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A Short Prehistory of the Bootstrap
Peter Hall

Abstract. The contemporary development of bootstrap methods, from the
time of Efron’s early articles to the present day, is well documented and
widely appreciated. Likewise, the relationship of bootstrap techniques to
certain early work on permutation testing, the jackknife and cross-validation
is well understood. Less known, however, are the connections of the bootstrap
to research on survey sampling for spatial data in the first half of the
last century or to work from the 1940s to the 1970s on subsampling and
resampling. In a selective way, some of these early linkages will be explored,
giving emphasis to developments with which the statistics community
tends to be less familiar. Particular attention will be paid to the work of
P. C. Mahalanobis, whose development in the 1930s and 1940s of moving-
block sampling methods for spatial data has a range of interesting features,
and to contributions of other scientists who, during the next 40 years,
developed half-sampling, subsampling and resampling methods.

Key words and phrases: Block bootstrap, computer-intensive statistics,
confidence interval, half-sample, Monte Carlo, moving block, resampling,
permutation test, resample, sample survey, statistical experimentation, sub-
sample.

1. INTRODUCTION

From some viewpoints it is impossible to know just
where and when the bootstrap began. If one defines
(as I believe one should) a bootstrap estimator to
be the result of replacing an unknown distribution
function, in the definition of a parameter, by its
empirical counterpart, then the sample mean is the
bootstrap estimator of the population mean. Adopting
this view, one could fairly argue that the calculation
and application of bootstrap estimators has been with
us for centuries. We could claim that general first-order
limit theory for the bootstrap was known to Laplace
by about 1810, and that second-order properties were
developed by Chebyshev later in the 19th century.

However, such a formulaic definition of the boot-
strap overlooks its most potent, and perhaps most ap-
pealling, ingredient: its connection to random sampling
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from the sample. This feature is the key to our abil-
ity to compute most bootstrap estimators other than
means. Regardless of how one defines the bootstrap,
one can argue that the variability one encounters when
sampling from the sample models that which is found
when sampling from the population, and that this is a
major attraction of bootstrap methods.

It was by marrying the power of Monte Carlo ap-
proximation with an exceptionally broad view of the
sort of problem that bootstrap methods might solve,
that Efron (1979a, b) famously vaulted earlier resam-
pling ideas out of the arena of sampling methods and
into the realm of a universal statistical methodology.
Arguably, the prehistory of the bootstrap encompasses
pre-1979 developments of Monte Carlo methods for
sampling. The bootstrap’s conventional history dates
from the late 1970s.

The notion of resampling from the sample is re-
moved only slightly from that of sampling from a finite
population. Unsurprisingly, then, a strong argument
can be made that important aspects of the bootstrap’s
roots lie in methods for sample surveys. In the 1940s
and 1950s, U.S. statisticians (particularly those work-
ing for government statistical offices) were developing
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techniques for stochastic, as distinct from systematic,
sampling from finite populations and were exploring
“hybrid” methods, based (for example) on a stochastic
start followed by deterministic extrapolation. In India,
where survey sampling for estimating crop yields was
pioneered, stochastic spatial sampling methods were
under development 80 years ago. The origins of sto-
chastic simulation are very much older, however; see
Stigler (1991; 1999, Chapter 7).

Random design and random sampling methods, and
the debate over their merits, owe much to the early
work of Fisher, Tukey, Deming and others. See, for
example, Hansen, Hurwitz and Madow (1953a, b) and
Deming (1950, 1956). Many of these early develop-
ments are well known, at least to the community of
survey statisticians. Hartigan (1969) has drawn a paral-
lel between early contributions to resampling and frac-
tional factorial design (e.g., Fisher, 1966) through the
gains in performance that can be achieved by balancing
sampling experiments.

Naturally, this view should not exclude resampling
methods that are more conventionally connected to
the bootstrap, particularly cross-validation and the
jackknife. See Stone (1974) for a general approach
to the former, and see Quenouille (1949, 1956) and
Tukey (1958) for early proposals of the latter. However,
the linkages of the jackknife to the bootstrap have
been authoritatively recounted elsewhere (e.g., Efron,
1979b, 1982; Efron and Tibshirani, 1993; Shao and Tu,
1995; Davison and Hinkley, 1997), as too have those
of cross-validation (e.g., Efron and Tibshirani, 1993;
Good, 1999).

