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Cohort Studies
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Abstract. Recent work has extended the methods for the analysis of
nested case-control studies to accommodate a broad variety of risk set
sampling designs. These results have implications for the design of sam-
pled epidemiologic cohort studies. We describe a model which is a natural
extension of the Cox proportional hazards model and may be used to es-
timate parameters from sampled risk set data. We illustrate how these
techniques may be used to solve three diverse design and analysis prob-
lems from epidemiologic research.
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1. INTRODUCTION

In 1982, a lawsuit was brought against an air-
craft manufacturing firm in San Diego County, Cal-
ifornia, by the families of a group of employees who
had died of esophagus cancer. Their claim was that
occupational exposures to carcinogenic agents were
to blame for the disease. In order to objectively as-
sess whether there truly was an unusually high rate
of cancer among employees and whether any partic-
ular substances used at the firm were related to the
risk of esophagus cancer, a cohort mortality study
and a case-control study were undertaken. Inves-
tigators compiled basic information such as birth
dates, sex, race and dates of employment for the
cohort of 14,067 employees from company records.
Other data sources were required to determine vital
status and, if dead, the cause of death.

For the mortality study, the number of deaths
in the cohort from various causes were then com-
pared to those expected based on United States
cause-specific mortality rates. There were 14 cases
of esophagus cancer observed compared to 12.27 ex-
pected (standardized mortality ratio (SMR) = O/E =
1.14, 95% confidence interval 0.62–1.92; Garabrant,
Held, Langholz and Bernstein, 1988). Although this
excess is certainly not significantly different from 1,
cancer mortality was generally lower in the cohort
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with an SMR for all cancers of 0.84; perhaps a man-
ifestation of the “healthy worker effect.” Thus, while
this analysis showed that there was no evidence of
a cancer outbreak, it did not rule out the possibility
of a real excess of esophagus cancer at the plant. A
much more informative approach would be to see
if particular occupational exposures were associ-
ated with disease risk. Job titles and plant location
histories for each employee as well as records on
substances used in the manufacturing processes
were available from company archives, so, in prin-
ciple, probable employee exposure histories could
be generated. However, this would be an exceed-
ingly expensive task to do with any accuracy for all
14,067 subjects. This is why the nested case-control
study was undertaken. For each of the 14 cases,
four controls matched on year of birth, sex and
race, were randomly selected from those who were
alive at the case’s age of death. Exposure histories,
as described above, were further refined through
interviews with supervisors and co-workers of the
sampled subjects. After an extensive analysis of
exposures, an association was found with a single
building at the plant, but no specific occupational
exposures could be implicated. (In fact, in the “high
risk building,” office workers were over-represented
among the cases.) An out-of-court settlement was
eventually reached.

The case-control substudy of the cohort of aircraft
manufacturing employees is an example of sampling
from the risk set. The risk set associated with a
given esophagus cancer case includes the case and
“controls,” all subjects of the same sex, race and year
of birth as the case, and who were alive at and had
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been employed at the firm by the age of death of
the case. Instead of using all possible controls in
the risk set, four were randomly sampled without
replacement.

The nested case-control design has been used
in many studies to avoid collection of exposure
and other information for the full cohort (e.g., Adel-
hardt, Møller Jensen and Sand Hansen, 1985; Boice,
Blethner, Kleinerman, et al., 1987; Garabrant, Held,
Langholz, Peters and Mack, 1992; Kogevinas et al.,
1995) or to reduce the computational burden in
data analysis (e.g., Liddell, McDonald and Thomas,
1977; Thomas, Pogoda, Langholz and Mack, 1994).
In fact, as has long been recognized, most matched
case-control studies, ubiquitous in epidemiologic re-
search, are nested case-control studies where the
cohort is a (perhaps not well defined) population
in a geographic area (Prentice and Breslow, 1978).
With m − 1 the number of sampled controls, the
efficiency of this design relative to the full cohort
for testing for an association between a single fac-
tor and disease is �m − 1�/m (Breslow and Patton,
1979). Thus, the sample of 70 subjects, or 0.5% of
the total cohort, used in this nested case-control
study of the aircraft manufacturing firm, provided
about 4/5 = 80% efficiency relative to the full cohort
for testing associations between single exposures
and disease.

However, it is becoming rare that the goals of epi-
demiologic studies can be addressed by simple tests
of associations and many more controls may be re-
quired to achieve efficiencies this high when the
analyses are more complex (Breslow, Lubin, Marek
and Langholz, 1983). As the questions considered
grow in complexity and the costs involved increase,
it becomes advantageous to adapt the sampling de-
signs to take into account the goals of the study and
the costs associated with data collection. This has
been demonstrated in evaluations of new sampling
designs for grouped binary outcome data (e.g., Bres-
low and Cain, 1988; Weinberg and Wacholder, 1993).
Preceded by theoretical developments that linked
the analysis of risk set sampled data to those based
on the Cox proportional hazards model for the full
cohort (Borgan, Goldstein and Langholz, 1995), it is
only recently that analogous designs have been de-
veloped for the sampling of risk sets. In Section 5,
we explore new risk set sampling designs to solve
two epidemiologic design problems where exposure
information is available on cohort members and a
sample is to be drawn to obtain further information.
These designs use the exposure information in the
sampling of controls and are more efficient than ran-
dom sampling for the problems they address. One
problem we consider is motivated by the need to

collect smoking information on a sample of a ura-
nium miners cohort to supplement the investigation
of radon exposure, available on all cohort members,
and lung cancer rates. In the other design problem,
we explore two-stage design options for subsam-
pling a (nested) case-control study of electromag-
netic fields and leukemia to investigate a new mea-
sure of the fields that is believed to be more relevant
to leukemia risk.

The new methods also solve some outstanding
analysis problems. In Problem 2 of Section 5, we es-
timate the risk of lung cancer given continuous and
time-dependent radon and smoking histories from
nested case-control data. Before tackling these prob-
lems, in Section 2, we describe the basic elements of
cohort data and introduce the terminology related to
nested case-control studies. Section 3 gives a short
history of the statistical methods for nested case-
control studies and the connection to the partial
likelihood approach to the analysis of cohort data.
After showing how Midzuno’s procedure—a “survey
sampling” method for unbiased ratio estimation—
provides some intuition for the standard matched
data approach to the analysis of nested case-control
data, we give the counting process formulation of
the problem and describe the estimators of relative
and absolute risk parameters that are natural ex-
tensions of the full cohort estimators.

2. TERMINOLOGY

The study of Garabrant, Held, Langholz and
Bernstein (1988) contains many of the essential
ingredients common in epidemiologic work, where
questions arise involving the comparison of the in-
cidence of rare diseases given specific risk factors.
Investigations of incidence involve a study popula-
tion, called a cohort, followed over some period of
time, where disease incidence is compared across
subgroups defined by risk factors and other covari-
ates. Figure 1 diagrams the basic features of a small
hypothetical cohort of 15 subjects. Each subject en-
ters the study at some entry time, is at risk, denoted
by the horizontal line, over some time period, and
exits the study at some exit time. We assume that
there are two reasons for exit. A subject may con-
tract or die from the disease of interest, and thus
be a failure (represented by “•” in Figure 1) or be
censored, that is, be alive at the end of the study,
died never having had the disease of interest or be
lost to followup.

The choice of time scale will depend on the goals
of the investigation. Often there is a natural time
scale such as time since treatment in intervention
or clinical trials, but in many situations the choice
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Fig. 1. Hypothetical cohort. Each line represents a subject’s time
on study.

may be less straightforward. In occupation cohort
studies, age is often chosen because disease inci-
dence rates vary greatly with age, but calendar time
or time since first employment might also be con-
sidered (Breslow and Day, 1987; Clayton and Hills,
1993).

Associated with each subject is a covariate history,
which usually includes factors which are known or
believed to be related to the rate of the disease of
interest. Covariates may be fixed over time, such as
country of origin, race, or gender. Alternatively, they
may be time dependent, such as cumulative packs of
cigarettes smoked or time since last mammograph.
In principle, the covariate value for a subject at a
given time should reflect the covariate history up to
that time. Covariate information may be classified
in many ways, but, for this discussion, it is useful
to divide them generically into exposures, the co-
variates we care about, and confounders, covariates
that we need to consider because they are related
to both exposure and disease rates, but would have
been held constant in a controlled experiment (Clay-
ton and Hills, 1993, page 135). We also consider in-
teractions or effect modifiers that quantify how the
effect of one covariate may depend on the value of
another.

