of the projections of all
the involved objects. As a graphical aid for separating
the replicates belonging to different objects, ellipsoids
may be superimposed, surrounding, say, 95% of the
replicates per object (having assumed normal distri-
butions; see Figure 3).

This completes the discussion of graphical tech-
niques. A discussion of the merits and drawbacks of
the environment in which the OMEGA is actually

. implemented can be found in Appendix 2.

5. AN ILLUSTRATIVE APPLICATION

5.1 The Problem

The following data, collected as part of a major
CIBA-GEIGY investigation into the quality of dye-
stuffs, will serve to typify the kind of problem for
which a routine online multivariate exploratory graph-
ical analysis strategy is required in an industrial ap-
plied data analysis context. The data consist of 93
observations of 29 variables. Each 29-dimensional ob-
servation corresponds to one produced batch of a
particular dyestuff. The 29 variables fall into two
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categories: 18 correspond to analytical properties, 11
relate to coloristic properties. The analytical proper-
ties correspond to portions of well-defined chemical
compounds in the dyestuff (or derived quantities); the
coloristic properties are visual judgments or technical
measurements of the coloristic impression (strength,
hue, brightness) of the produced dyestuff compared
with a standard when applied to polyester. Details of
the variables are provided in Table 2.

The analytical properties are mainly reported as
percentages of the compounds in question relative to
all compounds or to all organic compounds. Of the

coloristic properties, five variables (19, 22, 23, 26, 27)
are visual judgements translated to a numerical scale,
and six variables (20, 21, 24, 25, 28, 29) are technical
colorimetric measurements generated by an agreed,
partly normed algorithm. The main questions of in-
terest to the producer are the following.

Can the coloristic properties of the dye be predicted
from the analytical measurements, and, if so, how ? The
motivation behind this question is the desire to control
the production process in order to produce dyestuffs
having the required coloristic properties. Batches
which fail to come up to the standard require costly

TABLE 2
Variables
Short title No. Title Unit

ANALYTICAL PROPERTIES
TERCUP 1 TERtiary CoUPling-component %ot°
DNANDI 2 DiNitro-ANinline-Dlazo-component %t
DNBZDI 3 DiNitro-BenZole-DIazo-component %t
SECMC 4 SECondary Main Component %t
TERTMC 5 TERTiary Main Component %t
PRIMSC 6 PRIMary Side Component %t
SECSC 7 SECondary Side Component %t
DNSEC 8 DiNitro-SECondary side component %t
TERTSC 9 TERTiary Side Component %t
SUNKUV 10 Sum of UNKnown UV-absorbers %t
SUMUV 11 SUM of known UV-absorbers %t
SUMRED 12 SUM of RED dyestuffs %t
SUMGRD 13 SUM of GReen Dyestuffs %t
SUNKDY 14 Sum of UNKnown DYestuffs %t
SUMDYE 15 SUM of DYEstuffs %"
TOTORG 16 TOTal of ORGanic compounds %
SEC/TE 17 SECondary/TErtiary main component
LMBDAC 18 LaMBDA-Center-of-gravity-wavelength nm*

COLORISTIC PROPERTIES ‘
STRVI 19 STRength, VIsually %s?
STRREM 20 STRength, REMission %s
STRTRA 21 STRength, TRAnsmission %s
HUEVI 22 HUE, VIsually, daylight codeH*
HUEVIAL 23 HUE, VIsually, Artificial Light codeH
HUEREM 24 HUE, REMission, daylight CIELAB/
HUEREMAL 25 HUE, REMission, Artificial Light CIELAB
BRIVI 26 BRIghtness, VIsually, daylight codeB#
BRIVIAL 217 BRIghtness, VIsually, Artificial Light codeB
BRIREM 28 BRIghtness, REMission, daylight CIELAB
BRIREMAL 29 - BRIghtness, REMission, Artificial Light CIELAB

¢ %t: % of TOTal of ORGanic compounds (TOTORG).

®%: % of all compounds.

‘nm: nanometer.

¢ %s: % relative to the standard.

¢ codeH: coloristic codes for hue differences from the standard translated into numerical equivalents: + = redder; — = greener.

"CIELAB: colorimetric international standard, hue and brightness differences, respectively.

¢ codeB: coloristic codes for brightness differences from the standard translated into numerical equivalents: + = brighter; — = duller.

COMMENTS on the chemical compounds. Coupling- and diazo-components are residues of preproducts. Main- and side-components are
expected process outcomes. The sums and the “TOTal of ORGanic compounds” were constructed by the producer after having classified the
compounds. SEC/TE and LMBDAC were constructed by the producer in order to predict hue differences. The center-of-gravity-wavelength

was constructed from the spectra of all relevant compounds.

COMMENTS on the coloristic properties. Strength, hue and brightness are different characteristics of the coloristic impression of a dyestuff
applied to a well-defined medium (here polyester). These characteristics are generated in two ways: by the dyer’s visual judgment of differences
between dyeings of the produced batch and of a standard, and by evaluating the remission spectra of these dyeings. The International
Commission of Illumination (CIE) has recommended definitions for the hue and brightness differences (CIE, 1978). Here, CIELAB-formulas
are used. Strength was defined internally, not only for remission, but also for transmission-spectra.
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and time-consuming corrective treatment. On the ba-
sis of considerable experience with the process, the
producer had already suggested two analytical vari-
ables, SEC/TE and LMBDAUC, as possible predictors
of one of the coloristic properties (namely, the hue).

Can the visual judgements be predicted from the
technical colorimetric measurements? The motivation
for this question is the desire to replace human judge-
ments by more reproducible and faster technical
colorimetric measurements. However, the human
impression of a dyestuff color is, of course, the relevant
one, and so a measured colorimetric variable must be
able to mimic the human colorist.

The first question is investigated in Sections 5.2—
5.5, the second in Section 5.6. In all the following
sections, we try to give an honest, nonstylized account
of how the OMEGA was actually carried out in prac-
tice in the course of this investigation.

5.2 Color Strength: Unexpected Nonpredictability

Obviously, Table 1 (see Section 3.1) could provide
a means for choosing the linear multivariate analysis
to be applied first to the data. Since we are interested
in prediction between groups of variables, Canonical
Correlation Analysis (CCA) would seem to be the
method of choice. But is it really justified to im-
pose variables grouping at the beginning of the anal-
ysis? Would we not miss something? Following this
feeling, we postponed CCA and started with Prin-
cipal Component Analysis on COVariances (PCA-
COV), just as if we had no preinformation. And we
were lucky; PCA-COV detected an inconsistency in
the data.

