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Utilizing a Quantile Function Approach to
Obtain Exact Bootstrap Solutions
Michael D. Ernst and Alan D. Hutson

Abstract. The popularity of the bootstrap is due in part to its wide
applicability and the ease of implementing resampling procedures on modern
computers. But careful reading of Efron (1979) will show that at its heart,
the bootstrap is a “plug-in” procedure that involves calculating a functional
θ(F̂ ) from an estimate of the c.d.f. F . Resampling becomes invaluable when,
as is often the case, θ(F̂ ) cannot be calculated explicitly. We discuss some
situations where working with the sample quantile function, Q̂, rather than F̂ ,
can lead to explicit (exact) solutions to θ(F̂ ).

Key words and phrases: Censored data, confidence band, L-estimator,
Monte Carlo, order statistics.

1. INTRODUCTION

Nonparametric bootstrap estimation in the i.i.d. con-
tinuous univariate setting is traditionally defined as
a technique for estimating the quantity θ(F ), where
F denotes the distribution function of the random
variables X1, . . . ,Xn. The estimation consists of “plug-
ging in” the empirical distribution function estima-
tor F̂ (x) = ∑n

i=1 I(Xi≤x)/n, where I(·) denotes the
indicator function, in place of F in the population
quantity θ(F ). For example, the bootstrap estimator
of θ(F ) = E(Xi |F) = ∫

x dF is θ(F̂ ) = E(Xi|F̂ ) =
E

F̂
(Xi) = ∫

x dF̂ = X̄. However, apparent difficulties

arise when closed-form expressions based on θ(F̂ ) are
not easily calculated. Approximate bootstrap solutions
to complicated problems may be handled using the
well-known bootstrap resampling approach described
in many bootstrap texts such as those by Efron and
Tibshirani (1993), Davison and Hinkley (1997) and
Shao and Tu (1995). The appeal of the resampling
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approach has always been that it provides practition-
ers with a powerful and easy-to-use tool for tackling
difficult, and what might otherwise be intractable an-
alytic problems under more relaxed assumptions than
parametric methods. However, resampling techniques
introduce additional error through the choice of the
Monte Carlo scheme, are sometimes as difficult to im-
plement as the analytical solutions themselves and are
vulnerable to manipulation through multiple runs of a
computer program.

Other researchers have focused their efforts on us-
ing different estimators of F from which to resample
in order to compensate for the discreteness of the clas-
sic empirical estimator F̂ in small samples. For exam-
ple, Silverman and Young (1987) suggest modifying
the resampling procedure by employing a smoothed
version of the empirical distribution function. Jiménez
Gamero, Muñoz García and Muñoz Reyes (1998) sug-
gest eliminating “outlier” bootstrap samples in the
resampling procedure in order to minimize their im-
pact on the estimation procedure. Hutson (1999) em-
ploys fractional order statistics to improve the
coverage probabilities of analytically calculated boot-
strap percentile confidence intervals for quantiles. Lee
(1994) has proposed combining parametric and non-
parametric bootstrapping procedures by defining an
estimator of the form εθ(F̂ ) + (1 − ε)θ(F

φ̂
) that is

a convex combination of a nonparametric and para-
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metric estimator. In practice, Lee suggests that the op-
timal ε can be estimated from the data. Even though
Lee’s approach has been shown to be asymptotically
optimal based on an MSE criteria, it is oftentimes
complicated to carry out in terms of a resampling
method. It is, however, an idea worth further explo-
ration.