Risk set sampling designs are intrinsically related
to semiparametric estimation methods for parame-

ters in the Cox proportional hazards model used in
the analysis of full cohort data. In this method, at
each failure time a risk set is formed that includes
the case, the failure at that failure time and all con-
trols, any other cohort members who are at risk at
the failure time (these are denoted by a “�” in Fig-
ure 1).

A sampled risk set of size m is a subset of the
risk set that contains the case and m − 1 sampled
controls. So, for instance, for 1:1 simple nested case-
control sampling, each sampled risk set consists of
the case and one control randomly sampled from all
the controls in the risk set.

In order to properly assess how disease rates
change with level of exposure, control for the effect
of relevant confounders is necessary. This may be
achieved by modeling the effect of the confounder
or by restricting the risk set to those who have the
same (or similar) confounder values. We will call
the latter procedure matching and call confounders
treated in this way in the analysis matching fac-
tors. Further, we will assume that matching factors
are categorical. This corresponds to stratification
of the Cox model. When there are matching fac-
tors, the sampled risk set will be a subset of the
risk set defined by the failure time and any match-
ing factors. For instance, in the Garabrant, Held,
Langholz and Bernstein (1988) study, the matching
factors were year of birth, gender and race, and the
risk set, from which the four controls were selected,
consisted of subjects who matched the case on these
factors.

3. STATISTICAL METHODS

The approach which organizes cohort data by risk
sets (see Figure 1) leads to a data set which looks
just like a matched case-control study (Miettinen,
1969; Breslow and Day, 1987). As described in Cox’s
landmark 1972 paper (Cox, 1972), this motivates
the use of the conditional logistic likelihood for the
analysis of such data. The contribution from a case-
control set is the conditional probability that the ob-
served case is diseased given that one of the subjects
in the case-control set is diseased. With pk the un-
conditional probability that subject k becomes dis-
eased, this probability is given by

pcase

/ ∑
case−control set

pk:(1)

The conditional logistic likelihood is now formed by
taking products of the factors (1) over all matched
sets. Applying this idea to cohort data, let the in-
cidence of disease depend on a vector of covariate
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history summaries z�t� and have a proportional haz-
ards form

λ�ty z�t�� = λ0�t�r�z�t�yβ0�;(2)

where r�zyβ0� is the relative risk of disease for an
individual with covariates z and r�0yβ� = 1, so
λ0�t� is the rate of disease in subjects with z = 0.
Now consider a single risk set as in Figure 1. The
“instantaneous probability” of failure for subject k
in the risk set formed at failure time T is pk =
λ�T;Zk�T��dt, where Zk�t� is the covariate of indi-
vidual k. Cancelling the common factor λ0�T� yields
a contribution to the conditional logistic likelihood
of the form

rcase

/ ∑
k∈R

rk;(3)

where R is the “case-control set” (all risk set mem-
bers) and rk is the relative risk associated with the
covariate history for subject k at time T.

The construction of a conditional logistic “likeli-
hood” by analogy to matched case-control studies is
heuristic since it is formed as though the matched
sets are independent, and this is clearly not the situ-
ation for the risk sets. As illustrated in Figure 1, the
same subjects may appear in multiple (many!) risk
sets. This quantity was eventually termed a “par-
tial likelihood” because it essentially leaves out the
information between the failure times (Cox, 1975;
Holford, 1976).

With the concept of risk sets as case-control sets,
the idea of sampling controls seemed quite natural,
again by analogy to case-control study methodology.
The efficiency of m−1 controls relative to an infinite
number of controls when there is a single covariate
which is not related to the risk of disease (β0 = 0)
is �m − 1�/m (Ury, 1975). Thus, it was natural to
conclude that a random sample of a relatively small
number of controls from the risk set would be an
efficient way to obtain a sample from the cohort.
This approach was first implemented for a cohort of
asbestos miners in Quebec (Liddell, McDonald and
Thomas, 1977). Four controls were randomly sam-
pled from each risk set. With this reduced set, it was
feasible for the investigators to extensively “clean”
the data as well as vastly reduce computing time,
relative to the full risk set Cox regression.

In the Appendix to Liddell, McDonald and
Thomas (1977), Thomas points out that there
are two heuristic approaches to the analysis of the
sampled data. The first is to use an unbiased esti-
mator of the denominator of the partial likelihood
for the full cohort; that is, weight the control rk’s
by �n− 1�/�m− 1� and rcase by 1. Although this ap-
proach seems natural, it leads to biased estimation

of the parameters. The second approach is based
on simply viewing the sample as a case-control
study and using the conditional logistic likelihood
as described above. With this method, the case
is weighted the same as the controls, so that the
denominator is

rcase +
∑

controls

rk =
∑

k∈R̃
rk;(4)

where R̃ is the sampled risk set (i.e., the case and
sampled controls). Thomas (correctly) employed the
latter in his analyses. Essentially, the problem with
the former is that the “inverse of the mean” does
not equal the “mean of the inverse.” The likelihood
based on the latter “unweighted” denominator (4)
was shown to have a partial likelihood interpreta-
tion in the same spirit as in the full cohort situation
(Oakes, 1981). Oakes’ proof is essentially formalized
in the counting process approach, which we will de-
scribe later. First, it is instructive to demonstrate
the validity of the unweighted likelihood using a
method from sampling theory.

3.1 Midzuno’s Procedure

In standard likelihood theory, the expectation of
the score—the first derivative of the log likelihood—
has expectation zero at the true parameter. That the
unweighted likelihood using denominator (4) has
this property is a consequence of Midzuno’s proce-
dure (Midzuno, 1952), a technique used to obtain an
unbiased estimator of the ratio of means. The score
contribution associated with (4) is given by

r′case

rcase
−
∑

R̃
r′krk∑

R̃
rk

;(5)

where r′ is the derivative of r with respect to β, and
R̃ is the sampled risk set. Since the expectation of
the full cohort score is zero, it is sufficient to show
that the expectation over sampling of the second
term is the full cohort value

∑
R r
′
krk/

∑
R rk.

Let �xi; yi�, i ∈ R = �1; : : : ; n�, be a set of val-
ues such that xi ≥ 0 with

∑
i∈R xi > 0. Let xR =

n−1∑
i∈R xi with yR similarly defined and suppose

that we wish to estimate θR = yR/xR using a sam-
ple of m of the n �x;y� pairs. With R̃ a random
set of indices, first note that if the m indices are
the result of simple random sampling, then, gener-
ally, E�θ

R̃
� 6= θR . Midzuno’s procedure gives a way

to obtain an unbiased estimator:

1. Sample an index according to the “x-size bi-
ased distribution,” that is, pick an index i
according to the probabilities xi/

∑
k∈R xk.

2. Sample m − 1 subjects randomly, without re-
placement from the n− 1 remaining indices.
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With R̃ the set of the resultingm sampled indices,
one can show that the estimator θ

R̃
is unbiased for

θR .
Applying Midzuno’s procedure to the score (5), let

xi = ri and yi = r′iri. The probability that subject i
is the case is given by (3), so Step 1 of the procedure
is satisfied by the occurrence of the case. The m −
1 randomly sampled controls satisfy Step 2. Thus,
the expectation over sampling of the score term is
just the full cohort score contribution so that the
expectation over cases is zero at the true parameter
β0.