PCA-COV identified two nearly equally large prin-
cipal components, together explaining 93% of the data
variation (see Table 3a).

TABLE 3
Principal component analysis on covariances

Simplified
(a) First 2 orthonormally (b) 50% resampling (c) Simplified orthonormalized
. transformed variables (PROCRUSTES) variables variables
Variables
PC1C PC2C
PC1 PC2 PC3 PC1S PC2S PC1SO PC280
mean sdv mean sdv
Explained variation 55.9% 92.8% 95.6%

1. TERCUP 0.000 —0.004 0.000 0.002 —0.004 0.002 0.0 0.0 0.000 0.000
2. DNANDI —0.006 —0.002 —0.006 0.004 —0.002 0.004 0.0 0.0 0.000 0.000
3. DNBZDI 0.002 —0.007 0.002 0.002 —0.007 0.003 0.0 0.0 0.000 0.000
4. SECMC —0.017 —0.005 -0.018 0.009 —0.004 0.015 0.0 0.0 0.000 0.000
5. TERTMC 0.025 0.033 0.025 0.012 0.031 0.016 0.0 0.0 0.000 0.000
6. PRIMSC ~ —0.002 —0.003 —0.002 0.002 —0.004 0.002 0.0 0.0 0.000 0.000
7. SECSC —0.004 —0.001 —0.005 0.002 —0.001 0.002 0.0 0.0 0.000 0.000
8. DNSEC 0.000 0.001 0.000 0.001 0.000 0.001 0.0 0.0 0.000 0.000
9. TERTSC —0.005 —-0.008 —0.004 0.005 —0.008 0.007 0.0 0.0 0.000 0.000
10. SUNKUV 0.010 —0.001 0.011 0.004 —0.001 0.005 0.0 0.0 0.000 0.000
11. SUMUV 0.001 —-0.016 0.000 0.007 —0.016 0.007 0.0 0.0 0.000 0.000
12. SUMRED —0.023 —0.008 —-0.025 0.011 —0.008 0.018 0.0 0.0 0.000 0.000
13. SUMGRD 0.020 0.024 0.021 0.014 0.024 0.019 0.0 0.0 0.000 0.000
14. SUNKDY —0.008 0.000 —0.007 " 0.004 0.002 0.006 0.0 0.0 0.000 0.000
15. SUMDYE —0.683 —-0.706 —0.682 0.006 —0.704 0.006 -0.7 -0.7 —0.700 —0.700
16. TOTORG —-0.100 —0.150 —0.104 0.023 —0.154 0.026 -0.1 —-0.1 —0.100 —0.100
17. SEC/TE —0.002 —0.002 —0.002 0.001 —0.002 0.002 0.0 0.0 0.000 0.000
+ 18. LMBDAC 0.002 0.001 0.002 0.001 0.001 0.002 0.0 0.0 0.000 0.000
19. STRVI —-0.431 0.411 —0.429 0.013 0.410 0.011 —-0.4 0.4 —0.408 0.408
20. STRREM —0.432 0.418 —0.430 0.013 0.417 0.012 —-04 0.4 —0.408 0.408
21. STRTRA —0.386 0.366 —0.387 0.029 0.365 0.026 —0.4 0.4 —0.408 0.408
22. HUEVI —0.001 0.000 —-0.001 0.001 0.000 0.002 0.0 0.0 0.000 0.000
23. HUEVIAL —0.002 —0.005 —0.002 0.002 —0.005 0.004 0.0 0.0 0.000 0.000
24. HUEREM 0.000 0.000 0.000 0.000 0.000 0.001 0.0 0.0 0.000 0.000
25. HUEREMAL —-0.001 —0.001 —0.001 0.001 —0.001 0.001 0.0 0.0 0.000 0.000
26. BRIVI 0.002" 0.000 0.002 0.001 0.000 0.002 0.0 0.0 0.000 0.000
27. BRIVIAL 0.003 0.004 0.003 0.002 0.004 0.003 0.0 0.0 0.000 0.000
28. BRIREM 0.001 0.001 0.001 0.000 0.001 0.000 0.0 0.0 0.000 0.000
29. BRIREMAL 0.001 0.001 0.001 0.001 0.001 0.001 0.0 0.0 0.000 0.000

PC1, PC2 are the loadings of a PCA on the covariance matrix of the dataset. The stability of this 2D projection is tested by resampling
(including Procrustes transformations) giving mean loadings PC1C, PC2C. Simplified loadings PC1S, PC2S are also shown together with

their orthonormalized versions PC1S0O, PC2SO.
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Since the third component represented less than
3% of variation, it was decided to reduce the 29-
dimensional space to the 2D subspace generated by
the first two principal components (see Figure 2).

At first glance, the resulting structure appeared to
be three parallel lines in the direction of one of the
diagonals. In order to check the stability of this struc-
ture against resampling, 50% resampling was applied
together with optimal Procrustes transformation (see
Section 3.7). Fortunately, the structure appeared to
be extremely stable (see Table 3b and Figure 3).

Now that we have found some structure which
appears to be relevant, easy interpretation would be
helpful. Again, we were lucky, since a very rough
simplification, equating to zero all loadings with ab-
solute value < 5% of the maximum and then rounding
to one significant digit (see Section 3.6), led to a very
simple structure in the loadings (see Table 3c) and to
a nearly identical projection. This can easily be dem-
onstrated by 4D interpolation (see Section 4.3), or a
scatterplot matrix (see Section 4.5) including both
original and simplified components (see Figures 4
and 5).

Moreover, these simplifications are quite easily in-
terpretable. Indeed, the diagonals of the projections

4

can now be interpreted as representing “SUM of
DYEstuffs” (SUMDYE) and “TOTal of ORGanic
compounds” (TOTORG) (SW-NE-diagonal), and the
three color strengths (NW-SE-diagonal) (see Table
3c). Rotation by (—45°) around the z-axis provides
interpretable screen axes. In addition, the five original
variables left influencing the projection can easily be
represented in a scatterplot matrix (see Figure 6).

From this representation, we had the strong impres-
sion that the two classes of variables representing the
above diagonals could be represented by one variable
each, except for a cluster of unusually behaving
batches (“outliers”) with unexpectedly high “SUM
of DYEstuffs” in relation to “TOTal of ORGanic
compounds.” By erasing these batches with brushing
(delete operation) and by rescaling, the close connec-
tion between the variables within a class is clearly
revealed (see Figure 7).