An alternative approach to examining and modifying
the bootstrap resampling procedure is to consider var-
ious quantile function estimators. Let X1:n ≤ X2:n ≤
· · · ≤ Xn:n denote the order statistics from an i.i.d. sam-
ple of size n from a continuous distribution F . Hutson
and Ernst (2000) have illustrated that a nonparametric
bootstrap replication can be generated by taking a ran-
dom sample of size n from a uniform(0,1) distribution
and applying the sample quantile function

Q̂(u) = F̂−1(u) = X�nu�+1:n(1)

to each uniform random variable, where �·� denotes
the floor function. By employing Q̂(u), they show that
various bootstrap-estimated moments of L-estimators
that are not easily calculated by considering F̂ (x) may
be obtained directly, thus eliminating the resampling
step in the estimation altogether. This general quan-
tile function approach has been fruitful for solving a
variety of difficult analytical bootstrap problems. One
place where this method has paid dividends is for boot-
strap problems that deal with censored data. Also, di-
rect calculation can eliminate the need for an outer
bootstrap resampling loop in a double bootstrap, mak-
ing a more efficient algorithm. Section 2 details the
exact bootstrap moment calculations for L-estimators,
while Section 3 illustrates the calculation of exact boot-
strap percentiles. Section 4 outlines the application to
censored data, and Section 5 discusses exact bootstrap
confidence bands for quantile functions.

2. L-ESTIMATORS

An L-estimator (or L-statistic) is defined as

Ln =
n∑

i=1

ciXi:n,

where the choice of constants ci determines the prop-
erties and functionality of Ln. Special cases of note in-
clude the mean, the trimmed mean, the median, quick

estimators of location and scale and the first and third
quartiles. It is possible to give analytic expressions for
the exact bootstrap mean and variance estimates for
the general L-estimator. The basic approach follows
by “plugging in” the quantile function estimator (1)
into the well-known expressions for the moments of
order statistics (David, 1981). Specifically, the exact
nonparametric bootstrap estimators for

µr :n = E(Xr :n),

σ 2
r :n = Var(Xr :n),

σrs:n = Cov(Xr :n,Xs:n),

are directly estimable and are denoted by µ̂r :n, σ̂ 2
r :n and

σ̂rs:n, respectively. The bootstrap mean and variance
of any Ln is simply a linear combination of these
estimates. Hutson and Ernst (2000) show that

µ̂r :n = E
Q̂

(Xr :n) =
n∑

j=1

wj(r)Xj :n,(2)

σ̂ 2
r :n = Var

Q̂
(Xr :n) =

n∑
j=1

wj(r)(Xj :n − µ̂r :n)2,(3)

σ̂rs:n = Cov
Q̂

(Xr :n,Xs:n)

=
n∑

j=2

j−1∑
i=1

wij (rs)(Xi:n − µ̂r :n)(Xj :n − µ̂s:n)

+
n∑

j=1

vj (rs)(Xj :n − µ̂r :n)(Xj :n − µ̂s:n),

(4)

where the weights wj(r), wij (rs) and vj (rs) are given in
Appendix A.

Using the formulation presented above, we can illus-
trate the relative error of the resampling method for es-
timating the bootstrap standard error of an L-estimator
based on a small to medium number of bootstrap repli-
cations. This is illustrated through the use of a classi-
cal dataset described by Stigler (1977) in his study of
the performance of robust estimators applied to “real”
data. It is interesting to note that Stigler (1977) con-
cluded that a slightly trimmed mean is the best estima-
tor of location and that overall the 10% trimmed mean
emerged as the “recommended estimator.”

In the absence of the exact bootstrap variance es-
timator given above, the practitioner has been left
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with various rules of thumb in choosing the number
of resamples needed for an accurate estimate of the
bootstrap standard error. Efron and Tibshirani (1993,
page 52) state that “Very seldom are more than B =
200 replications needed for estimating a standard er-
ror” and that “B = 50 is often enough to give a
good estimate.” Booth and Sarkar (1998) examine this
question and provide general recommendations of 800
resamples in order to obtain accurate standard error
estimates. The exact bootstrap variance estimator elim-
inates the resampling error as well as the need for arbi-
trarily choosing a value for B .