3.2 Counting Process Approach

A formal treatment of risk set sampling is based
on specifying an appropriate intensity model. In
Andersen and Gill’s formulation of the Cox model
(Andersen and Gill, 1982), a counting process Ni�t�,
which “counts” failure occurrences for subject i, and
a corresponding intensity process λi�t� are associ-
ated with each subject in the cohort. In order to
accommodate sampling from the risk sets, define
the counting processes Ni; r�t� which record occur-
rences of the joint event that i fails and the set of
subjects r serves as the sampled risk set. The in-
tensity processes corresponding to Ni; r�t� take the
form of the product

λi; r�t� = λi�t� πt�r�i�;(6)

where πt�r�i� is the probability of choosing r as the
sampled risk set if subject i were to fail at time
t. This approach was described for simple random
sampling of controls (which we will henceforth call
“simple nested case-control sampling”) in Borgan
and Langholz (1993). Since m − 1 controls are ran-
domly sampled, without replacement, from the n−1
controls in the risk set at time t, πt�r�i� =

(
n−1
m−1

)−1

for subsets of the risk set of size m that contain
i. In the same spirit as the conditional likelihood
approach for the full cohort, the conditional proba-
bility that i fails and R̃ is picked as the sampled
risk set given that one of the k ∈ R̃ fails is

ri πt�R̃�i�∑
k∈R̃ rk πt�R̃�k�

= ri∑
k∈R̃ rk

;(7)

by cancelling the common factor
(
n−1
m−1

)−1
: Hence the

“partial likelihood” that results upon taking prod-
ucts of the above factors over all failure times is
the same as the case-control likelihood based on (4).
As mentioned in Section 3.1, that the expectation
of the score at the true parameter β0 is zero is a
consequence of Midzuno’s procedure providing an
unbiased ratio estimator. For establishing asymp-
totic properties of the maximum partial likelihood

estimator β̂, the counting process formulation pro-
vides a convenient framework. This connection has
been explored for the full cohort in Andersen and
Gill (1982) and in the sampling context in Gold-
stein and Langholz (1992) and Borgan, Goldstein
and Langholz (1995).

3.3 Other Risk Set Sampling Designs

The counting process formulation of simple
nested case-control sampling provided a probabilis-
tic model for formally establishing the properties
of the maximum partial likelihood estimator. How-
ever, this approach has much wider implications
than the limited goal of putting an established
sampling technique on a firm theoretical footing.
Other methods for sampling the risk set can be
accommodated by specifying appropriate sampling
probabilities πt�r�i�. This innovation, explored in
some detail in Borgan, Goldstein and Langholz
(1995), provides an analysis method for new sam-
pling designs where controls are sampled in a
“nonrepresentative” way. In particular, this has en-
abled our exploration of designs that are solutions
to the epidemiologic design problems described in
Section 5.

The general formulation in terms of given set
sampling probabilities πt�r�i� often simplifies be-
cause of cancellation of common terms; indeed, this
cancellation was noted when simplifying (7) for
nested case-control sampling. Thus, a likelihood
contribution from each sampled risk set is of the
form

πt�r�case� rcase∑
k∈R̃ πt�r�k� rk

= �Wr�case∑
k∈R̃�Wkrk�

;(8)

where the Wk are subject (and sampled risk set)
specific risk weights chosen to be “convenient” mul-
tiples of the πt�r�k� in the partial likelihood analy-
sis. As any multiple of the risk weights lead to the
same factor as above, it is often convenient to form
the canonical weights

W′k =
πt�r�k�∑
j∈r πt�r�j�

= Wk∑
j∈r Wj

;(9)

which are components in the estimators of absolute
risk described in the next section. The partial like-
lihood obtained by taking products of the factors (8)
over all failure times has the usual basic properties
of a likelihood, and standard conditional logistic re-
gression software used for the analysis of matched
case-control studies can be used for data analysis,
treating the W as risk weights or “offsets” in the
model.
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3.4 Risk Estimation

As the previous sections suggest, methods for the
estimation of the relative risk parameter β0 from
case-control studies have been studied extensively.
There has been much less attention to the problem
of estimating absolute risk, which are functionals of
the hazard λ. While relative risk is an important
measure for studying disease etiology, absolute risk
is important for public health planning and personal
risk counciling. Now, in the simple binomial situa-
tion, the estimator of the binomial probability is just
the number of cases divided by the total number in
the relevant population. Analogously, in order to es-
timate absolute risk from failure time data, “denom-
inator” information about the entire population at
risk (not just a sample) is required. Thus, absolute
risk cannot be estimated using only the data in a
case-control sample, supplemental information that
links the case-control study to the cohort from which
it is sampled is required (e.g., Benichou and Wach-
older, 1994; Benichou and Gail, 1995). For nested
case-control sampling, one approach uses overall co-
hort disease rates as the link between the sample
and the cohort (Benichou and Gail, 1995). Another
approach, which we will explore here, uses the num-
ber of subjects in each risk set to provide this link
(Breslow and Langholz, 1987; Borgan and Langholz,
1993). Appropriate methods for estimation of ab-
solute risk for the general risk set sampling de-
scribed in the last section are given in Borgan, Gold-
stein and Langholz (1995) and Langholz and Borgan
(1996).

Let z0 be a covariate history and r0 = r�z0yβ0�
be the relative risk associated with z0 according to
the model. The estimator we have proposed of the
cause-specific cumulative hazard (the “risk” for rare
diseases) associated with that history between times
s and t, that is, an estimator of

∫ t
s
λ0�u�r�z0�u�yβ0�du;(10)

is a generalization of the Breslow estimator for full
cohort data (see discussion in Cox, 1972). With n the
number at risk, r̂k = r�zk; β̂� the relative risk for
individual k predicted using β̂ and W′k as defined in
(9), the estimator of (10) is the sum of contributions
of the form

r̂ 0
/
n
∑

k∈R̃
�W′kr̂k�(11)

over all failure times between s and t. Note that
by (9), for the full cohort W′k = 1/n, which can-
cels the leading n in the denominator of (11). Set-
ting z0�t� ≡ 0, we have the usual Breslow estima-
tor of the baseline cumulative hazard. The estima-

tor just described is “almost unbiased” in the same
sense as the Breslow estimator (Andersen, Borgan,
Gill and Keiding, 1992, Section VII.2.2). Langholz
and Borgan (1996) provide a relatively simple vari-
ance estimator which takes the estimation of β0 into
account.

4. COLORADO PLATEAU URANIUM
MINERS COHORT

In this section, we first describe the data set we
will use to illustrate some of the methods and then
give the results from fitting a series of models using
the full cohort and simple nested case-control sam-
ples. These preliminary analyses will be compared
to those based on new risk set sampling designs that
we will investigate in Section 5 and are proposed as
solutions to specific epidemiologic cohort sampling
problems.

4.1 Description of the Data

The Colorado Plateau uranium miners cohort
data were collected to study the effects of radon
exposure and smoking on the rates of lung cancer
and has been described in detail in earlier publi-
cations (e.g., Lundin, Wagoner and Archer, 1971;
Hornung and Meinhardt, 1987; Lubin et al., 1994).
The cohort consists of 3347 Caucasian male min-
ers who worked underground at least one month
in the uranium mines of the four-state Colorado
Plateau area and were examined at least once by
Public Health Service physicians between 1950 and
1960. These miners were traced for mortality out-
comes through December 31, 1982, by which time
258 lung cancer deaths had occurred. Entry time
into the cohort was the date of first examination or
first underground work, whichever came later. Exit
time was the date at death, December 31, 1982 if
known alive at that time or date last known to be
alive if lost to follow-up. Subjects who died of lung
cancer were taken to be the failures and all others
were censored at their exit times.

Job histories were obtained from each of the min-
ing companies and combined with available data on
annual mine radon levels to estimate each miner’s
occupational annual mine exposures. A smoking his-
tory was taken at the first examination and up-
dated with each subsequent exam. The data avail-
able included the age of starting and quitting smok-
ing and the number of packs of cigarettes smoked
per day. Thus, for any age on study, it is possible to
compute summary measures of radon and smoking
exposures.

Because smoking and radon information are
available for all cohort members, we will be able to
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compare the results obtained when sampling the
cohort to those obtained using the full cohort.

4.2 Models

In previously published analyses and those used
to illustrate the methods here, we consider age as
the basic time scale. There has been a well known
secular trend in lung cancer rates in the general
United States population, so calendar time was
treated as a matching factor (Section 2) with lev-
els defined as the six five-year periods 1950–1954,
1955–1959, : : : , 1975–1979 and 1980–1982. This
matching factor is time dependent in that a sub-
ject will change from one matching level to another
with age. Thus, the intensity model assumes calen-
dar period-specific baseline hazards, an extension
of model (2), where λ0 is replaced by λc, where c is
the calendar period.