Moreover, now one has the impression that the
remaining objects again divide into two subclusters,
one SW and one NE in scatterplot (1, 2). Labeling the
objects reveals that the clusters mainly correspond to
successive batches (1-12, 13-46, 47-93) with the ex-
ception of batches 84 and 93 appearing in unexpected
places (see Figure 8).
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F16. 4. Comparing the first two principal components PC1 and PC2 with their simplifications, PC1SO and PC2S0 by 4D interpolation.
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In a final scatterplot matrix, the first two original
principal components and one representative each of
the two “diagonal classes” are included, displaying
the three subsets of batches identified above (see
Figure 9).

This reconfirms the adequacy of using the repre-
sentatives (compare scatterplots (1, 2) and (3, 4)), but
it also reveals again the structure in the principal
component projections: the originally identified three
parallel lines represent batches 1-12, 13-46, 47-93,
respectively. Because of the time order of these clus-
ters, it was natural to suspect that changes in the
production process had taken place after the twelfth
and after the forty-sixth batches. This was in fact
confirmed by the producer and represented, we felt, a
small success for the OMEGA.

But! Should one not be startled by the “orthogonal-
ity” of “SUM of DYEstuffs” and “color strength.”
Shouldn’t there be a greater color strength if there is
more dyestuff in the batch? Clearly, there was more
work on color strength for OMEGA. At first, the
producer refused to believe our finding and in order,
therefore, to convince ourselves further, a permutation
test (see Section 4.6.2) was applied to the two vari-

Scatterplot matrix of the first two principal components PC1 and PC2 and their simplifications PC1SO and PC2SO.

ables. As expected, this delivered qualitatively similar
individual plots (see Figure 10) and superposition also
indicated only weak dependence (see Figure 11).

Subsequently, after considerable discussion the pro-
ducer realized that the unpredictability of color
strength should have been clear from the beginning.
In fact, what was happening was that between the
measurement of the analytical properties and the
strength, steps in the production process were carried
out in such a way that the strength was being influ-
enced randomly. This major finding has led to a revi-
sion of measurement procedures within the production
process.

The outcomes of the OMEGA thus far can be sum-
marized as follows. 1) The data set is not homogenous.
Two production changes have caused a division of the
data into three clusters, corresponding to different
levels of the variable SUMDYE; this might make
one wary of subsequent analyses based on the whole
dataset. 2) The strength measurements are inconsist-
ent with the analytical variables as a consequence of
inappropriate measurement practice within the pro-
duction process, and trying to predict this coloristic
property makes no sense.
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Let us conclude our summary so far with a meth-
odological remark. Surely, these insights could equally
well have been obtained by inspecting just 2D projec-
tions on the original variables by means of scatterplot
matrices? We are not convinced. In particular, would
we not have overlooked the second finding in the
29 X 29 array?

5.3 Color Strength: Economics of Measurement

One of the main results of the above analysis was
the decision to change the measurement procedure for
the color strength. However, we have also seen that
the three measured strengths are highly correlated
(see Figure 6), and one might have thought that a
measurement of one of the three variables would have
been sufficient.

Moreover, the three variables measuring color
strength can be brought into a natural ordering. In-
deed, transmission spectra (STRTRA) are measured
directly in slurry, whereas polyester has to be dyed
in order to be able to take remission spectra
(STRREM). Visual judgments (STRVI) rely on the
same dyeings as remission spectra, but additionally
suffer from varying environmental and human con-
ditions. We therefore used Successive Ortho-
Gonalization (SOG) (see Section 3.5) to investigate

whether there is more information in STRVI than in
STRREM, and more in STRREM than in STRTRA.
Fortunately, the plots of the residuals versus the orig-
inal variables show no distinct structure, with the
exception of the clustering caused by the bimodality
of the strength (see Figure 12).

In addition, a graphical test on point symmetry
about zero for the two successive residuals was carried
out to test for bivariate normality. This hypothesis is
supported, since the corresponding strategic random
fluctuations appear to be qualitatively the same as in
the original plot (see Figure 13). We conclude, there-
fore, that because the residuals seem to contain no
further information, measurement of the strength by
transmission (in fact the fastest and most economical
method) might be sufficient in the future.

5.4 Hue: Successful Prediction

One main goal of the analysis is to find predictors
for strength, hue and brightness. Having discussed
strength, let us now concentrate upon the hue, as
derived from measured remission spectra for daylight
(HUEREM) and artificial light (HUEREMAL), and
as judged visually by dyers (HUEVI; HUEVIAL).

Since the colorimetric variables HUEREM and
HUEREMAL are numerical, and we are interested in
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prediction of the hues by means of the analytical
variables, again CCA is the method of choice. Since
the second canonical correlation coefficient is already
low (.66), this resulted in a 1D prediction rule: one
linear combination of the analytical variables pre-
dicting one linear combination of HUEREM and
HUEREMAL (see Table 4a).

However, before we attempt any interpretation,
let us check whether one could possibly get closer
relationships by nonlinear pretransformations (see
Section 4.6.1). For this, the two groups of variables
were pretransformed individually by each of inversion
(1/x), log-, and logit-transformation before CCA was
applied. In fact, such transformations do not improve

> linear predictability (see Figure 14).

Thus, interpretation by simplification of the two
linear combinations appears to be interesting (see
Section 3.6). The corresponding importance criterion
leads to the choice of the three variables TERTMC,
SUMGRD and SUMRED as predictors for HUE-
REMAL only (see Tables 4b and 5).

Since we have omitted three analytical properties
(SECMC, SEC/TE, LMBDAC) having high correla-
tion with the three chosen ones (TERTMC,
SUMGRD, SUMRED) .(see Table 6), a new CCA on
the selected variables appears to be necessary before
rounding to three significant digits (see Section 3.6).

The correspondence between projections on the orig-
inal and simplified canonical components is now seen

" to be high (see Figure 15).

Moreover, the simplified canonical component of
the analytical properties is easily interpretable. Since
TERTMC represents the “green” main component,
green and red have opposite influence on HUERE-
MAL, green more so than red. This simply relates to
the fact that hue differences are expressed in “greener”
and “redder” relative to the standard (see Table 2),
and that batches are mainly produced on the greener
side (see also Figure 16 illustrating the corresponding
visual classification).