Likewise, the relatively early development of per-
mutation and Monte Carlo methods for testing (e.g.,
Fisher, 1936; Pitman, 1937; Welch, 1937; Wald and
Wolfowitz, 1944; Barnard, 1963; Hope, 1968), which
anticipated some aspects of resampling methodology,
has been well documented. In principle the connec-
tions of permutation testing to contemporary “exper-
imental statistics,” based on Monte Carlo simulation,
are strong. Some of them will be addressed in Sec-
tion 3. However, large parts of the methodology had
only limited application until the development of mod-
ern electronic computers. Consequentially, in impor-
tant respects the rise to influence of permutation testing
occurred contemporaneously with, rather than prior to,
that of the bootstrap.

In this brief account I have selected contributions
that are mentioned relatively infrequently, starting
with research of the Indian statistical scientist

P. C. Mahalanobis. His development of sampling meth-
ods for the Bengali jute crop anticipated today’s
moving-block methods, and his analysis of Bihar
cereal-crop harvests introduced half-sampling for as-
sessing statistical variation. I conclude by discussing
the work of Mahalanobis’ geographical and philosoph-
ical antithesis, the free-marketer and professional icon-
oclast Julian Simon, better known for his widely used
(in the United States) volunteer scheme for dealing
with airline overbooking, or his controversial views
on resource renewability. His perspectives on statistics,
like many of his other causes, were marked by both
prescience and polemic, but his enthusiasm for statis-
tics as an experimental science was surpassed only by
his energy for articulating that view.

2. MAHALANOBIS’ CONTRIBUTIONS
TO RESAMPLING

2.1 Accessible Sources

Accounts of Mahalanobis’ bootstrap-related work
are given in a number of articles, including one in
the Philosophical Transactions of the Royal Society
(Mahalanobis, 1946a), three in Sankhyā (Mahalanobis,
1940; 1946b, c) and a fifth in the Journal of the
Royal Statistical Society (Mahalanobis, 1946d). The
Philosophical Transactions article is seldom cited
today, but it is especially helpful in elucidating the
evolution of Mahalanobis’ ideas. It, and Mahalanobis
(1940), relate solely to his work on the sampling and
analysis of data on jute production in the state of
Bengal.

The article Mahalanobis (1946b) comprises a report
made to the Government of Bihar in 1944. The arti-
cle Mahalanobis (1946d), read before the Royal Sta-
tistical Society, gives an overview of Mahalanobis’
spatial sampling work and that of his colleagues.
Mahalanobis (1946c) contains a discussion of early
spatial sampling methodology, developed in the 1920s
by the Indian civil servant J. A. Hubback and applied to
rice crops in the states of Bihar and Orissa, and of the
relationship of Hubback’s ideas to Mahalanobis’ own.
Hubback, an Englishman whose report in 1927 has
been hailed as the first published account of the use of
sample surveys to assess crop yields, commenced his
experiments in 1923. His work “influenced greatly” the
crop-sampling experiments conducted by R. A. Fisher
at Rothamsted (Fisher, 1945) and also inspired the re-
search of F. Yates and others on sampling crop yield
(Mahalanobis, 1946d). Hubback went on to become
Governor of Orissa. His 1927 article was reprinted in
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Sankhyā (Hubback, 1946). Its particular connection to
bootstrap literature is its focus on stochastic methods
for spatial sampling. In these terms, Hubback antic-
ipated “random sampling from the sample” by “ran-
domly sampling from a finite population.”

The articles Mahalanobis (1946b, c) are often mis-
cited, for example, by the title of one being used to-
gether with the page numbers of the other. (The present
author is one of the guilty parties.) The publication of
Sankhyā at that time was affected by exigencies of war;
in particular, the single volume in which both articles
appear encompasses both 1945 and 1946, which ex-
plains why either year is used in citations.

Mahalanobis authored many other articles and re-
ports on his spatial sample surveys in Bengal and Bihar.
However, most are difficult to obtain outside India.

2.2 Mahalanobis’ Motivation

It is helpful to consider the background to the
practical problems that motivated Mahalanobis’ work,
so as to appreciate its importance at that time, the
massive scale on which it was conducted and the sense
of urgency that characterized it.