Table 1 contains a small dataset from Stigler (1977).
These measurements are James Short’s 1763 deter-
minations of the parallax of the sun (in seconds of
a degree) based on the 1761 transit of Venus (see
Stigler’s appendix for details). For these data, we con-
sider three common location L-estimators: the 10%
trimmed mean the 25% trimmed mean, and the me-
dian. Their exact bootstrap standard error estimates are
0.167, 0.165 and 0.165, respectively.

Figure 1 shows the ratio of 200 estimates of the
bootstrap standard error to the exact bootstrap standard
error for each of the three L-estimators. Each of the
resampling estimates is based on B = 100 resamples.
The resampling error is as much as 20% for the
trimmed means and sometimes exceeds that for the
median. When the number of resamples is increased
to B = 500 (Figure 2) and B = 1000 (Figure 3), the
error is reduced, but can still be as high as 10% for the
trimmed means and 15% for the median.

The absolute error from resampling becomes mag-
nified when the standard error estimate is used in in-
terval calculations. For example, in a 95% confidence
interval, the absolute error is increased by nearly a fac-
tor of 4. This illustrates the point made by Efron and
Tibshirani (1993, page 52) that “Much bigger values
of B are required for bootstrap confidence intervals.”
This resampling error is eliminated entirely by the use

TABLE 1
Short’s 1763 determinations of the parallax of the sun

(in seconds of a degree) based on the 1761 transit
of Venus (Stigler, 1977) (n = 18)

8.50 8.50 7.33 8.64 9.27 9.06
9.25 9.09 8.50 8.06 8.43 8.44
8.14 7.68 10.34 8.07 8.36 9.71

of the exact expressions for the bootstrap mean and
variance of an L-estimator given in this section.

FIG. 1. Ratio of 200 bootstrap standard errors, based on
B = 100 resamples each, to the exact bootstrap standard error of
the 10% trimmed mean, 25% trimmed mean and median of the data
in Table 1.
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FIG. 2. Ratio of 200 bootstrap standard errors, based on
B = 500 resamples each, to the exact bootstrap standard error of
the 10% trimmed mean, 25% trimmed mean and median of the data
in Table 1.

3. EXACT PERCENTILE CONFIDENCE INTERVALS

Using a straightforward minimization algorithm, we
can obtain the exact nonparametric bootstrap per-
centiles for any statistic

Tn = T (Xj1:n,Xj2:n, . . . ,Xjk :n)(5)

FIG. 3. Ratio of 200 bootstrap standard errors, based on
B = 1000 resamples each, to the exact bootstrap standard error
of the 10% trimmed mean, 25% trimmed mean and median of the
data in Table 1.

that is a function of k order statistics, where 1 ≤ j1 <

j2 < · · · < jk ≤ n and 1 ≤ k ≤ n. The only case where
the exact percentiles have been demonstrated to have
analytical solutions is the case where Tn = Xi:n is
exactly equal to a specific order statistic (David, 1981).

The method for calculating the exact bootstrap
percentiles for Tn follows from a version of the
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TABLE 2
Patients’ baseline urinary apABG (nmol/d) (n = 24)

67.9 7.1 14.0 10.9 3.1 8.5 646.3 0.5 6.2 9.4 10.3 4.9
136.0 138.5 297.7 184.3 10.6 433.5 275.7 3.3 230.8 12.0 7.8 21.4

definition of the α-quantile of the random variable Y

given by the value of θ satisfying

inf
θ∈R

E

{ |Y − θ | + (2α − 1)(Y − θ)

2
(6)

− |Y | + (2α − 1)Y

2

}
.

The properties of (6) are outlined in Abdous and
Theodorescu (1992) who generalize the definition of
the α-quantile to Rk . Most notably, the assumption
that E(Y ) < ∞ is not a necessary condition for the
existence of the α-quantile.

The 100α bootstrap percentile of Tn, denoted by
the quantile function estimator Q̂Tn(α), is obtained
through the exact bootstrap estimate of the linear
component of (6) given by

E
{|Tn − θ | + (2α − 1)(Tn − θ)

}
,(7)

and then minimizing the estimate of (7) with respect
to θ . The other linear components of (6) do not factor
into the minimization procedure and can be ignored.
The general process is outlined in Appendix B. For
the specific case of L-estimators, the process is greatly
simplified.