In contrast to the colorimetric hue variables, the
visual judgments HUEVI and HUEVIAL are ordinal
variables. It was therefore decided to choose CDA as
the method of analysis. Note that the usefulness of
CDA for ordinal variables is sometimes questioned,
since the natural class ordering might not be preserved
by the corresponding values of the discriminant co-
ordinates. In our applications, however, this would not
lead to any interpretational problems. Let us concen-
trate here on HUEVIAL because of its correspondence
to HUEREMAL “modeled” by CCA. In order not to
ask too much, somewhat extreme batches are not
put into separate classes. This resulted in four classes
only (see Figure 16). The first discriminant coordinate
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TABLE 4
Canonical correlation analysis

Canonical linear combinations

. CC18
(a) CC1 cC2 (b) Importance Initial New CCA on
criterion simplification .
. selected variables
Canonical correlations
Analytical variables 0.93 0.67 0.86
1. TERCUP -0.026 -0.014 0.00
2. DNANDI 0.000 0.000 0.00
3. DNBZDI -0.007 -0.007 0.00
4. SECMC —0.148 —0.474 0.00
5. TERTMC —0.416 —1.407 -0.42 -0.012
6. PRIMSC -0.197 -0.109 0.00
7. SECSC -0.097 -0.036 0.00
8. DNSEC -0.179 -0.053 0.00
9. TERTSC -0.414 -0.398 0.00
10. SUNKUV 0.015 0.021 0.00
11. SUMUV 0.035 0.052 0.00
12. SUMRED 0.159 0.605 0.16 0.012
13. SUMGRD 0.460 1.759 0.46 -0.007
14. SUNKDY 0.032 0.044 0.00
15. SUMDYE -0.001 -0.014 0.00
16. TOTORG 0.001 0.005 0.00
17. SEC/TE -0.018 —-0.006 0.00
18. LMBDAC -0.075 -0.030 0.00
Hue measurements
24. HUEREM 0.419 0.053 0.00 0.525
25. HUEREMAL -0.751 -0.149 -0.75

The loadings CC1 of the first canonical components of the CCA on the analytical variables and the measured hues are given together with
their importance criterion for each variable and the resulting (initial) simplification. A new CCA was performed on the selected variables

giving the loadings CC18S.

then represents nearly 95% of the differences between
the within-class means, the second nearly 5% (see
Table 7a).

Moreover, the first. coordinate successfully sepa-
rates greener, and “near-standard” batches from red-
der ones, and keeps the natural class ordering, whereas
the second tends to separate “slightly greener” and
“near-standard” batches from the rest (see Figures 17
and 18). However, at the level of individual batches it
is obvious that only the redder batches are clearly
separated from the others (see Figure 17). Moreover,
the separability of the class means is supported by
resampling, after the elimination of three observations
in the original dataset (see Figure 19c). In fact, a first
trial using the whole dataset revealed bad separability
of classes 1, 2, 3 and a clearly nonnormal distribution
of the individual class means (see, e.g., class 4 in Figure
19a) caused by one outlying observation. A second
trial after the elimination of this outlier improved
both separability and normality (see Figure 19b). After
the elimination of two more influential observations,
the third and final resampling was carried out.

Using the resulting reduced dataset, a new CDA and
the corresponding simplification was carried out. The
simplification of the first discriminant coordinate re-

sulted in the selection of the 4 variables SECMC,
TERTMC, SUMRED and SEC/TE (see Tables b, ¢
and 8). The interpretation of the simplified coordinate
is similar to the interpretation of the simplified first
canonical coordinate of the analytical variables of the
corresponding CCA.

As for CCA, a new CDA on the selected variables
was necessary before rounding to three significant
digits, because of the high correlations of the selected

_variables with some of those not selected (see Tables

6 and 7c).

At this stage, the producer’s proposals regard-
ing analytical predictor variables for hue, namely
SEC/TE and LMBDAC, reappeared in the discussion.
How much worse a prediction than the first, say,
canonical variable for HUEREMAL, or the first dis-
criminant coordinate for HUEVIAL, would they de-
liver? For HUEREMAL, the correlation with the
simplified canonical variable was negligibly higher
than the correlations with SEC/TE and LMBDAC
(0.86 versus 0.85 and 0.84, see Tables 4b and 6). For
HUEVIAL, a scatterplot matrix representing the two
proposals, the first discriminant coordinate and its
simplification, is used for checking, where the differ-
ent HUEVIAL classes are indicated by their class
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CCA : BOXCOX AND LOGIT TRANSFORMATIONS

0.83 0.90 0.93 0.93
, M‘y.
b o Cat .
ol . ¢ e
. - 4 o '/& :
-1
0.80 0.89 0.92 0.93

L i
o i T
L ﬂt
P P
"o

LOG

0.82 0.90 0.92 0.93
t' ,'Il
Ao v ,;"
) + 3, ,#l’ .592[
. A
+ M’fa" i .,.'I;V/:"'ﬂ £
LOGIT
0.74 0.89 0.93 0.93
s :/' " lt
Y
Ay A
. Y 5.
i A " A
e it
1
-1 LOG LOGIT 1

FIG. 14. CCA between transformed analytical variables and transformed hue measurements: numerical and graphical correlation of first

canonical coordinates.

TABLE 5
Canonical correlation analysis: Simplification: Selection of variables

Selection of analytical variables

p R-square # variables

Selection of hue variables

p R-square # variables

00 1.0000 .18
10 0.9216 5
20 0.9216 5
30 0.9050 3 « selected simplification
40 0.8467 2
50 0.8467 2
60 0.8467 2
70 0.8467 2
80 0.8452 1
90 0.8452 1

00 1.0000 2
10 1.0000 2
20 1.0000 2
30 1.0000 2
40 0.9492 1 « selected simplification
50 0.9492 1
60 0.9492 1
70 0.9492 1
80 0.9492 1
90 0.9492 1

Simplification leads to the choice of the 3 analytical variables TERTMC, SUMRED and SUMGRD as predictors for the one hue variable
HUEREMAL. (See Section 3.6 for a discussion of p and goodness-of-fit. The measure used here, R-square, is the usual regression goodness-

of-fit statistic.)

numbers (see Figure 20). From this, it seems that the
first discriminant coordinate and its simplification do
not separate the classes much better, especially as
SEC/TE is included in both coordinates (see Table
7c). :

The basic outcome of the hue analysis by OMEGA
can therefore be summarized as follows. Essentially,
the producer’s predictors SEC/TE, LMBDAC could
not be improved on very much. On the other hand,

the alternatives found using OMEGA appear to be
easily interpretable, both for hue measurements and
for visual judgments.