Mahalanobis developed methods for sampling the
jute crop in Bengal during a 5-year program which
commenced in 1937. He subsequently modified his
techniques for the sampling program in Bihar. The
economic imperative for his work in Bengal can
be judged by noting that at the time, jute exports
amounted to a quarter of the total value of all exports
from India, that Bengal produced 85% of India’s
jute and that almost 90% of all jute produced in
India was exported. The Bengal sampling project,
which progressed initially in an unrushed way, later
proceeded under “high pressure.” In 1941 it employed
a staff of more than 500.

Cereal production in Bihar was likewise of major
economic and strategic concern to India, especially in
time of war. Mahalanobis was asked in late Septem-
ber 1943 to undertake “as early as possible” a survey
of crop yields similar to that which he had supervised
in Bengal. The invitation, from the Government of
Bihar, focused initially on the state’s rice harvest, but
the objectives quickly expanded to encompass cereal
crops of many types. By the time Mahalanobis was
contacted the rabi (spring) season was already well ad-
vanced, so developing new sampling methodology was
virtually precluded. Unsurprisingly, he relied largely
on the techniques he had developed and extensively
tested in Bengal. A variety of sampling experiments
had been conducted there, but time constraints all but
ruled out experimentation in Bihar.

2.3 Spatial Nature of the Project

Mahalanobis’ data were not independent and iden-
tically distributed random variables or even random
vectors, but crop yields which depended on the sizes
of farm plots where crops were grown. It was within
this relatively difficult context, which remains close to
the frontiers on which contemporary bootstrap meth-
ods are advancing, that he grappled from the start. He
considered sampling independently and at random, us-
ing tables of random numbers, but

... unfortunately, this method cannot be used
as the size of individual plots in Bihar
varies widely from a fraction of an acre
to several hundreds of acres. Selection by
serial number of plots would not give each
acre of land the same chance of being
included in the sample; and samples drawn
in this way would not be truly random or
representative (Mahalanobis, 1946b).

These considerations motivated his spatial sampling
scheme. He used the term “grid” to describe a sampling
unit, not the geometric structure within which such a
unit was located; this should be borne in mind when
reading his words later in this section.

Each district where crops were grown in Bihar was
divided into nonoverlapping zones, which he took to
be about 50 square miles in area. Their numbers and
distributions depended on the district’s size and shape.
Determining sampling-unit size was a substantially
more difficult task, to which Mahalanobis paid a great
deal of attention; see Section 2.4.

He sampled using a method he referred to as “inter-
penetrating sub-samples,” or “half samples.” He split
into equal batches the number of sampling units to be
distributed within a given zone and distributed each
batch independently of the other. Thus, the two lots of
sampling units interpenetrated, or mingled with one an-
other, in an entirely random fashion. Each provided a
check on the other.

The manner in which Mahalanobis used this check
shows that he interpreted the variation between his
half-samples as providing direct information about
variation within the population. This view is central to
present-day interpretations of the bootstrap:

When two such interpenetrating net-works
of sample-units are used, it is possible to
obtain two independent estimates (of crop
acreage or of crop yield) for each region.
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The difference between these two indepen-
dent estimates immediately supplies a good
idea of the effective margin of error and thus
indicates to what extent the survey had been
carried out under statistical control (Maha-
lanobis, 1946c).

The errors to which Mahalanobis is referring here are
both random and systematic.

While the half-samples might be viewed as sam-
ples drawn randomly, without replacement, from their
union, they were not in fact obtained in that way. In-
deed, the half-samples were a little more independent
of one another than were their component data values,
since unusual precautions were taken to ensure that
observation errors were not shared between the half-
samples; see Section 2.5. Nevertheless, the concept of
half-sampling has clear connections, not only to the
present-day bootstrap, but also to other early work on
resampling methods; see Section 3.

Mahalanobis argued that half-samples supplied “two
independent estimates of crop acreage for the same
zone” (our italics), thus making it clear that he con-
sidered spatial correlation, and perhaps the occasional
overlap of sampling units, to have negligible impact.
His reference to “interpenetrating subsamples” should
be taken to mean that the units from the two sub-
samples mingled together in the plane, not that the
sampling units geometrically intersected one another.