EXAMPLE. We use the data in Table 2 from
Caudill, Gregory, Hutson and Bailey (1998) to illustra-
te the behavior of the bootstrap percentiles based on re-
sampling compared to the exact bootstrap percentiles.
These data are measurements of the urinary folate
catabolite, acetamidobenzolyglutamate (apABG), used
to assess folate requirements in both pregnant and non-
pregnant women. Table 3 shows the exact 2.5% and
97.5% bootstrap percentiles for the median, trimean

and interquartile range (IQR) for the data in Table 2.
The resample approximations of these percentiles are
also given based on B = 100, 500 and 1000 resamples.
We can see from Table 3 that the lower and upper lim-
its of the simulated percentile intervals vary quite a bit
over the replication sizes (B) and that it is not quite
clear when convergence is obtained.

4. EXTENDING EXACT METHODS TO
CENSORED DATA

The previous methods can be extended to pro-
vide some exact bootstrap quantities useful in survival
analysis by making use of the well-known product-
limit estimator introduced by Kaplan and Meier (1958),
with the empirical survival function estimator defined
as

Ŝ(t) =




∏
T(j)≤t

(
n − j

n − j + 1

)δ(j)

, t < T(n),

0, t ≥ T(n),

(8)

where T(1) ≤ T(2) ≤ · · · ≤ T(n) are the order statistics
corresponding to the i.i.d. sample of n failure or
censoring times T1, T2, . . . , Tn, and δ(1), δ(2), . . . , δ(n)

are censoring indicators corresponding to the ordered
Ti ’s, respectively. A value of δ(i) = 1 indicates that T(i)

is uncensored, while a value of δ(i) = 0 indicates that
T(i) is censored. No analytical nonparametric bootstrap
estimators for θ(F ) have been developed based on the
Kaplan–Meier estimator or any other nonparametric
estimator, accounting for censored data.

The typical Monte Carlo approach for censored data
is similar to the classical approach described above

TABLE 3
Exact and approximate 95% bootstrap percentile intervals for the data in Table 2

Statistic Tn Exact B = 100 B = 500 B = 1000

Median 11.45 (8.50,136.00) (9.40,136.00) (8.15,136.00) (8.50,136.00)

Trimean* 54.03 (10.60,144.38) (9.75,139.58) (11.33,140.75) (10.43,144.20)

IQR** 176.50 (9.10,289.91) (6.20,289.90) (9.10,289.90) (7.80,290.60)

∗Tukey’s trimean defined as Q̂(1/4)/4 + Q̂(1/2)/2 + Q̂(3/4)/4.
∗∗Interquartile range defined as Q̂(3/4) − Q̂(1/4).
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where the pairs (T(i), δ(i)), i = 1,2, . . . , n, are sam-
pled with replacement with probability 1/n assigned
to each pair. The bootstrap quantities of interest are
then obtained via information summarized over recal-
culations of the Kaplan–Meier estimator (or other sim-
ilar estimators) given by each bootstrap replication (see
Akritas, 1986, or Barber and Jennison, 1999). This re-
sampling approach has some undesirable properties,
which can be avoided through the exact approach. It
should be clear that even though Ŝ(t) is defined to be
a proper estimator of the survivor function, estimation
problems can arise when a given bootstrap resample
has a large proportion of censored observations. Other
approaches are outlined in Doss and Gill (1992).

4.1 Moment Estimators of Survival Quantities

The general approach for estimating the functional
θ(F ) with censored data is straightforward. We may di-
rectly calculate the expressions for important survival
quantities such as E(T k), E(Ŝ(t)k), E([Ŝ−1(1 − u)]k)
and Cov(Ŝ−1(1 − u), Ŝ−1(1 − v)), corresponding to
the lifetime central moments, the survival fraction mo-
ments, the survival quantile moments and the covari-
ance between survival quantiles, respectively.