5.5 Brightness: Unsuccessful Prediction

In contrast to the hue, the producer had no proposal
for predictors of the brightness. Thus, for the bright-
nesses only CCA and CDA were carried out, essen-
tially in the same way as for the hues. Unfortunately,
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TABLE 6
Canonical correlation analysis: Simplification: Correlations (analytical variables and hue measurements; highly correlated variables only)

SECMC. TERTMC SUMRED SUMGRD SEC/TE LMBDAC HUEREM HUEREMAL
SECMC 1.00 —0.69 0.99 —0.72 0.88 —0.83 0.63 0.76
TERTMC —0.69 1.00 —0.72 0.97 —0.93 0.87 —0.63 —0.81
SUMRED 0,99 —0.72 1.00 —0.75 0.89 —0.88 0.65 0.78
SUMGRD —0.72 0.97 —0.75 1.00 —0.92 0.93 —0.62 —0.82
SEC/TE 0.88 —0.93 0.89 —0.92 1.00 —0.92 0.66 0.84
LMBDAC -0.83 0.87 —0.88 0.93 —0.92 1.00 —0.66 —0.85
HUEREM 0.63 —0.63 0.65 —0.62 0.66 —0.66 1.00 0.90
HUEREMAL 0.76 —0.81 0.78 —0.82 0.84 —0.85 0.90 1.00

Since the analytical variables TERTMC, SUMRED and SUMGRD chosen by the simplification procedure (see Table 5) are highly correlated
with the analytical variables SECMC, SEC/TE, and LMBDAC a new CCA on the chosen variables appeared to be necessary (see Table 4).
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(CC1_2) and their simplifications CC1_1S, CC1_2S.

CCA for the colorimetric brightness variables BRI-
REM and BRIREMAL did not deliver useful predic-
tors (maximum canonical correlation = 0.70), nor did
CDA for the visual judgments BRIVI and BRIVIAL.
We present the outcomes of the CDA for BRIVI. The
data included three kinds of visual judgments: near-
standard, slightly brighter, and brighter. CDA was not
able to distinguish any two (see Figure 21).

This (negative!) finding initiated a closer look by
the producer into the definition, measurement and
reporting of the analytical variables. In fact, it turns

Upper half of the scatterplot matrix of the first canonical coordinates of the analytical variables (CC1_1) and the hue measurements

out that not all of the original analytical measure-
ments are being routinely reported, certain compo-
nents being aggregated before being reported. This
loss of information might be one reason for the bad
predictability of the brightness and this possibility is
now being investigated.

5.6 Judgments versus Measurements

The second main question to be answered by the
analysis concerned the possibility of replacing visual
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TABLE 7
Canonical discriminant analysis: HUEVIAL prediction by analytical variables

199

Discriminant coordinates e e CD1S
Variable (¢) Importance Initial simpli- new CDA o
ariables - . .. n
(a) CD1 CD2 (b) CDlo CD2% criterion 1.dim fication selected vars
Explained variation 94.5% 99.8% 92.9% 99.7%
1. TERCUP 0.011 —-0.302 0.272 —0.457 0.096 0.00
2. DNANDI —1.142 —0.409 —-1.122 —0.409 —0.803 0.00
3. DNBZDI -0.013 —-0.032 —0.002 —0.030 —0.002 0.00
4. SECMC —26.262 —4.718 —13.822 24.837 —28.369 —13.82 —-0.850
5. TERTMC 0.305 —15.035 3.308 —13.283 6.981 3.31 0.802
6. PRIMSC —25.052 —5.346 —12.738 24,034 —4.815 0.00
7. SECSC —25.476 —4.210 —-12.921 25.520 —4.252 0.00
8. DNSEC —26.207 —5.546 —14.180 23.361 —3.876 0.00
9. TERTSC —0.713 —15.5565 2.232 —13.805 1.985 0.00
10. SUNKUV —4.663 —2.899 0.470 1.712 0.552 0.00
11. SUMUV —4.836 —2.678 0.214 1.952 0.270 0.00
12. SUMRED 20.295 0.896 12.817 —24.129 29.743 12.82 —0.640
13. SUMGRD -3.411 13.433 —1.087 16.575 —2.575 0.00
14. SUNKDY —4.993 —2.937 0.064 1.735 0.090 0.00
15. SUMDYE 0.009 0.010 0.012 0.010 0.338 0.00
16. TOTORG -0.072 -0.116 —0.091 -0.115 -0.570 0.00
17. SEC/TE 28.298 16.126 30.630 17.756 5.399 30.63 22.124
18. LMBDAC —6.685 -5.313 —8.165 -7.319 —1.967 0.00

CD1 are the loadings of the first discriminant coordinate of a CDA with classifier HUEVIAL and all analytical variables as predictors based
on the whole dataset; CD1o are the corresponding loadings based on the reduced dataset without 3 outliers. By means of the importance
criterion, an initial simplification of CD1o was obtained. A new CDA was performed on the selected variables giving the loadings CD18S.
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CDA : HUEVIAL PREDICTION BY ANALYTICAL VARIABLES

CD2

CD1

F1G. 17. First two discriminant coordinates CD1, CD2 of a CDA with HUEVIAL as classifier and analytical variables as predictors. 1: greener;
2: slightly greener; 3: near-standard; 4: slightly redder.

CDA MEANS : HUEVIAL PREDICTION BY ANALYTICAL VARIABLES

cD2

4 slightly redder
1 greener

2 slightly greener

3 near-standard

cD1L

F1G. 18. Class means of HUEVIAL in the first two discriminant coordinates CD1, CD2.
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CDA : DISTRIBUTION OF CLASS MEANS OF HUEVIAL

337 RESANPLING (& PROCRUSTES), 907 ELLIPSES (02
__cot
1 greener P 4 slightly
redder

2 slightly
greener

3 near-standard

CDA : DISTRIBUTION OF CLASS MEANS OF HUEVIAL o
337 RESAMPLING (8 PROCRUSTES), 90% ELLIPSES
AFTER ELIMINATION OF 1 OUTLIER

— (D1
1 greener
4 slightly
redder
2 slightly
greener

3 near-standard

(a)

(b)

1 greener

2 slightly
greener

3 near-standard

CDA : DISTRIBUTION OF CLASS MEANS OF HUEVIAL
337% RESAMPLING (& PROCRUSTES), 0% ELLIPSES
AFTER ELIMINATION OF 3 OUTLIERS

C02

— (D1

4 shightly
redder

'

F1G. 19. Stability test of the first two discriminant coordinates CD1, CD2 by resampling and optimal Procrustes transformation. (a) based on
the whole dataset; (b) based on the dataset, reduced by 1 observation; (c) based on the dataset, reduced by 3 observations.

judgments by technical measurements. Because the
human impression is accepted as constituting the final
decision, we must try to predict visual judgments by
colorimetric measurements. For each of the four visual
judgments of hue and brightness, one CDA was carried
out using all four colorimetric variables as predictors.