Radon and smoking data were summarized into
simple cumulative dose measures. Since lung can-
cer victims survive about two years after being
diagnosed, and exposures after diagnosis have no
effect on the course of the disease, exposures are
cumulated only up to two years prior to the case’s
age of death. [As our emphasis here is on sampling
methods, this summary of exposures was chosen
for its simplicity, but is not the most realistic or
best fitting summary. See Whittemore and McMil-
lan (1983), Thomas, Pogoda, Langholz and Mack
(1994) and Lubin et al. (1994) for more realistic
exposure models.] Thus, we consider as covari-
ates Z�t� = �R�t�; S�t��, where R�t� is cumulative
radon exposure measured in working level months
(WLM) up to two years prior to age t, and S�t� is
cumulative smoking in number of packs smoked up
to two years prior to age t.

For example, consider a case who dies at age 54.2
in 1964. The risk set for this case consists of all
those who are alive and on study at age 54.2 and
reach that age during 1960–1964. Furthermore, the
covariate Z�54:2� is computed as cumulative radon
and smoking up to age 52.2.

We considered four models of the relative risk as
a function of radon and smoking:
Radon:

r�β;Z�t�� = 1+ βRR�t�y(12)

Smoking:

r�β;Z�t�� = 1+ βSS�t�y(13)

Radon, smoking:

r�β;Z�t�� = �1+ βRR�t���1+ βSS�t��y(14)

Interaction:

r�β;Z�t�� = �1+ βRR�t���1+ βSS�t��
· exp�βRSR�t�S�t��:

(15)

The reasons for choosing these models for analysis
are described in detail in Thomas, Pogoda, Langholz
and Mack (1994).

4.3 Full Cohort Analysis

The full cohort column of Table 1 gives the results
of fitting the four models (12)–(15) using the entire
risk sets, that is, the full cohort Cox partial likeli-
hood analysis. Fits of models (12) and (13) revealed
strong univariate associations between radon and
smoking and lung cancer mortality rates. There
is not much difference between the univariate
estimates of the effect of these exposures after ad-
justment for each other, indicating that there is
little correlation between the two exposures. From
model (14), (radon-adjusted) smoking excess rela-
tive risk is βS = 0:17 per 1000 packs of cigarettes
and the (smoking-adjusted) radon excess relative
risk is βR = 0:40 per 100 WLMs. From the negative
estimated interaction parameter βRS from model
(15), there is evidence of effect modification between
radon and smoking (Wald test = −0:68/0:27 = −2:5,
two-sided p-value = 0:01) with the joint effect of
the exposures somewhat less than predicted by the
main effects.

4.4 Simple Nested Case-Control Sample Analysis

Simple nested case-control samples with one and
three controls were drawn from the risk set estab-
lished by the case’s failure time and five-year cal-
endar period at death. This resulted in samples of
478 and 837 distinct subjects or about 14 and 25%
of the cohort for the 1:1 and 1:3 samples, respec-
tively. [Because subjects can be sampled as controls
in multiple risk sets and failures can serve as con-
trols in risk sets prior to their failure times (Lubin
and Gail, 1984), the number of distinct subjects will
be somewhat less than the appropriate multiple of
258, the number of failures.] The results of the anal-
yses of these data sets are given in the third and
fourth columns of Table 1. Qualitatively, the param-
eter estimates are similar to those obtained by the
full cohort analysis. Note that the standard errors
for the 1:1 random sample are about double those of
the full cohort for both the radon and smoking vari-
ables. If there were no effect of these exposures, by
the “�m− 1�/m” relative efficiency rule, these stan-
dard errors for the 1:1 sample (m = 2) would be
anticipated to be about 1:4 ≈

√
2 that of the full co-
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Table 1
Parameter estimates �standard errors� for radon and smoking models using all controls, that is, the full

cohort, and random and counter-matched sampling of controls from the risk sets

Random sampling Counter-matching
Full Hybrid

Modela cohort 1:1 1:3 1:1 1:3 1:1:1

Univariate models
Radon �βR�b 0.36 (0.10) 0.41 (0.19) 0.41 (0.15) 0.33 (0.11) 0.36 (0.11) 0.35 (0.11)
Smoking �βS�c 0.16 (0.05) 0.18 (0.07) 0.20 (0.06) 0.37 (0.15) 0.23 (0.08) 0.19 (0.07)

Adjusted modeld

Radon �βR� 0.38 (0.11) 0.42 (0.20) 0.43 (0.16) 0.39 (0.14) 0.41 (0.13) 0.44 (0.16)
Smoking �βS� 0.17 (0.05) 0.23 (0.10) 0.20 (0.07) 0.25 (0.10) 0.19 (0.07) 0.23 (0.09)

Interaction modele

Radon �βR� 0.67 (0.27) 0.51 (0.29) 0.53 (0.24) 0.54 (0.28) 0.50 (0.21) 0.62 (0.30)
Smoking �βS� 0.24 (0.08) 0.25 (0.12) 0.22 (0.08) 0.30 (0.13) 0.22 (0.079) 0.29 (0.11)
Interaction �βRS� −0.68 (0.27) −0.41 (0.70) −0.41 (0.42) −0.53 (0.46) −0.31 (0.36) −0.53 (0.42)

Number of
distinct subjects 3347 478 837 473 765 670

aRadon slopes given as per 100 WLM. Smoking slopes given as per 1000 cumulative packs of cigarettes.
Interaction slopes given as per 108 cumulative WLM∗packs.
bUnivariate radon: r�β;Z�t�� = 1+ βRR�t�.
cUnivariate smoking: r�β;Z�t�� = 1+ βSS�t�.
dAdjusted model: r�β;Z�t�� = �1+ βRR�t���1+ βSS�t��.
eInteraction model: r�β;Z�t�� = �1+ βRR�t���1+ βSS�t�� exp�βRSR�t�S�t��.

hort. With the rather strong effects observed here,
the standard errors are somewhat larger, as would
be expected based on large sample investigations of
this question in some particular situations (Bres-
low and Patton, 1979; Breslow, Lubin, Marek and
Langholz, 1983; Goldstein and Langholz, 1992). The
1:3 sample yields smaller standard errors, but they
are still quite a bit larger than those obtained by
the full cohort analysis.

5. SOME SPECIFIC PROBLEMS

In this section, we consider a number of study
design and analysis problems that we have encoun-
tered in our work with epidemiologic data, and show
how our sampling methods provide solutions.

Problem 1. Informative sampling based on ex-
posure information. Suppose that researchers have
assembled a cohort and have collected some
exposure-related information for all (or, at least
most) of the subjects. It is desired to collect fur-
ther information on a sample of the cohort, perhaps
more precise exposure measurements, confounder
information or information on other potential expo-
sures. As an example that we will use throughout
this section, suppose that only radon exposure in-
formation had been collected for Colorado Plateau
uranium miners and smoking histories were to be
obtained on a sample to assess the role of smoking
as a confounder or effect modifier of radon exposure

on lung cancer rates. Random sampling of controls
from the risk sets is always a possible design, but
it seems wasteful of the exposure information al-
ready available on cohort members; the efficiency
for estimation of exposure parameters would be the
same as if exposure data had been collected only for
the sample. Intuitively, a sampling design that in-
creases the variability in exposure values over that
of random sampling would be more efficient. This is
the principle behind counter-matching, an exposure
stratified sampling method developed for this sit-
uation (Langholz and Borgan, 1995; Langholz and
Clayton, 1994). To get a feel for the design and the
method of analysis, consider the simple case of a
dichotomous exposure. In the 1:1 counter-matching
design, a control is randomly sampled from those
in the risk set that have exposure status opposite
of that of the case. (Note that this is the opposite of
what is done in matching, as the name indicates.)
With n0 and n1 the number of unexposed and ex-
posed subjects in the risk set, π�r�j� is n−1

0 or n−1
1

if j is exposed or unexposed, respectively, for expo-
sure discordant sets r. This leads to convenient risk
weights Wj = n0 or n1 in (8) for j unexposed or ex-
posed; a sampled subject’s relative risk is weighted
by the number in that subject’s exposure group. It is
easy to show that if exposure is the only variable in
the model, the counter-matching partial likelihood
is proportional to the full cohort partial likelihood.
Thus, counter-matching brings the marginal full
cohort exposure information into the sample.
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The general form of the design is defined by the
number of “sampling strata” L and the number to
be selected from each sampling stratum ml. The
sampled risk set is formed by randomly sampling
ml controls from the nl subjects in stratum l except
for the case’s sampling stratum where ml − 1 con-
trols are sampled. The appropriate risk weights to
be used in the analysis are nl/ml for each subject in
sampling stratum l. The choice of L and ml will de-
pend on the power requirements given assumptions
about the information to be collected in the sam-
ple and data constraints for the particular problem.
We explore these issues in four particular situations
where exposure or exposure-related information is
available on the full cohort. We also illustrate how
to implement the counter-matching design using the
Colorado Plateau uranium miners data. This high-
lights some of the subtleties that arise in applica-
tions including counter-matching on a continuous
exposure, counter-matching within matching factor
levels and the use of time-dependent sampling stra-
tum indicators as well as time-dependent definitions
of the sampling strata.