This account refers to the sampling program in
Bihar. The program in Bengal was significantly differ-
ent, due in part to experimentation with sampling units
of vastly differing sizes (ranging in area from a fraction
of an acre to hundreds of acres). In Bengal, linked pairs
of sampling units were used, the distance between each
pair being fixed “but the orientation was settled at ran-
dom” (Mahalanobis, 1946a). The quoted remark refers
to the orientation of the line joining the centers of the
pairs.

The main purpose of the distance constraint was to
reduce any effects of spatial correlation, which other-
wise could have caused problems, given the relatively
large sampling units often used in Bengal. The exis-
tence of the constraint weakens the connection between
the Bengal experiments and the conventional, contem-
porary bootstrap; the Bengali half-samples could not
have been drawn equivalently by resampling randomly,
without replacement, from a single sample. However,
Mahalanobis’ experiments in Bengal are related to a
form of the block bootstrap, which we take up next.

2.4 Moving-Block Methods

Mahalanobis observed that if cost was no consider-
ation and if correlation was ignored, large sampling
units might be preferred on the basis of statistical per-
formance: “The precision of individual sample units
would increase as the area of each individual sample
unit is increased” (Mahalanobis, 1946b). However, this
law failed in the presence of correlation, where:

... the actual decrease was much smaller,
so that the gain in precision by increas-
ing the size of individual grids was ap-
preciably less than one would ordinarily
expect of the normal theory. This may be
ascribed to the fact that the proportions of
land sown with a particular crop ... are not
statistically independent but are correlated
(Mahalanobis, 1946a).

Empirical evidence for these properties came from
sampling experiments undertaken in Bengal. (It should
be noted, however, that Hubback had observed the
effects of correlation in his sampling experiments in
the 1920s.) The properties hint at a theory of optimality
in which the balance between variance and some
other component is altered as sampling-unit size is
increased. In particular, they suggest the notion of
optimal sampling-unit size.

The latter was specifically addressed by Maha-
lanobis (1946a). In Section 5 of part II of that article he
embarked on a detailed and elaborate calculation of op-
timal sampling-unit size and density (i.e., the density of
sampling units per unit of area). Now, in Mahalanobis’
experiments there were, in principle, few effects from
bias, since he was estimating the population mean. As
a result, instead of variance and squared bias having an
inverse connection, this relationship was exhibited by
variance and cost:

If we use grids of a large size, say 50-acre
or 100-acre each, then the time and hence
the expense involved in the physical exami-
nation of each grid would be comparatively
large, and we would be able to have only
a comparatively small number of grids ... .
The need of working within the limits of
a fixed budget places a restriction on the
choice of the size (that is, the area) of
each individual grid and their total number
of density per square mile (Mahalanobis,
1946b).
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Mahalanobis was preoccupied by the need to keep
financial costs within budget. Indeed, he had con-
sidered using the term “double sample” rather than
“half-sample,” but decided against it because doing so
“would have probably raised misapprehensions about
cost in the minds of administrators” (Mahalanobis,
1946d)! (See also the mention of double sampling in
Section 3.1.) Thus, his optimal sampling-unit size was
determined by relating variance and expenditure. His
theory achieved this balance via a complex argument
based on differential equations and Lagrange multipli-
ers.

Mahalanobis (1946a) gave especially detailed theory
that describes the impact of spatial correlation on
variance. He noted that his arguments were

... a kind of generalization for two dimen-
sions of the method of serial correlation in
the case of time series on which a large vol-
ume of work is already in existence ... [but]
many new problems arise in the case of the
two-dimensional correlation function which
have no analogue in the case of serial corre-
lation (Mahalanobis, 1946a).

Bartlett (1946) drew particular attention to the connec-
tions between Mahalanobis’ theory for spatial depen-
dence and related work in time series.

Today, sampling-unit size for moving-block methods
is generally treated as a smoothing parameter, and
its optimal choice is a central issue. If Mahalanobis
had turned his hand to estimating variance he would
have found that increasing block size reduced bias and
that squared bias played a role something like that
which financial cost did in his work on the mean.
Moving-block methods and the block bootstrap were
explored in this setting by Hall (1985), Politis and
Romano (1993, 1994) and Sherman (1996), who noted
connections to statistical smoothing.