The ideal behind this is that on the one hand the two
sorts of light, daylight and artificial light, under which
the dyestuff is scrutinized, should provide related judg-
ments and that on the other hand hue and brightness
are not independent variables as defined by the col-
orimetric algorithm. With these CDAs the best class
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separation is delivered for HUEVIAL, where three or
four classes can be distinguished with acceptable mis-
classification rates (see Figure 22b).

For the other judgments only two classes appear to
be separable (see Figures 22a, ¢, d): greener from near-
standard and redder for HUEVI; near-standard and
slightly brighter from brighter for BRIVI and BRI-
VIAL. Indeed, artificial light seems to be preferable
to daylight for prediction in that only for artificial

TABLE 8
Canonical discriminant analysis: Simplification: Selection of
variables (1. dimension)

P R-square # variables
00 1.0000 18

01 0.9960 14

02 0.9713 11

03 0.8813 10

07 0.8805 8

09 0.8749 7

14 0.8740 6

15 0.8719 5

17 0.8331 4 « selected simplification
19 0.5809 3

Four variables have to be selected by simplification to be close to
the first discriminant coordinate. (See Table 5 for a discussion of p
and R-square.)

light do machine and human environmental condi-
tions appear to be comparable.

Thus, it seems, that the relation between the tech-
nically measured and the visually judged hue and
brightness is not really close, perhaps with the excep-
tion of HUEVIAL. One reason for this poor pre-
dictability could be the fact that, due to differing
environmental conditions, the colorist’s impression of
the same dyestuff might differ. Another reason could
be the definition of the colorimetric algorithm, calcu-
lating colorimetric variables from the remission spec-
trum. As a result of the OMEGA findings, experiments
investigating colorimetrics have been initiated by the
producer.

5.7 Summary of the Example

The main results of the OMEGA for the producer
can be summarized as follows.

The measurement procedure for the coloristic
strength has had to be changed to enable prediction
by analytical variables. Instead of the 3 strength meas-
urements possibly only the most economic measure-
ment, by transmission spectra, may be used.

Hue prediction cannot be substantially improved
beyond the performance of the producer’s proposed
predictors; brightness prediction seems not to be pos-
sible without additional information. Full reporting of

<CD1S SEC/TE

CDA : HUEVIAL PREDICTION BY ANALYTICAL VARIABLES

LHBDAC

44 4 ¢

Chlo

4 4
4
3
3
23

EE
azg%%ﬁéi?llﬁh

244 @24

CD1s

4 4

4
3

3gg ,
333%2¥‘?1“?11

SEC/TE

F16. 20. Comparison of the first discriminant coordinate CD1o and its simplification CD1S with two proposed predictors for HUEVIAL.

1: greener; 2: slightly greener; 3: near-standard ; 4: slightly redder.
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CDA : BRIVI PREDICTION BY ANALYTICAL VARIABLES

cD2

. @ 2 22
2 2
2 4 2 2
2 223l 12
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2
» 2
2 3 3
3
23

cD1

Fic. 21. First two discriminant coordinates CD1, CD2 of a CDA with BRIVI as classifier and analytical variables as predictors.
1: near-standard; 2: slightly brighter; 3: brighter.

o2 CDA : VISUAL PREDICTION BY REMISSION
HUEVI a HUEVIAL b
R 2
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F1G. 22. Prediction with CDA of visual judgments of hue and brightness by measurements of hue and brightness. Lines are optimally separating
classes with regard to the first discriminant coordinate CD1.



204 C. WEIHS AND H. SCHMIDLI

all measured analytical variables might help, rather
than aggregating a number of them as at present.

A replacement of visual judgments by colorimetric
variables is not possible given the current measure-
ments and data quality. A closer look into the defini-
tion of the colorimetric variables and experiments
with the colorists are suggested.

6. CONCLUDING REMARKS

Reconsidering the presented example session in the
light of routine application, it should be reemphasized
that all actions can be directed by interactive user
control (see Section 4.2), i.e., online. In particular, the
choice of the dimension reduction method and of the
corresponding input variables, the dimension reduc-
tion, the resampling, the simplification and the pres-
entation of the results can be directed by means of
menus. Indeed, it is this simple control that makes
the OMEGA pipeline so attractive.

Of course, the concept is very general and there is
scope for introducing further methods. In particular,
not only is dynamic graphics developing rapidly, but
so also is research on algebraic exploratory methods,
e.g., looking for optimal nonlinear pretransformations
(see, e.g., the GIFI-methods in De Leeuw, 1984; ACE
in Breiman and Friedman, 1985), and for other di-
mension reduction criteria (e.g., projection pursuit;
see Friedman and Tukey, 1974; Huber, 1985). Some
of these techniques are being tested at the moment
with a view to including them in the OMEGA pipeline.

APPENDIX 1: ALGEBRAIC TECHNIQUES
A1.1 Notation

In the following sections, let:

A :=m X h-matrix of observations in original coor-
dinates, sample mean per variable = 0. If there
are two sets of variables, we write A;, [ = 1, 2,
for each set of variables.

C:=A’A = “covariance” matrix. If there are two
sets of variables, we write C; := A/ A, = within-
group covariance matrix, [ = 1, 2, for each set
of variables.

Cs:=Dg'CDg! = “correlation” matrix,
D¢ := diag(standard deviations).

A1.2 Principal Components Analysis

Principal components analysis on covariances (PCA-
COV) consists of a sequence of optimization problems

v/ Cv; = maximum over all v/v; = 1,
and

i =0, i#j, ij=1, - h

The solution of this problem can be obtained by a
singular-value-decomposition (SVD): C = VD*V"'.
Here the columns of V are the required orthonormal
sets of vectors v; representing the new coordinates,
and D is a diagonal matrix. The new coordinates are
called principal components, and the corresponding
representation of the observations can be obtained by
U:=AV.Thus, D2=U’'U =: diag(d?, - - -, d}) is the
diagonal matrix of the sample “variances” of the prin-
cipal components. Since the d; are in decreasing order
of magnitude, a natural dimension reduction criterion
is given by: Choose the first k such that
k h

d?/ Y d? =095 (say).
=1 j=1

13

The projections of the observations to the “biggest”
k-dimensional subspace of hD space are then given by
the rows of the matrix

U, := first k columns of U.