Problem 1.1. A crude exposure surrogate is
available on everyone and a more detailed exposure
variable is to be collected on a subset. The goal is to
assess the effect of the detailed exposure variable.

Suppose that surrogate informationZ is available
for all cohort members and true measurement infor-
mation X will be collected on a sample. By calling
Z a surrogate measure for X, we mean that Z is
correlated to X, but, given X, Z contains no addi-
tional information about the rate of disease, that is,
the intensity for disease depends only on X through
the hazard

λ�t� = λ0�t� exp�βXX�:
For instance, let Z and X be dichotomous and

consider sampling a single control for each case.
Now, if controls are randomly sampled, case-control
pairs are informative only if the control has X sta-
tus opposite that of the case; if both case and con-
trol have identical X, then the partial likelihood
contribution from this set is a constant factor (does
not depend on βX) and the pair is noninformative.
Intuitively, since Z and X are correlated, select-
ing controls that have Z status opposite the case
should result in more X discordant, that is, infor-
mative, pairs than what would have resulted by a
simple random sampling of controls. This is pre-
cisely what 1:1 counter-matching on the surrogate
Z accomplishes. For each case, a control is randomly
sampled from those in the risk set with Z value op-

posite that of the case. True exposure information
X is then collected on this counter-matched sam-
ple. In the analysis, the risk weights are simply the
number of subjects in the risk set with the same Z
status as the subject. (While the 1:1 design requires
that Z be dichotomous, X is assumed dichotomous
for illustration only. There are no restrictions on the
form of X nor how it is used in the model.)

Asymptotic relative efficiency results. The im-
provement in efficiency of counter-matching over
random sampling naturally depends upon the ac-
curacy of the surrogate in predicting the true
value. Continuing with the 1:1 counter-matching
situation, let η be the sensitivity and γ be the speci-
ficity of Z for X, and consider the situation where
βX = 0. The asymptotic variance formulae given
in Langholz and Borgan (1995) yields the asymp-
totic relative efficiency (ARE), relative to 1:1 simple
nested case-control sampling, of

ARE = 2��1− η��1− γ� + ηγ�:(16)

Further, the full cohort has efficiency 2 relative to
the simple 1:1 design. Now if the surrogate is an
accurate measure of the true, η and γ will both be
close to 1 so that ARE ≈ 2, near full cohort efficiency.
Moreover, if the surrogate is a completely “inaccu-
rate” measure of the true in the sense that η and γ
are close to zero, we will again approach full cohort
efficiency, as discordance in the two surrogate mea-
sures, say with values �0;1�, will again in this case
lead to discordance in the true measures, however,
with values �1;0�.

If, on the other hand, the surrogate and the true
measure are “unrelated,” in the sense that η and
γ are close to 1/2, then ARE ≈ 1, and there is,
quite reasonably, no gain in efficiency by counter-
matching. In the worst case, Z and X are indepen-
dent. In this case, η = 1 − γ = pr�Z = 1�, so that
ARE = 4η�1 − η� ≤ 1 since 0 ≤ η ≤ 1 and only
equals 1 when pr�Z = 1� = 1/2.

While the calculations under βX = 0 are enlight-
ening in terms of the general behavior of the relative
efficiency of the two sampling designs, realistically,
most substudies will be undertaken to investigate
exposures that are associated with the disease. Fur-
ther calculations under the above paradigm show
that the efficiency of counter-matching increases
with the strength of the association and the rar-
ity of the X (Langholz and Borgan, 1995; Langholz
and Clayton, 1994).

Colorado Plateau uranium miners cohort. An is-
sue directly related to counter-matching on a surro-
gate measure of exposure is how to define sampling
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strata (a discrete “surrogate” measure for radon ex-
posure) from the continuous radon exposure vari-
able R�t� that retains as much of the full cohort
information about the radon–lung cancer effect as
possible. The basic strategy is to form “grouped”
radon exposure levels and counter-match based on
these, but how to best form these groupings is not
obvious. Two solutions to this problem, based on the
intuition that it would be desirable to have approx-
imately an equal number of cases in each of the
sampling strata, are given in Langholz and Bor-
gan (1995). We illustrate the “empirical distribu-
tion” approach here, where the sampling strata are
formed using cutpoints at the quantiles of the em-
pirical distribution of case radon exposures. Since
the distribution of radon exposure of uranium min-
ers changes with age, with older cases tending to
have received lower radon exposures than younger
cases (see the second and third columns of Table 2),
the cutpoints were made to depend on whether the
case’s age at death was less than or greater than
55. For 1:1 counter-matching, the medians of the
exposure distributions were used to form the low
and high exposure sampling strata. Thus, from Ta-
ble 2, a case who was age 53 with 1200 WLM is
“low” exposure and is counter-matched to a control
randomly sampled from the risk set with “high” ex-
posure, that is, more than 1700 WLM. On the other
hand, a case aged 65 with a 1200 WLM exposure is
in the “high” exposure sampling stratum and would
be counter-matched to a control from the “low” ex-
posure sampling stratum, that is, less than 1000
WLM. This resulted in a sampled data set of 473
distinct subjects, close to the 478 for simple random
sampling. For 1:3 counter-matching, the quartiles
of the case radon exposure distributions given in
Table 2 were used as cutpoints to define four sam-
pling strata. Each case is counter-matched to three
controls, one randomly sampled from each sampling
stratum other than the case’s. This resulted in a
sampled set of 765, somewhat less than the 837 in
the 1:3 simple data set. This is because the number
of subjects in the highest exposure sampling stra-
tum is relatively small and these subjects appear in

Table 2
Quartiles of cumulative radon �WLM� distributions for lung

cancer cases and for the risk sets by age group

Case distribution Risk set distribution

Age < 55 Age ≥ 55 Age < 55 Age ≥ 55

25% 750 500 150 175
50% 1700 1000 400 450
75% 2500 2000 950 1100

multiple sampled risk sets more often than would
be likely in random sampling (Langholz and Bor-
gan, 1995).

For comparison, we used the distribution of all
subjects in the risk set as the basis for forming the
sampling strata. If this was done for each risk set,
one would simply use the empirical distribution of
radon exposure at that failure time for all subjects
in the risk set. In order to get the appropriate distri-
bution over age groups, we “pooled” the risk sets and
formed the empirical distribution of R�t� on these
values. The last two columns of Table 2 give the
quartiles of this distribution separately for risk sets
associated with ages (i.e., the age of the case) up
to 55 and those with ages greater than 55. As with
the cutpoints based on the case distribution, a 1:1
counter-matched sample was chosen by randomly
sampling a control from risk set members on the
opposite side of the median of the population dis-
tribution. A 1:3 counter-matched sample was based
on the quartiles. We note that, while the sampling
of controls uses sampling strata defined using cut-
points of the radon exposure distribution, the sub-
ject’s actual continuous radon exposure values are
used in the analysis. As with the simple nested case-
control samples (Section 4.4), the counter-matched
controls were sampled from risk sets determined by
the age and calendar period of death of the case.

The results of the analyses using the sampling
strata based on the case distribution of radon ex-
posure are given in the first row, columns 5 and 6,
of Table 1 (Univariate model: Radon). Comparing
the standard errors of the full cohort, simple nested
case-control and counter-matching estimates, it is
clear that little radon information is lost in the
counter-matched sample relative to the full co-
hort and that the estimates are substantially more
precise than simple nested case-control sampling.
The estimates and standard errors from counter-
matched samples based on the risk set distributions
were 0.45 (0.17) and 0.40 (0.12) for the 1:1 and 1:3
designs, respectively. These are to be compared
with the corresponding standard errors (given in
Table 1) using the case distribution to form the
sampling strata of 0.11 and 0.11. These indicate
that basing the cutpoints on the case distribution
is the better strategy.