Mahalanobis’ (1946a) discussion of the properties
of block-based sampling anticipated modern moving-
block methods for spatial data and, in view of the
discussion quoted two paragraphs above, for time
series. Contemporary accounts of the moving-blocks
bootstrap include those of Hall (1985), Künsch (1989),
Götze and Künsch (1996), Lahiri (1996) and Politis,
Romano and Wolf (1999).

However, in neither Bengal nor Bihar did Maha-
lanobis use block bootstrap methods, as distinct from
half-sampling, to actually assess crop yields. The mod-
ern concept of the block bootstrap was most likely not
explicitly in his mind, because the expense of sampling

would have prevented the comprehensive resampling
program that would have been necessary. Instead, he
saw the use of a limited number of random blocks serv-
ing a dual purpose: reducing expense, compared with
drawing a full sample, and permitting a more accurate
estimate of yield than was possible if crops were sam-
pled in farm plots rather than in more methodically de-
termined moving blocks.

Mahalanobis was concerned, too, about the effect
that heterogeneity would have on optimal choice of
sampling unit. Sampling density was also a major
worry, not least because it had a direct bearing on
cost. He treated edge or boundary effects (sometimes
referring to them as “border effects”), noting that their
impact on bias could be ignored for sampling units of
appropriate size.

A multitude of considerations such as these led
Mahalanobis to use 4-acre sampling units and a density
of two sampling units per square mile in the Bihar
experiments. (Four acres was a tenth the area of many
of the sampling units he had employed in Bengal.) The
number of units allocated to a district was typically
in the thousands and the random manner (virtually in
the continuum) in which sampling unit centers were
chosen might have led to occasional overlap. However,
since there are 640 acres in a square mile, overlap
would have been rare. The issues of correlation, which
Mahalanobis (1946a) discussed at length in connection
with his Bengal experiments, were of less direct
relevance to the problem of sampling in Bihar.

2.5 Collecting Spatial Data in Mahalanobis’ Day

The practical challenges faced by Mahalanobis in-
vite a comparison between his projects in Bengal and
Bihar, some 60 years ago, and contemporary settings
where similar methodology is employed. We still use
versions of his techniques to estimate crop acreages
and yields, and to approximate the variability of those
estimates, although we seldom draw the connections to
his work. Today we gather data automatically and re-
motely, on a grid with pixels (picture elements) that are
perhaps only meters wide, using a satellite many miles
above the Earth.

At the other extreme, the microscopic level, we also
estimate sampling variability using related techniques.
Here the data are instantly and relatively inexpensively
gathered by an image analyzer coupled to an optical or
particle-beam microscope, and pixel dimensions might
be measured in nanometers.

Despite the expense of satellite imagery and mi-
croscopy, the financial constraints that govern such
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sampling experiments are usually minor compared to
those faced by Mahalanobis. His “recording device”
was manual labor—investigators were sent out into the
field with lists of sampling units allotted to them, each
person recording (for example) the proportion of land
under different crops within the confines of his sam-
pling units. As we have seen, the expense of such a
program interacted markedly with statistical issues and
influenced the notion of statistical optimality in a way
one rarely encounters today.

Mahalanobis’ sampling schemes had a number of
inbuilt checks and balances, including the gathering of
each half-sample by different groups of investigators.
Within a zone, the investigators collecting data for the
respective half-samples worked “at different times ... so
that they never meet.” From time to time these workers
were asked to literally toss coins, out among the rice
paddies and in the barley fields, as they made their
sampling decisions, and Mahalanobis checked up on
the randomness of their tosses:

Each investigator ... is required to keep a
record of successive throws of heads and
tails ... . If, as is sometimes found to be
the case, the series is significantly non-
random it is reasonable to think that the field
work was not done properly (Mahalanobis,
1946c).

3. HALF-SAMPLING, SUBSAMPLING
AND RESAMPLING

3.1 Subsampling in Sample Surveys

It is of course no accident that some of the earliest
contributions to resampling methods were made in the
context of sample surveys. The notion of resampling
from a sample, particularly in a “without-replacement”
sense, is a minor extension of sampling from a finite
population. Madow and Madow (1944), Jones (1956)
and Shiue (1960) considered, in the context of survey
sampling, different techniques for drawing m subsam-
ples of size n from a population of size N by slicing
the population into equal-sized, nonoverlapping parts
using a mixture of systematic and stochastic methods.