For an i.i.d. continuous sample of size n from a dis-
tribution having positive support, let Ti = min(Xi,Ci),
where Xi denotes a failure time and Ci denotes a
right censoring time. The value of Xi is known only if
Xi ≤ Ci . In addition, let the indicator variable δ(i) = 1
if Xi ≤ Ci , and 0 otherwise, and let X(1) ≤ X(2) ≤
· · · ≤ X(m) denote the ordered observed failure times,
m ≤ n. Then the exact kth bootstrap moment about the
origin for the random variable T is given by

E
Ŝ
(T k) =




m∑
i=1

Xk
(i)

(
Ŝ(X(i−1)) − Ŝ(X(i))

)
, δ(n) = 1,

m∑
i=1

Xk
(i)

(
Ŝ(X(i−1)) − Ŝ(X(i))

)

+ T k
(n)Ŝ(X(m)), δ(n) = 0,

where Ŝ is the Kaplan–Meier estimator defined in (8)
and by definition X(0) = 0 implies Ŝ(X(0)) = 1. It
follows that the bootstrap mean and variance of T are
given by µ̂T = E

Ŝ
(T ) and σ̂ 2

T = E
Ŝ
(T 2) − [E

Ŝ
(T )]2,

respectively.
Define the quantile function estimator F̂−1(u) = X(i)

whenever Ŝ(X(i)) ≤ 1−u < Ŝ(X(i−1)), i = 1,2, . . . ,m.
Then it follows that the exact kth bootstrap moment es-

timator of F̂−1(u) for the case δ(n) = 1 is given by

E
Ŝ

[(
F̂−1(u)

)k]

=
m∑

j=1

Xk
(j)

[
βp,q

(
1 − Ŝ(X(j))

)

− βp,q

(
1 − Ŝ(X(j−1))

)]
,

(9)

where βp,q(·) denotes the c.d.f. of a beta distribution
with parameters p = �nu� + 1 and q = n − �nu� + 2.
For the case δ(n) = 0, add the term T k

(n)βp,q(1 −
Ŝ(X(m))) to (9).

As a by-product, (9) can be modified to provide a
kernel quantile function estimator, which reduces to the
kernel quantile function estimator of Harrell and Davis
(1982) when all observations are uncensored. Unlike
the more traditional kernel quantile function estima-
tors with symmetric kernel functions and having the
form h−1

n

∫ 1
0 F̂−1(t)K((t −u)/hn) dt , the extension of

the Harrell–Davis estimator has an asymmetric kernel.
See Sheather and Marron (1990) for a general study
of kernel quantile function estimators based on un-
censored observations and Padgett (1986) for the de-
velopment of kernel quantile function estimators for
censored data. The extension of the Harrell–Davis ker-
nel quantile function estimator for censored observa-
tions is defined as

F̂−1
K (u) =

m∑
j=1

X(j)

[
βp,q

(
1 − Ŝ(X(j))

)

− βp,q

(
1 − Ŝ(X(j−1))

)]
,

where βp,q(·) denotes the c.d.f. of a beta distribution
with fractional parameters p = nu and q = n(1 − u).
Xiang (1995) provides a theoretical examination of the
strengths and weaknesses of these types of estimators.

The exact bootstrap estimator of Cov(F̂−1(u),
F̂−1(v)) for the case δ(n) = 1 is calculated using a sim-
ilar approach to that found in Hutson and Ernst (2000).
Other quantities such as the first two exact bootstrap
moment estimators of the random variable Ŝ(t) also
follow; see Hutson (2002a).