This investigation suggests that sampling strata
based on a surrogate measure of exposure should be
constructed with the goal of splitting the case dis-
tribution of the true exposure into as evenly divided
categories as possible.

Problem 1.2. Exposure data are available on ev-
eryone, and confounders are to be collected on a sub-
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set. The goal is to assess the effect of exposure after
controlling for the confounder.

Let Z1�t� represent the exposure and Z2�t� the
confounder and consider the intensity model

λ�t� = λ0�t� exp�β1Z1�t� + β2Z2�t��:
We are interested in the precision of β̂1 in this
model. Since counter-matching on Z1 (or a grouped
summary of Z1) brings the marginal information
about the exposure into the sample, it is well suited
as a sampling design in this situation. Thus, we
propose a design where, if necessary, Z1 is sum-
marized into sampling strata categories and a
counter-matched sample is selected based on these
sampling strata. The Z2 confounder information is
then collected for the counter-matched sample.

Asymptotic relative efficiency results. Let Z1�t�
and Z2�t� be dichotomous with a joint distribu-
tion, conditional on being at risk, constant over
time. In this situation, the asymptotic variance
formulas for simple nested case-control sampling
and counter-matching are relatively simple and
are given in the Appendix of Langholz and Borgan
(1995). The asymptotic relative efficiency for esti-
mation of β̂1 of a Z1 counter-matched sample with
a single control (1:1 counter-matched) compared to
a simple nested case-control sample with a single
control (1:1 simple) is given in the third column of
Table 3. Counter-matching clearly results in large
gains in efficiency, especially when the relative risk
is “away from the null.” Also given in the fourth
column of Table 3 are the AREs for the estima-
tion of the confounder effect β̂2 after controlling
for the exposure Z1. Apparently, low efficiency for
estimation of β2 is the “price” one pays for high
efficiency for the estimation of β1. Since Z2 is a con-
founder, precise estimation of β2 is less important,
so counter-matching has focussed the efficiency to
where it is needed.

Colorado Plateau uranium miners cohort. Sup-
pose the goal of our investigation is to assess the
effect of radon (available on the full cohort) after
adjusting for the confounding effect of smoking (for
illustration assumed available only on the counter-
matched sample). We used the case distribution
based 1:1 and 1:3 radon counter-matched samples
of Problem 1.1 and fitted the adjusted model (14).
The estimated regression parameters and stan-
dard errors from fitting the model for the 1:1 and
1:3 counter-matched samples are given in the fifth
and sixth columns (“Adjusted model” rows) of Ta-
ble 1. Examination of these estimates and standard
errors indicates that the counter-matched sample

Table 3
Asymptotic relative efficiencies for the 1:1 counter-matched de-
sign and counter-matching with an additional randomly sampled
sampled control (1:1:1 hybrid design) compared to 1:1 simple for
pr�Z1 = 1� = 0:05, pr�Z2 = 1� = 0:3 by the relative risk of Z2
�eβ2 �, and the odds ratio θ = pr�Z1 = 1;Z2 = 1�pr�Z1 = 0;Z2 =

0�/pr�Z1 = 1;Z2 = 0�pr�Z1 = 0;Z2 = 1� between Z1 and Z2

1:1 counter-matched 1:1:1 hybrid
vs 1:1 simple vs 1:1 simple

eβ2 θ β̂1 β̂2 β̂3 β̂1 β̂2 β̂3

(A) exp�β1� = 1
0.2 0.2 1.83 0.26 1.26 2.37 1.05 1.35
0.2 1.0 2.00 0.26 1.08 2.28 1.05 1.39
0.2 5.0 1.99 0.25 0.85 2.00 1.07 1.54
1.0 0.2 1.72 0.13 1.43 1.98 1.02 1.87
1.0 1.0 2.00 0.19 1.00 2.00 1.05 1.82
1.0 5.0 1.54 0.20 0.95 1.94 1.05 1.81
5.0 0.2 1.97 0.15 1.49 1.98 1.07 2.65
5.0 1.0 2.00 0.24 1.15 2.48 1.13 2.04
5.0 5.0 1.50 0.28 1.30 2.75 1.15 1.72

(B) exp�β1� = 4
0.2 0.2 4.06 0.70 1.90 4.86 1.22 2.02
0.2 1.0 4.20 0.71 1.71 4.60 1.27 2.05
0.2 5.0 3.63 0.70 1.52 3.71 1.35 2.33
1.0 0.2 3.75 0.44 2.92 4.15 1.18 3.59
1.0 1.0 4.35 0.62 2.09 4.35 1.32 3.21
1.0 5.0 3.41 0.65 2.00 3.92 1.34 3.16
5.0 0.2 3.46 0.43 3.27 3.52 1.30 4.86
5.0 1.0 4.07 0.69 2.36 4.62 1.49 3.49
5.0 5.0 3.47 0.80 2.40 5.02 1.55 2.91

Based on the model λ�t� = λ0�t� exp�β1Z1 + β2Z2�. β3 is the
parameter for the interaction term Z1 Z2.

performs well; βR appears to be substantially bet-
ter estimated by the counter-matched samples. The
difference in precision for the estimation of βS is
not as great as might have been expected based on
the relative efficiency results, perhaps due to the
commonness of smoking in the cohort and the fact
that it is relatively uncorrelated to radon.

Problem 1.3. Exposure data are available on ev-
eryone, and another covariate is collected on the
sample. One goal is to investigate the interaction
between the exposure and the other covariate.

Let Z1�t� represent the exposure, available on all
cohort members, and let Z2�t� be a covariate to be
collected on the sample. In addition to exploring the
role of Z2 as a confounder (Problem 1.2), suppose
that another goal is to assess the extent to which the
relative risk associated with Z1 varies with Z2; that
is, we are interested in the precision for estimating
the interaction parameter β3 in the model

λ�t� = λ0�t� exp�β1Z1�t�+β2Z2�t�+β3Z1�t�Z2�t��:
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Now, if the only goal was to assess interaction, then
matching on Z1 and randomly sampling from the
Z1 homogeneous risk sets is probably the most ef-
ficient way to use the full cohort exposure infor-
mation to sample from the cohort. However, such
matching precludes the estimation of β1 and hence
the main effect of Z1, so that the confounding ques-
tion could not be addressed and, thus, the matched
design is not an acceptable alternative. Of course,
the simple nested case-control design is a candi-
date design. However, since we found in Problem 1.2
that counter-matching is preferable to nested case-
control sampling, counter-matching would be a bet-
ter design here if it is at least as efficient as simple
nested case-control sampling for assessing interac-
tion. We now compare the efficiency of these designs
for assessing interaction.

Asymptotic relative efficiency results. We con-
sider Z1 and Z2 dichotomous and investigate the
relative efficiency of β̂3 when eβ3 = 1. The results
are given in the fifth column of Table 3, part (A).
When eβ1 = 1, that is, when there is no associa-
tion of Z1 with disease, the results were mixed. In
most of the situations considered, counter-matching
was more efficient. However, in two cases, where
there was high correlation between Z1 and Z2
(odds ratio θ = pr�Z1 = 1;Z2 = 1�pr�Z1 = 0;Z2 =
0�/pr�Z1 = 1;Z2 = 0�pr�Z1 = 0;Z2 = 1� = 5:0),
the efficiency of counter-matching for the estima-
tion of β3 was less than that of nested case-control
sampling. In these two situations we examined the
proportion of subjects in each of the four Z1 by
Z2 “cells” and found that counter-matching on Z1
resulted in a smaller “smallest cell” than random
sampling. Thus, we conjecture that, at least when
there is no association between Z1 and disease,
the relative efficiency is driven by the smallest cell
and that counter-matching will be more efficient if
it results in a larger “smallest cell” than random
sampling.

When eβ1 = 4, counter-matching results in sub-
stantial gains in efficiency, see Table 3, part (B).
Thus, for most situations of practical interest, that
is, when exposure is associated with disease, these
results suggest that counter-matching will be more
efficient for the estimation of the interaction param-
eter than simple nested case-control sampling.