By the 1940s, random subsamples were used for cal-
ibration “in forestry work in the USA” (Mahalanobis,
1946d). The more general method of two-phase sam-
pling was [and often still is; see, e.g., Cochran (1977,
page 327)] called “double sampling.” It is motivated in
a very different way from Mahalanobis’ half-sampling
experiments and was employed for surveys of crop

yields in India in 1941. It involves combining direct
but relatively expensive measurements made on a ran-
domly chosen subset of the data, with indirect, inex-
pensive measurements made on the whole data set.

Any of these techniques can be viewed as a step
in the development of without-replacement ways to
sample from a sample. Each is related to the stochastic
sampling experiments performed by Mahalanobis in
the 1930s and 1940s. However, Mahalanobis’ setting
was arguably more complex, in that it involved spatial
relationships and, in particular, potential correlation.

Also in the context of sample surveys, “half-
sampling” methods were used by the U.S. Bureau of
the Census from at least the late 1950s (Kish, 1957;
ANON, 1963). This pseudo-replication scheme was
designed to produce, for stratified data, an effective es-
timator of the variance of the grand mean (a weighted
average over strata) of the data. The aim was to
improve on the conventional variance estimator,
computed as a weighted linear combination of within-
stratum sample variances. The latter can be highly vari-
able (although unbiased) when there are only small
numbers of observations in each stratum.

The method used by the Bureau of the Census con-
sisted of resampling one datum randomly from each
stratum, computing the weighted average of these val-
ues, forming the squared difference of the average
from the grand mean and averaging the squared dif-
ferences over different drawings of the resampled data.
Although applicable, with suitable weights, in the case
of general sample sizes in each stratum, the technique
was typically used in the case where each stratum had
only the bare minimum of data needed to estimate the
stratum variance; that is, just two observations per stra-
tum. In this case, drawing one observations from each
stratum used exactly half the full data set. Hence the
name “half-sample.”

The relationship between these half-samples and
those used by Mahalanobis is largely limited to the
fact that both refer to using half the full sample
and each technique is motivated by an application of
sample survey methodology. In other respects the half-
sampling methods are rather different.

McCarthy (1969) reported that theory for half-
sampling in sample surveys was developed by Gurney
(1963) and McCarthy (1966). There it was shown that
the variance of the estimator is proportional to

(2/B)(1 − L−1) + CL−1,(1)

where L denotes the number of strata, C is a constant
that depends only on the population and B is what
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would be referred to today as the number of bootstrap
replications.

To appreciate the origins of the terms in (1), note
that each of the squared differences that is averaged
to compute the half-sample variance estimator can
be written as a sum of diagonal terms plus a sum
of off-diagonal terms. The off-diagonal terms are the
contributors to the first term in (1). Of course, the
latter quantity vanishes if the number of replications is
infinite, but in other settings it may make a significant
contribution. In the 1950s and 1960s, when these
methods were developed, computational limitations
restricted the feasible number of simulations, and so
there was motivation to reduce the first term in (1)
by means other than simply increasing B . This was
the context of McCarthy’s (1969) work; he showed
how to balance the half-sample replications so that
a significant portion of the contributions from off-
diagonal terms cancelled, leading to a reduction in
estimator variance.

Efron (1982), in his monograph titled The Jackknife,
the Bootstrap and Other Resampling Plans, recognized
the important role that these precursors played in the
development of bootstrap methods. He included three
chapters on half-sampling, random subsampling and
typical-value methods.

3.2 Resampling Methods for Simple
Random Samples

Unlike McCarthy and Mahalanobis, Hartigan (1969)
developed the subsampling idea in the context of
simple random samples and in a rather general, abstract
setting. This enabled its theoretical properties to be
explored quite extensively. He introduced the notion of
“subsample values” of a statistic θ̂ ; these are the values
of θ̂ computed for subsets of a given sample.