5. EXACT CONFIDENCE BANDS FOR
QUANTILE FUNCTIONS

For calculating confidence bands for quantile func-
tions, Doss and Gill (1992) suggest a bootstrapping
method for censored or uncensored data, which is car-
ried out under less strict regularity conditions than
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those of Csörgő (1983). Their approach consists of de-
termining an estimated critical value d̂α by bootstrap-
ping the quantity

sup
0<u<1

∣∣∣∣Q̂(u) − Q(u)

v̂(i)(u)

∣∣∣∣,(10)

such that d̂α is the 100α percentile of (10) obtained
by replacing Q̂(u) − Q(u) with Q̂∗(u) − Q̂(u) in the
numerator, where Q̂∗(u) is the quantile function esti-
mated from one bootstrap replication. The confidence
band is then defined as

(
Q̂(u) − d̂αv̂(i)(u), Q̂(u) + d̂αv̂(i)(u)

)
,(11)

where v̂(i)(u) is an arbitrarily chosen scale estimator
of Q̂(u). The suggested choice for v̂(i)(u) is the in-
terquantile range. This confidence band is basically
the bootstrap version of the approach described in
Csörgő (1983). Doss and Gill (1992) suggest two lay-
ers of bootstrapping: first, the bootstrap distribution
of v̂(i)(u) needs to be determined, followed by the
bootstrap distribution of (10). Note, however, as de-
scribed in Section 2, exact estimates for v̂(i)(u) are
available, eliminating the outer bootstrap resampling
layer. A negative feature of the Doss–Gill method is
the fact that neither the lower nor the upper bands are
constrained to be monotone even though the underly-
ing function is known to be monotone. Other alterna-
tive bootstrapping methods are given by Breth (1980),
Li, Hollander, McKeague, and Yang (1996) and Yeh
(1996).

Alternatively, Hutson (2002b) shows that one can
obtain exact bootstrap confidence bands based on
Steck’s determinant. Let Ui:n denote the corresponding
uniform order statistic such that Xi:n = Q(Ui:n). Steck
(1971) has proven that

P
(
Q(li) ≤ Xi:n ≤ Q(ui), i = 1,2, . . . , n

)
(12)

= det(tij ),

where tij = ( j
j−i+1

)
(ui − lj )

j−i+1
+ or 0 as j − i + 1 is

nonnegative or negative across i = 1,2, . . . , n and j =
1,2, . . . , n, and (x)+ = max(0, x). An exact bootstrap
confidence interval can be obtained via (12) by first
solving for a single constant (denoted cα) in the
following expression based on the joint c.d.f. of the

order statistics,

FX1:n,X2:n,...,Xn:n

(
QX1:n(0),QX2:n

(
1 − α

2cα

)
,

. . . ,QXn:n

(
1 − α

2cα

))

− FX1:n,X2:n,...,Xn:n

(
QX1:n

(
α

2cα

)
,QX2:n

(
α

2cα

)
,

. . . ,QXn:n(1)

)

= 1 − α,

(13)

where 1 − α is the desired confidence level and
QXi:n(·) denotes the quantile function for the ith order
statistic. The exact bootstrapping component of the
estimation follows once cα has been determined simply
by “plugging in” the corresponding estimates of Q

and F . Hutson (2002b) utilizes the linear interpolation
estimators, Q̃ and F̃ , for Q and F in place of the step
function estimators in order to improve the accuracy in
small samples.

The (1 −α)100% confidence band for Q(u), 1/(n+
1) < u < n/(n+1), consists of the set of points {lower,
upper} given by

{(
−∞, Q̃X2:n

(
1 − α

2cα

)
, Q̃X3:n

(
1 − α

2cα

)
,

. . . , Q̃Xn:n

(
1 − α

2cα

))
,

(
Q̃X1:n

(
α

2cα

)
, Q̃X2:n

(
α

2cα

)
,

. . . , Q̃Xn−1:n−1

(
α

2cα

)
,+∞

)}
,

corresponding to the knots i/(n+ 1) for large samples,
i = 1,2, . . . , n, where Q̃Xi:n(·) = Q̃(QUi:n (·)). The
points corresponding to the upper band are joined by
the ceiling function, while the points on the lower band
are joined by a floor function. This choice of the step
functions helps maintain the overall confidence level of
1 − α.