Colorado Plateau uranium miners cohort. Sup-
pose one now wants to investigate whether the ef-
fect of radon is smoking dependent; refer to the
interaction model parameter estimates in Table 1.
It appears that the parameters in the interaction
model (15) are somewhat more precisely estimated
by the counter-matched samples compared to the

simple nested case-control samples, but larger sam-
ples would be needed to detect the interaction seen
in the full cohort analysis.

Problem 1.4. Exposure 1 data are available on
everyone, and exposure 2 data are collected on the
sample. The primary goal is to investigate exposure
1, but a secondary goal is to investigate the main
effect of the exposure 2.

The exposure counter-matched design when con-
founder information is collected on the sample is
very efficient for estimation of exposure effect while
controlling for confounding (Problem 1.2). However,
as seen in the fourth column of Table 3, using the
model λ�t� = λ0�t� exp�β1Z1�t� + β2Z2�t��, the ef-
ficiency for estimating the effect of the β2 using
the Z1 counter-matched sample is very low. Since,
by definition, one isn’t interested in the main ef-
fect of confounders, this is acceptable. However, re-
searchers may wish to use the opportunity to as-
sess the role of other potential exposures and col-
lect this “secondary exposure” information for the
sampled subjects. Thus, for the purpose of this dis-
cussion, we will designate the exposure available on
the full cohort as “exposure 1” and the secondary ex-
posure information collected on the sample as “expo-
sure 2.” We see that in this terminology, estimation
of the main effect of “exposure 2” collected in the
counter-matched sample is subject to the same loss
of efficiency, relative to simple nested case-control
sampling as the confounder in Table 3.

This motivates the compromise counter-matching
with additional randomly sampled controls design,
where we counter-match on the exposure available
in the full cohort but pick additional randomly sam-
pled controls. This design, and the risk weights for
use in the partial likelihood, are discussed in Bor-
gan, Goldstein and Langholz (1995). For instance,
we can consider a cohort where individuals are clas-
sified into one of two exposure 1 levels, and use a
“1:1:1 design,” where we choose a single counter-
matched control of opposite exposure 1 level from
the case and then randomly sample another control.
Intuitively, the 1:1:1 design should have at least the
1:1 counter-matched efficiency for estimating expo-
sure 1 given confounders, and at least the 1:1 nested
case-control efficiency for estimating the main effect
of exposure 2. This can be shown analytically us-
ing the asymptotic relative efficiency formulae given
in Borgan, Goldstein and Langholz (1995) and is
worked out in Goldstein and Langholz (1995).

Asymptotic relative efficiency comparison. Let
the variables Z1 and Z2 represent dichotomous
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exposures 1 and 2, respectively. The efficiency
of the 1:1:1 design relative to 1:1 simple ran-
dom sampling was calculated under the model
λ�t� = λ0�t� exp�β1Z1�t� + β2Z2�t��. Exposure 1,
Z1, is known for all cohort members and Z2 is
collected on a sample. Analogous to the large sam-
ple calculations presented for counter-matching, we
computed the relative efficiencies for β̂1 and β̂2 in
the model given above, that is, the effects of Z1
and Z2 after adjusting for each other, and the in-
teraction parameter estimate β̂3 (when β3 = 0).
The last three columns of Table 3, labeled “1:1:1
Hybrid,” reflect the gains anticipated by the above
discussion, the hybrid design retains the high 1:1
counter-matching efficiency for estimation of β1
but also achieves at least the 1:1 simple random
sampling efficiency for estimation of β2. Thus, at
the “cost” of an additional control, the 1:1:1 de-
sign has the high counter-matching efficiency for
investigating exposure 1 and the randomly sam-
pled control “compensates” for the loss of efficiency
of counter-matching for investigation of exposure 2
collected in the sample.

Colorado Plateau uranium miners data. While it
is not likely that the main effect of smoking would
be of interest in a miners study, we give the re-
sults of the 1:1:1 design for the uranium miners
cohort for illustration. To do this we simply com-
bined the controls from the 1:1 nested case-control
sample and the 1:1 counter-matched sample. As
expected, the results, given in the last column of
Table 1, are a compromise between the two 1:1
samples. The univariate models illustrate this most
strikingly with the univariate radon estimate much
closer to the 1:1 counter-matched and the univari-
ate smoking estimate much closer to the 1:1 simple.
In almost all cases, the estimated 1:1:1 standard
errors are smaller than either of those of the 1:1
samples.

Problem 2. Risk estimation. The second problem
we discuss is one of analysis. We have described how
to estimate relative risk parameters β0 for sampled
risk set data and applied these techniques to simple
nested case-control and counter-matched samples
from the Colorado Plateau uranium miners cohort.
It is only recently, however, that methods for esti-
mation of absolute risk have been developed that
allow for continuous and time-dependent effects,
an important feature of this data. Given a model
for the relative risk, the methods outlined in Sec-
tion 3.4 provide a means to estimate absolute risk
of lung cancer and related measures from these
samples.

One complication for the uranium miners data is
that sampling of controls was restricted to the risk
set formed by the case’s five-year calendar period
of death. Here, it is desirable to “pool” over calen-
dar periods to obtain a single estimate for a given
age interval; technical details of this analysis are
described in Langholz and Borgan (1996). We com-
puted the predicted risk of lung cancer (10) for a
given radon exposure history with constant expo-
sure intensity described by the age at start of expo-
sure, duration of exposure, and total exposure based
on model (14). Smoking was described by the num-
ber of packs per day and we assumed that smok-
ing began at age 20 and continued throughout life
at the same level. These predicted risks of (with
95% confidence intervals) for various exposure his-
tories during ages 40–49, 50–59 and 60–69 are given
in Table 4 from the full cohort, 1:1 simple nested
case-control sample and 1:1 counter-matched sam-
ple. First, it is clear that radon and smoking vastly
increase the risk of lung cancer. The risk of lung can-
cer in miners who were exposed to 960 WLM over
30 years and were one pack a day smokers (expo-
sures that were quite typical) was between 10 and
20 times the predicted risk in non-radon-exposed
nonsmokers. [In spite of the simplicity of the model
(14), the predicted risks in non-radon-exposed non-
smokers based on this model are quite close to those
actually observed in groups of nonsmokers in the
general population (Freedman and Navidi, 1989).]

The sampled data sets produce estimates that
are reasonably close to those from the full cohort,
with wider confidence intervals than the full co-
hort, but not that much larger. This suggests that
the efficiency of the 1:1 samples for estimation of
risk is very good, an observation that has been con-
firmed by asymptotic relative efficiency calculations
(Ørnulf Borgan, personal communication).

Problem 3. Revisiting a case-control study to col-
lect more precise exposure information. Suppose
that researchers have conducted a nested (or a
population-based matched) case-control study and
have collected some exposure information on all the
subjects in the study. After an analysis of the ex-
posure and other covariate data, the researchers
find that it would be desirable to collect additional
information on a subset of the case-control sub-
jects, perhaps more precise exposure information
or potential confounder information. One could col-
lect the new information for the entire case-control
study group or, perhaps, for a random sample of
the matched sets. However, intuitively it is advan-
tageous to make use of the exposure information
available on the subjects in order to choose an
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Table 4
Risk �95% confidence interval�, in percent, of lung cancer death with specific radon and smoking histories
during ages 40–49, 50–59, and 60–69, based on the fitted values for 1:1 case-control data set with a

cumulative radon and smoking modela

Radon exposure

Age Duration Total dose Smokingb 1:1 Counter-
start (years) (WLM) (packs/day) Full cohort 1:1 Simple matched

Age interval 40–49
— — 0 0 0.24 (0.13–0.44) 0.16 (0.06–0.42) 0.19 (0.07–0.48)
— — 0 0.5 0.4 (0.2–0.7) 0.3 (0.2–0.7) 0.4 (0.2–0.8)
20 30 480 0.5 1.0 (0.7–1.4) 0.8 (0.6–1.2) 1.0 (0.7–1.4)
20 30 960 1.0 2.3 (1.7–3.1) 2.0 (1.4–2.9) 2.4 (1.7–3.3)

Age interval 50–59
— — 0 0 0.5 (0.3–1.0) 0.4 (0.2–1.0) 0.4 (0.2–1.1)
— — 0 0.5 1.1 (0.7–1.8) 1.0 (0.5–2.0) 1.0 (0.5–2.1)
20 30 480 0.5 3.2 (2.5–3.9) 2.9 (2.3–3.8) 3.0 (2.4–3.9)
20 30 960 1.0 7.9 (6.4–9.6) 7.7 (5.7–10.5) 8.0 (6.2–10.4)

Age interval 60–69
— — 0 0 0.7 (0.4–1.3) 0.6 (0.2–1.6) 0.6 (0.2–1.5)
— — 0 0.5 1.6 (1.0–2.7) 1.7 (0.9–3.5) 1.6 (0.8–3.4)
20 30 480 0.5 4.5 (3.5–5.9) 5.2 (3.9–7.0) 5.0 (3.8–6.6)
20 30 960 1.0 11.7 (9.2–15.0) 14.3 (10.1–20.2) 13.7 (10.1–18.6)

aBased on model (14).
bSmoking assumed to start at age 20 and continue throughout life.

informative sample. This problem is similar to
Problem 1 except that exposure information is only
available on a simple nested case-control sample in-
stead of the full cohort. Such a situation could occur
in population-based matched case-control studies
where investigators wish to collect additional infor-
mation on study subjects to test new hypotheses,
perhaps based on analysis of the case-control study
itself or based on hypotheses generated from other
sources. We will concentrate on a specific example
where investigators wished to make additional ex-
posure measurements on a sample of case-control
subjects.