Note that, not only are the new coordinates orthogo-
nal, but also the projections with respect to them are
orthogonal, since U’ U is diagonal.

Principal components analysis on correlations (PCA-
COR) consists of a sequence of optimization problems

v4;Csvs; = maximum over all vgvs = 1,
and
Uéivsj=0, l?é], i,j= 1, e, h.
The solution and the dimension reduction is analogous

to PCA-COV. The resulting matrices will be denoted
VS ’ D S US'

A1.3 Canonical Discriminant Analysis

Let

¢ := m-vector of classification of observations,
B :=pooled between-classes covariance matrix:
by:=1/(L — 1) Yk, m(a; — a;)(a; — @), where
L := number of different values in ¢ = number
of different classes,
m;:= number of observations in class [ = 1,
. L,
a!:= mean of elements in column i of A belong-
ing to class [,
d; := mean of all elements in column ¢ of 4,
W := pooled within-classes covariance-matrix,
W:=1/(m— L) 3, (m;— 1)S;, where
S, := sample covariance matrix of observations
in class l.

Canonical discriminant analysis (CDA) then con-
sists of a sequence of optimization problems,

U p; Bug; = maximum over all vg; Wog; = 1,
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and
U;;,-WUB,'= 0,
i#j, i,j=1, -+, hg:=min(L — 1, h).

The solution of this problem can be obtained by a
singular-value decomposition of

Br:= UwB(Uw)’,
where
_ W= UwUyw
is the Choleski decomposition of W. Let the SVD of
Brbe
Br = VerDrVir.

Then the columns of Vg := (UW)’ Vgr are the re-
quired W-orthogonal set of vectors vp; representing
the new coordinates. The new coordinates are called
discriminant coordinates and the corresponding rep-
resentation of the observations can be obtained by

UB = AVB
Thus

=: D} =: diag(d3., - - -, dBn,)

is the diagonal matrix of sample covariances of the
discriminant coordinates. Since the dp; are in decreas-
ing order of magnitude, i.e., single coordinate class
separation gets worse and worse, a natural dimension
reduction criterion is given by: Choose the first k such
that

k hg
> d%,»/ Y di; =095 (say).
i=1 j=1

The projections of the observations to the “best sep-
arating” k-dimensional subspace of hD space are then
given by the rows of the matrix

Ugy, := first k columns of Up.

. Note that the discriminant coordinates are W-ortho-
normal, but that the projections with respect to them
are orthogonal in the Euclidean sense, since Uz Up is
diagonal.

A1.4 Canonical Correlation Analysis
Let

Cy2 := A{ A, = between-group covariance matrix.

Canonical correlation analysis (CCA) then consists
of a sequence of optimization problems,

01;C1209; = maximum over all v;Cyv; = 1,

and
UlIiCllUlj =0,
i#]’ L)j= 1; ) h12:= min(hly h’2)7 l= 17 2'

The solution of this problem can be obtained by a
singular value decomposition of

Cior := UI_TI‘CIZ(UZ_Tl‘)Iy
where
Cu=:UrUpy

are Choleski decompositions of Cy, [ = 1, 2. Let the
SVD of Cyor be

Cior =: VirDc Vir,

then the first h,, columns of V,:= (UF)' Vip, L =1,
2, are the required Cj-orthonormal sets of vectors v
representing the new coordinates. These new coordi-
nates are called canonical variables of group [, and the
corresponding representation of the observations can
be obtained by

U:=AV,l=1,2.

Thus U/ U, = [, and U{U, = D¢ is the “diagonal”
matrix with the sample correlations between the vy;
and vy, i = 1, - - -, hyy, the so-called canonical corre-
lations dc;, as the first entries. Since the d; are in
decreasing order of magnitude, i.e., the sample corre-
lation becomes smaller and smaller, interest in high
predictability may lead to the following dimension
reduction criterion: Choose the last k such that d¢, =
0.90 (say). The projections of the observations to the
“best predictable” k-dimensional subspaces are then
given by the rows of the matrices

Uy, := first k columns of U,.

Note that the two sets of canonical variables are Cj-
orthonormal, respectively, but that the projections
with respect to them are orthogonal in the Euclidean
sense, not only inside the groups but also for the
noncorresponding canonical variables in different
groups. Indeed, only projections on corresponding
pairs of canonical variables are correlated. This may
motivate corresponding dimension reductions to 2D.

A1.5 Successive Orthogonalization

Successive orthogonalization (SOG) consists of a
sequence of orthogonalization steps, such that the
projection on the ith new coordinate is orthogonal to
the projections on the first i — 1 new coordinates.

The solution to this problem can be obtained by a
Choleski decomposition of C: C = TD?T’, where T is
a lower triangle with 1s on its diagonal, and D is a
diagonal matrix. Here the columns of (T"/)™" are rep-
resenting the new coordinates, and the corresponding
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representations of the observations can be obtained
by

Ur:=A(T")™.
Thus, D% := U;Uy =: diag(d2,, ---, d,) is the
diagonal matrix of the sample “variances” of new
coordinates. Since the d; are in decreasing order of

magnitude, a natural dimension reduction criterion is
given by: Choose the first k such that

h
d%i/ d7; = 0.95 (say).
1 Jj=1

[INZES

i

The projections of the observations on the correspond-
ing k-dimensional subspace of hD space are then given
by the rows of the matrix

Uy, := first k columns of Uy.

Note that the new coordinates are not orthogonal in
the Euclidean sense, but the corresponding projections
are, since U,Uy = D53.

A1.6 Simplification

Simplification is achieved by the specification of an
appropriate importance criterion, i.e., a criterion
which helps to decide if a variable is needed for an
adequate simplification. The criterion for PCA-COV
may be motivated as follows. It is well known that the
first principal component v; delivers the best 1D ap-
proximation to the data in that

ITA=Rillz= A - Avoi |7

for all rank 1-matrices R,, where || A || 7:= trace(A’ A).
Now, the (normalized) simplification v,s of v; may be
chosen to be a “near optimizer” by guaranteeing that

IA = Avisvislz < |A — Avyof [[7 + e,
e > 0 prefixed.
One can show that this is equivalent to
0 = 2d}(vi(v; — v1s)) (
— (11— U15)'A’A(v; — vyg) < e

Since v; — vy5 is small, the first term on the left-
hand side dominates. Since one is interested in sim-
plifying as much as possible, this obviously leads to
setting the loadings with the smallest absolute values
to zero as long as the restriction holds, leaving the
other loadings untouched. Note that this is somewhat
related to ideas of Jolliffe (1972) for identifying
important original coordinates.