This confidence band is essentially an estimated
transformation of a confidence band for a uniform
quantile function. The transformation guarantees that
the upper and lower bands will be monotone; this is
consistent with the true (and estimated) quantile func-
tion. In fact, if more information is known about the
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TABLE 4
Empirical coverage probabilities for n = 10, 20 and 30

Coverage probabilities (1 − α = 0.95)

n = 10 n = 20 n = 30

Distribution EB CR DG* EB CR DG* EB CR DG*

Normal 0.95 0.92 0.95 0.95 0.93 0.94 0.95 0.94 0.95
Exponential 0.95 0.93 0.98 0.94 0.93 0.97 0.94 0.95 0.97
Uniform 0.94 0.92 0.95 0.94 0.94 0.95 0.94 0.95 0.96
Logistic 0.95 0.92 0.95 0.95 0.93 0.94 0.95 0.95 0.94
Extreme value 0.95 0.92 0.96 0.94 0.93 0.96 0.95 0.95 0.95
Laplace 0.95 0.93 0.95 0.96 0.94 0.95 0.95 0.95 0.93

true quantile function, this can be easily incorporated
into the confidence band. For example, the lower band
will be nonnegative for a quantile function of a non-
negative random variable.

Hutson (2002b) compared the exact bootstrap (EB)
method with the method of Csörgő and Révész (CR)
and the resampling bootstrap method of Doss and Gill
(DG). They were compared with respect to their 95%
coverage probabilities when sampling is from a stan-
dard normal distribution, exponential distribution, uni-
form distribution, logistic distribution, extreme value
distribution and Laplace distribution, for samples of
size n = 10, 20 and 30. The results, contained in
Table 4, are based on 10,000 simulations for the EB
and CR methods. Only 1000 simulations were used
for the DG method since the simulation study for this
method is very computationally intensive. In addition,
for the DG method 1000 resamples within each simu-
lation were needed in order to estimate dα . Since the
exact bootstrap interquartile range of Q̃(u) is given by

ĨQRu = Q̃(Qβ(3/4)) − Q̃(Qβ(1/4)),

where Qβ(·) denotes the β(�nu�, �n(1 − u)�) quantile
function, it was used in order to estimate the scale,
v̂(i)(u), in (11). Using the exact estimate for v̂(i)(u)

eliminates the need for double bootstrapping suggested
by Doss and Gill (1992).

In Table 4, we see that the CR and EB methods
have very good coverage rates for small samples with
the EB method having slightly better and precise
overall coverage rates for samples of size n = 10. In
our original simulation study, the DG method had a
very poor coverage rate. Even though Doss and Gill
(1992) illustrated the asymptotic correctness of their
approach, care needs to be taken with small samples.

Specific problems occur in the tail regions due to
the discreteness of the quantile function estimator.
Furthermore, the choice of step function used in the
estimation does make a difference in the coverage rates
for small samples. We repeated the simulation making
two minor heuristic adjustments: (1) we limited the
range of u to 1/n ≤ u ≤ (n − 2)/n, and (2) we defined
the upper bound to be a ceiling function and the lower
bound to be a floor function. We see from Table 4 that
this modified method, denoted DG*, performs fairly
well.

Besides having good coverage rates, as seen in
Table 4, the EB method also tends to cover a larger
range of the quantile function. We illustrate this by
comparing the EB and CR methods on a dataset de-
scribed by Stigler (1977) in his study of the perfor-
mance of robust estimators. The data contained in Ta-
ble 5 are the results of a 1798 experiment by Cavendish
who set about trying to determine the mean density
of the earth. The “true” value is 5.517 g/ccm. The
EB (solid line) and CR (dashed line) 95% confidence
bands are given in Figure 4 overlayed with the esti-
mated parametric quantile function x̄ + s�−1(u) ap-
plied under the normality assumption. We see that the
EB and CR bands are similar in the middle of the distri-
bution, while the EB method provides a greater range
of coverage on both ends of the lower and the upper
bands.