Hartigan’s subsets (i.e., subsamples) were simply
the possible subsets of data (excluding the empty set)
that could be drawn from the full data set, and so
number 2n − 1 in the case of a sample of size n.
Therefore, in effect, he drew his subsets from the
sample without replacement and his resample size was
usually less than the sample size. Excepting these
changes, his subsample values would today be called
bootstrap values of θ̂ and denoted by θ̂∗ in now
conventional notation. He was later (Hartigan, 1971)
to introduce other kinds of replacement subsampling
and to anticipate Rubin’s (1981) Bayesian bootstrap.

Today it is widely appreciated that the variability
of θ̂∗, conditional on the data, can be used to very

good effect to approximate the variation of θ̂ in an un-
conditional sense. Hartigan (1969) explored the use of
subsample values for this purpose and, in particular,
for constructing confidence intervals. Some of Harti-
gan’s subsample values were, in his terminology, “typ-
ical values,” provided the subsamples were balanced in
a manner that could be defined in terms of the intervals
between adjacent, ordered subsample values. He used
group-theoretic methods to make this concept more ex-
plicit. Restricting attention to typical values and to Har-
tigan’s (1969) approach to subsampling, his Theorem 4
describes a type of percentile-method bootstrap confi-
dence interval for a mean.

Maritz (1979), too, used permutation arguments con-
nected to the bootstrap to conduct inference about loca-
tion parameters. More closely linked to contemporary
resampling methods were the methods of Maritz and
Jarrett (1978) and Breth, Maritz and Williams (1978),
which were founded directly on the empirical distribu-
tion function.

Forsythe and Hartigan (1970) developed Hartigan’s
(1969) confidence interval argument further. They
showed that substantial reductions can be achieved in
the amount of Monte Carlo simulation that needs to be
done by confining attention to “balanced” resamples
defined in terms of Hartigan’s (1969) definition of
typical values. This notion of balance is technically
different from that introduced by McCarthy (1969)
and also from those suggested more recently as the
balanced bootstrap (or Latin hypercube sampling) by
Davison, Hinkley and Schechtman (1986) or antithetic
resampling by Hall (1989). However, all these methods
are connected, in the sense that in each, an appropriate
degree of symmetry is introduced to reduce the error
of resampling approximations and thereby produce
estimators with greater accuracy for a given amount of
computational labor.

Hartigan (1975) gave necessary and sufficient con-
ditions for the asymptotic joint normality of a statis-
tic and its subsample (and jackknife) values. We know
today, through work of Mammen (1992) and others,
that asymptotic normality of a statistic’s distribution is
particularly close to being a necessary and sufficient
condition for the bootstrap-based estimator of the dis-
tribution of the statistic to give correct answers. (These
remarks apply to models that are locally asymptotically
normal in Le Cam’s sense, and do not necessarily apply
in other cases.)

3.3 Statistics as an Experimental Science

Tukey was arguably the most influential supporter
of experimental statistics in the 30-year period after
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1950, through his work on the jackknife, experimen-
tal data analysis and so forth. Simon (1969, 1993), an
iconoclastic polymath by inclination but a social scien-
tist by vocation, also advocated statistical methodology
based on computer experimentation. In 1969, his pro-
motion of resampling methods for testing statistical hy-
potheses must have seemed only moderately practical.
Nevertheless, his prediction that this approach “holds
great promise for the future” (Simon, 1969) cannot
be faulted. Twenty-four years later he was to define
“resampling” to mean “the use of the given data or a
data generating mechanism (such as a die) to produce
new samples, the results of which can then be exam-
ined” (Simon, 1993). He commented too that “the term
computer-intensive methods is ... used to refer to tech-
niques such as these.” Simon’s discussion of statistics
in terms of gambling experiments is typical; those who
challenged his ideas were frequently answered with a
wager.

Prior to the late 1960s, permutation tests would have
been regarded primarily as a motivator of more com-
putable, parametric approaches, in particular, those
based on the analysis of variance, even though permu-
tation methods had been discussed for some 30 years.
Attempts were made to reduce computational labor
(see, e.g., Chung and Fraser, 1958), but widespread
use of permutation techniques had to await the avail-
ability of inexpensive, interactive, electronic comput-
ers. Nevertheless, Simon’s (1969) methodology was
largely restricted to permutation methods, the appli-
cation of which he described in terms of coin-tossing,
dice-throwing or card-shuffling experiments.