PCA-COR simplification works analogously using vg;
instead of v;.

CDA simplification works analogously to PCA-COV
simplification, setting those elements of vg; equal to

zero with
| Uisk | <p<m.'_:1x |UBL~S,~|)/100,
J

vpis := diag( W)’ vg;,
diag( W) := diag(w,,, --

where

-y Whh).

Thus, vg;s delivers the importance criterion for vg;.
Note, that the full transformation to the PCA-
situation would have been

UpiT = Ul//VUBi, where W = UW U;V-

But since W is positive definite, and thus diagonal
dominant, diag( W)"® can be used as an approximation
to Uw, in particular if within-class covariances are
much smaller than variances. Moreover, note that
multiplication with diag( W)*® corresponds to ele-
mentwise multiplication by the pooled within-class
sample standard variations.

CCA simplification works analogously to PCA-COV
simplification, applied to each group [ = 1, 2 of vari-
ables individually, setting those elements of v;; equal
to zero with

[vusk | < p(max |UziSjl>/100,
J

Uis = diag(C” )0‘51)1,', l = 1, 2.

where

Thus, v;;s delivers the importance criterion for v;;. The
motivation works analogously as with CDA.

A1.7 Resampling and Procrustes Transformation

The application of the algebraic techniques and the
subsequent dimension reduction always leads to pro-
jections that are orthogonal in the Euclidean sense.
Hence, it is sufficient to illustrate the optimal Pro-
crustes transformation only for PCA-COV.

Equivalent projections for PCA-COV. Let U,;, Uy
be kD projections of the subsample of observed objects
with indices i € I, having based PCA-COV upon the
whole sample and upon the objects in the complement
of I, respectively. Then

UleT = CUkst +b

is optimally matching with U,; under translation,
rotation/reflection and scaling, where

¢ :=tr(S)/tr((Uns — MUys) (Uns — MUys))
:scaling;

R:=ZW' :rotation/reflection, i.e., orthogonal trans-
formation;

b := MU,; — cMU,sR :translation.
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Herein, W, S, Z stem from the SVD:
(Uns — MUys) (Uy — MUy;) = ZSW,

and

M= 1
m |- .
1 .. 1
Note that in case of total matching Uysr = Uy, i.e.,
¢(Ukis — MUyis)Z = (Uy — MU,) W

(compare CCA).

APPENDIX 2: HARDWARE AND SOFTWARE
ENVIRONMENT

This is definitely not the place to discuss which
hardware and software allow for what parts of the
proposed OMEGA pipeline (see, instead, Cleveland
and McGill, 1988; Weihs, 1988). But let us briefly
discuss the merits and drawbacks of the computer
environment where the pipeline is implemented at the
moment in CIBA-GEIGY: the software package ISP
with the graphics system DGS/SGS (Dynamic/Static
Graphics System) (ISP, 1988) running on Apollo
workstations.

Concerning interactive user controls, ISP only of-
fers menus, stop control and animated control. Last-
ing control is, e.g., available in the system Plot
windows (Stuetzle, 1988). Naturally, 3D rotation is
offered by ISP. But the effect of interpolation has to
be simulated by static techniques, e.g., by parallel
viewing at intermediate phases of the movement. As
a dynamic method interpolation is offered by the
system VISUALS (Young, Kent and Kuhfeld, 1988).
The static representation by disconnected arrows is
available in S-PLUS (1988). Concerning viewport
transformations, the only drawbacks of ISP/DGS are
that expanding and shrinking are possible only in
both directions simultaneously, and that shifting is
possible only in one direction at a time. Here, the
‘Data viewer (Buja, Asimov, Hurley and McDonald,
1988) seems to be most complete. Concerning scatter-
plot matrices, the only restriction is the nonavailabil-
ity of linked histograms, which are, for example,
offered by S-PLUS (1988). On the other hand, rectan-
gular scatterplot matrices are nicely implemented in
ISP/DGS. Concerning brushing in scatterplot mat-
rices, ISP only offers coloring in lasting mode. Here
again, S-PLUS is more complete. Parallel views can
only be generated using the Static Graphics System
ISP/SGS. There, dynamic operations like brushing
and rotation are not available. Full implementations
of parallel views are available in the Data viewer and
in Plot windows.

Despite its restrictions, ISP-SGS/DGS appears to
be a flexible tool for the implementation of the
OMEGA pipeline on Apollo workstations and even on
IBM-PC/AT or -PS2. An alternative software package
on workstations may be S-PLUS. The Data viewer
and Plot windows are surely the most complete sys-
tems, but they run only on the exotic and expensive
Symbolics Lisp machines. Other systems, like VISU-
ALS, running on IBM-PC/XT/AT, and the well-
known MacSpin (Donoho, Donoho and Gasko, 1988),
running on Macintoshs, are not powerful enough for
the kind of analyses we have been considering.
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Comment

A. Buja and C. Hurley

Reading the authors’ paper was very gratifying for
us: as it happens, we have been working on the inte-
gration of multivariate analysis and graphical data
analysis as well. We are delighted to observe that our
separate efforts converged to some degree. While we
may differ in details of implementation, human inter-
face and computing philosophy, our independent ef-
forts indicate a certain necessity in the idea of
marrying classical multivariate analysis and the more
recent high-interaction graphics tools. A paper by us
on this subject is in press in the SIAM Journal on
Scientific and Statistical Computing (Hurley and Buja,
1990). It is based on the Ph.D. thesis of Hurley (1987).
The multivariate methods which we considered were
the same as those of the authors with the exception
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of their successive orthogonalization procedure. The
authors carried certain ideas of visual inference and
assessment considerably further than we did (for now,
we have not gone beyond what is documented in Buja,
Asimov, Hurley and McDonald, 1988). On the other
hand, we may claim a tighter coupling of multivariate
analysis and graphics, as we will show below.

MULTIVARIATE ANALYSIS (MA) AND
GRAPHICAL METHODS

A basic motivation behind the authors’ and our
endeavor is the simple insight that MA allows us to
generate a wealth of potentially illuminating data
projections. Curiously, the first attempts at combining
interactive graphics with automatic methods for find-
ing informative projections were based on projection
pursuit rather than classical MA. Surely, the latter
can be interpreted as a subset of the former, but this
view does not do justice to MA. It is more useful to
interpret MA as a set of methods for changing coor-
dinate systems in a data-driven way. One reason for
the initial lack of interest in the graphical and explor-