TABLE 5
Cavendish’s 1798 determinations of the density of the earth

(g/ccm) relative to water (Stigler, 1977) (n = 29)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85
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FIG. 4. 95% confidence bands for Q(u) using the EB (solid line)
and CR (dashed line) methods from the data in Table 5.

APPENDIX A

The weights used in (2), (3) and (4) for the exact
bootstrap moments of an L-estimator are given by

wj(r) = r

(
n

r

)[
B

(
j

n
; r, n − r + 1

)

− B

(
j − 1

n
; r, n − r + 1

)]
,

wij (rs) = nCrs

s−r−1∑
k=0

(
s − r − 1

k

)
(−1)s−r−1−k

s − k − 1

·
[(

i

n

)s−k−1

−
(

i − 1

n

)s−k−1]

·
[
B

(
j

n
; k + 1, n − s + 1

)

− B

(
j − 1

n
; k + 1, n − s + 1

)]

and

vj (rs) = nCrs

s−r−1∑
k=0

(
s − r − 1

k

)
(−1)s−r−1−k

s − k − 1

·
{
B

(
j

n
; s, n − s + 1

)

− B

(
j − 1

n
; s, n − s + 1

)

−
(

j − 1
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·
[
B

(
j

n
; k + 1, n − s + 1

)

− B

(
j − 1

n
; k + 1, n − s + 1

)]}
,

where nCrs = n!/[(r − 1)!(s − r − 1)!(n − s)!] and
B(x;a, b) = ∫ x

0 ta−1(1 − t)b−1 dt is the incomplete
beta function.

APPENDIX B

To derive the exact bootstrap percentiles of (5), first
let

g(u1, u2, . . . , uk) = n!
k∏

i=0

(ui+1 − ui)
ji+1−ji−1

(ji+1 − ji − 1)!

be the joint density of the k uniform order statistics
from a sample of size n, Uj1:n, Uj2:n, . . . , Ujk:n, where
uk+1 = 1, u0 = 0, jk+1 = n + 1 and j0 = 0. The exact
bootstrap estimate of (7) is given by

n∑
ik=1

ik∑
ik−1=1

· · ·
i2∑

i1=1

wi1···ik−1ik(j1···jk−1jk)

· [|T (Xi1:n, . . . ,Xik :n) − θ |
+ (2α − 1)

· (
T (Xi1:n, . . . ,Xik :n) − θ

)]
,

(14)

where the weights are given by

wi1···ik−1ik(j1···jk−1jk)

=
∫ ik/n

(ik−1)/n

∫ Iik−1

(ik−1−1)/n

· · ·
∫ Ii1

(i1−1)/n
g(u1, . . . , uk) du1 · · · duk

and

Iia =
{

ua+1, if ia = ia+1,

ia/n, otherwise.

The exact bootstrap percentiles of (5) are given by the
value of θ that minimizes (14).

Expression (14) follows from the re-expression of (7)
using the quantile function Q(u). Specifically, if h is
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the joint p.d.f. of Xj1:n,Xj2:n, . . . ,Xjk :n, then

E{|Tn − θ | + (2α − 1)(Tn − θ)}
=

∫ ∞
−∞

∫ xk

−∞
· · ·

∫ x2

−∞
[|Tn − θ |
+ (2α − 1)(Tn − θ)]

× h(x1, . . . , xk) dx1 · · · dxk
(15)

=
∫ 1

0

∫ uk

0
· · ·

∫ u2

0

{∣∣T (
Q(u1), . . . ,Q(uk)

) − θ |
+ (2α − 1)

[
T

(
Q(u1), . . . ,

Q(uk)
) − θ

]}
× g(u1, . . . , uk) du1 · · · duk.

The result follows by substituting Q̂(u) given by (1)
into (15) and noting that Q̂(u) is constant in the region
given by (i − 1)/n ≤ u < i/n, i = 1,2, . . . , n.
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