Simon was an avowed free-marketer. “It was not a
good idea to ridicule capitalism, or free markets, or
human liberty, in Simon’s presence,” wrote Wattenberg
(1998). One of Simon’s (1969) numerical examples
in Basic Research Methods, on the cost in 1961 of a
glass of Seagram’s Seven-Crown American Whiskey,
was archetypically his. It compared prices in 27 U.S.
states that had privately owned liquor stores with those
in 16 states that had state monopolies. The pooled
sample size was therefore 43, and to describe how to
use permutation methods to test the hypothesis that
the mean prices were identical, he invited the reader
to “write each of the forty-three prices on playing
cards, shuffle the cards, and deal out sixteen. Do this
repeatedly.”

Simon introduced ranking methods the same way.
Discussing a rank-based test applied to a sample of
size 10, he wrote: “Take ten cards, one of each de-
nomination from ace to ten, shuffle, and deal ... .” No

reference was made to statistical tables. He alluded to
asymptotic approximations thus: “One can avoid the
tedious work of Monte Carlo experiments by getting
the help of a statistician who will use mathematical
methods” (Simon, 1969). However, such an approach
was certainly not recommended. Indeed, a later mono-
graph which expounded in detail his Monte Carlo-
based proposals (Simon, 1993) was promoted on the
basis that it taught “how not to let tricky statistics get
the best of your argument.” Simon’s preferred statisti-
cal analysis was based unabashedly on simulation.

Resampling was first written in 1974, went through
a substantial revision in 1989 and was finally pub-
lished in a “preliminary edition” in 1993, together
with a computer disc which enabled the methods to
be implemented on a PC. A later, but again “prelimi-
nary,” edition had a different subtitle and a co-author
(Peter C. Bruce). Subsequent editions of Resampling
were published by Resampling Stats, Inc. The 1993
preliminary edition appeared in Duxbury Press covers.

Simon felt a degree of antagonism toward the sta-
tistics profession, which, he argued, had only grudg-
ingly accepted, and then borrowed without appropriate
attribution, “his” resampling ideas developed in Simon
(1969, 1993). In a subsequent version of Resampling,
he misinterpreted change as explicit conflict and wrote:

The simple fact is that resampling devalues
the knowledge of conventional mathemati-
cal statisticians, and especially the less com-
petent ones. By making it possible for each
user to develop her/his own method to han-
dle each particular problem, the priesthood
with its secret formulaic methods is ren-
dered unnecessary. No one ... stands still for
being rendered unnecessary. Instead, they
employ every possible device fair and foul
to repel the threat to their economic well-
being and their self-esteem.

Nevertheless, later in that version he expressed plea-
sure that “resampling techniques have caught on like
wildfire among statisticians ... [who] are busily explor-
ing [their] properties ... and applying [them] regularly
to problems that are difficult with conventional analy-
sis.”

Early versions of Resampling are largely updated
accounts of the “statistics” portions (Chapters 22–26)
of Basic Research Methods. Between 1974 and 1993,
Resampling acquired a strong bootstrap component. It
cited Efron’s contributions (Efron, 1982; Diaconis and
Efron, 1983) and used with-replacement resampling
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as an alternative to permutation in the Seagram’s
Whiskey example. Commented Simon: “Recently
I have concluded that a bootstrap-type test has better
theoretical justification than a permutation test in this
case, although the two reach almost identical results
with a sample this large” (Simon, 1993).

The clarity with which Simon, who died in early
1998, anticipated in the 1960s the massive changes
that computing would bring to statistics undoubtedly
placed him apart from many of his peers. However, his
main contribution to statistics was surely as an advo-
cate and popularizer of Monte Carlo experimentation
and of resampling methods, not as a developer of spe-
cific new techniques.

His personality and the nature of his contributions
provide an intriguing counterpoise to those of Maha-
lanobis, with whose work we began this brief account
of the prehistory of the bootstrap. Mahalanobis, a sci-
entist trained in physics and biology, and a scholar in-
terested in Indian philosophy and Bengali literature,
was to take some of the first steps toward a statisti-
cal methodology based on experimentation. Simon, fa-
mous for his wager with Paul Ehrlich that the global
supply of natural resources would outstrip demand and
for his argument that intellect is the only resource that
really matters, was passionate and articulate as an ad-
vocate of a highly influential technology whose begin-
nings can be traced back at least to Mahalanobis.
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