The Swedish case-control study of electromag-
netic fields and cancer. In order to investigate the
possibility of an association between extremely low-
frequency electromagnetic fields (EMF) in the work
environment and the development of leukemia and
brain tumors, researchers at the National Insti-
tute of Occupational Health in Sweden undertook
a population-based case-control study (Floderus,
Persson, Stenlund, Wennberg and Knave, 1993).
The underlying cohort is the male population of
mid-Sweden between 1983–1987. Incident cases of
leukemia and brain tumors were identified through
the Swedish Cancer Registry and, based on physi-
cian, patient and close relative permission, were
enrolled as a case in the study. Controls were identi-

fied using the Swedish Census of 1980 from which,
among other information, the gender, date of birth
and address of all Swedish residents may be ob-
tained from computerized records. For each case,
two controls were randomly sampled from the risk
set formed by those who were born in the year
of birth of the case and were alive at the time of
the study. This resulted in a study group of 250
leukemia and 261 brain tumor cases each matched
to two controls. A questionnaire was administered
to each subject which asked about factors related to
these cancers. For instance, from the job histories,
it was determined whether the subject was likely
exposured to benzene, solvents generally or ioniz-
ing radiation. These were treated as confounders
in the analysis. Occupational EMF exposure was
estimated for the job performed for the longest pe-
riod during the 10 years prior to diagnosis of the
case. This involved taking gaussmeter measure-
ments at over 1000 workplaces where subjects in
this study group were employed. Using standard
case-control study analysis methods, the investiga-
tors found that there was an increasing trend in
risk of leukemia with increasing EMF exposure.

Investigators at the United States National In-
stitute of Occupational Safety and Health (NIOSH)
have proposed a biological mechanism of carcino-
genesis for EMF radiation and were interested in
testing this hypothesis using the Swedish case-
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control study group. However, a different EMF
measurement, correlated to that used in the origi-
nal study, is required. These researchers would like
to collect additional information on the minimum
number of subjects needed to determine, with some
certainty, if the new measure is a good predictor of
leukemia risk.

Two-stage designs. For our purposes, we consider
the original 1:2 matched case-control study as the
“first stage” sample from the cohort. The subjects
chosen for the NIOSH measurements substudy will
be referred to as the “second stage” sample. Further,
as in Problem 1.1, we consider the first stage sample
EMF measurements Z as a surrogate measure for
the second stage true measurement X. Thus, there
is no additional information on leukemia risk in Z
over that in X and the underlying model is

λ�t� = λ0�t� exp�βXX�:(17)

One obvious second stage sampling design would
be to randomly sample matched sets from the orig-
inal case-control study (design Ia). However, this
makes no use of the original EMF measurements.
Intuitively, the original EMF measurements could
be used to advantage in the second stage sampling
since matched sets which have large variation in Z
will tend to have large variation in X, that is, be
informative sets for assessing the effect of X. We
now explore a second stage sampling design (de-
sign IIa) that exploits this principle. While there
are many measures of variability one might con-
sider, we will use the information (negative second
derivative of the log partial likelihood) contribution
from the matched set based on an assumed haz-
ard model in Z as this should result in maximizing
the inverse of the variance of the estimated param-
eters. These considerations indicate that the second
stage sample consists of the ñ sets with the largest
information contributions based on the model with
Z. The number ñ will be based on the power de-
sired to detect effects of X or dictated by budgetary
constraints.

Designs Ia and IIa use both controls in the origi-
nal matched sets. As a further refinement, we also
consider randomly selecting a single control from
the two original controls and then sampling the re-
sulting 1:1 sets randomly (design Ib) or according
to the Z variability (design IIb). These designs are
equivalent to those that start with a first stage sam-
ple of 1:1 matched sets. For each of the four de-
signs, the true exposure X would then be obtained
for those in the second stage sample.

The analysis of the designs. It is not immediately
obvious how to apply our methods to these two-stage

designs. In particular, how do we account for the
sets that are not sampled? This may be done us-
ing a simple trick based on the observation that the
partial likelihood contribution (8) from single sub-
ject sampled risk sets, that is, those that consist of
only the case, is identically 1. Since they contribute
nothing to estimation of β0, they may be dropped
from the sample altogether. Thus, for the purpose
of developing an estimation method, we may char-
acterize these two-stage procedures by saying that
the sample consists of the included sets plus sets
that consist only of the case (the rejected sets). For
the designs we are considering here, π�r�i� is then
a distribution over sets r of size �r� = m and the
singleton set �i�.

Since each set is chosen with equal probability, it
is no surprise that the analysis of designs Ia and
Ib are based on the usual unweighted partial likeli-
hood (i.e., Wi = 1). Formally, with ρ the probability
of sampling a first stage set into the second stage
sample, the sampling distribution is given by

π�r�i� = ρ
(
n− 1
m− 1

)−1

I��r� =m; i ∈ r�

+ �1− ρ�I�r = �i��;
where �r� is the number of elements in r. So each
subject in an included set has the same π which
cancels out of the partial likelihood yielding the un-
weighted partial likelihood.

Not at all obvious, however, is that the partial
likelihoods for designs IIa and IIb are also un-
weighted. To see this, define Vr�β̂Z� to be the
information contribution from the set r computed
using a model for the surrogate measure Z and let
Ci�κ� be the number of sets r of size m in the full
risk set R containing i such that

Vr�β̂Z� > κ:(18)

Then the distribution over sets in the risk set for
the design where (1) m − 1 controls are randomly
sampled and (2) the set is included into the final
sample if (18) holds is given by

π�r�i� =
(
n− 1
m− 1

)−1

· I�Vr�β̂Z� > κ; i ∈ r; �r� =m�

+
[
1−Ci�t; κ�

(
n− 1
m− 1

)−1]
I�r = �i��:

(19)

Thus, for included sets, each member of the sam-
pled set has the same value for π yielding the
unweighted partial likelihood contribution. The
parameter κ is chosen based on the power require-
ments of the study.
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Table 5
Power of designs IIa and IIb (picking case-control sets based on Z variability) for rejecting the null
hypothesis H0: βX = 0, two sided α = 0:05, by the number of matched sets and the relative risks per

standard deviation in Z and X

(A) 1:2 matching: Design IIa
exp�βZ� exp�βX� 10(30)a 15(45) 20(60) 25(75) 30(90) 35(105) 40(120)

1.5 1.8 0.52 0.65 0.75 0.83 0.88 0.92 0.94
2.0 0.53 0.67 0.78 0.85 0.90 0.94 0.96
2.5 0.55 0.71 0.82 0.89 0.94 0.96 0.98

1.6 1.8 0.58 0.72 0.82 0.87 0.92 0.95 0.97
2.0 0.58 0.73 0.83 0.89 0.93 0.96 0.98
2.5 0.58 0.74 0.84 0.91 0.95 0.97 0.98

1.7 1.8 0.64 0.78 0.87 0.92 0.94 0.97 0.98
2.0 0.64 0.78 0.87 0.92 0.95 0.97 0.99
2.5 — 0.78 0.87 0.93 0.96 0.98 0.99

(B) 1:1 matching: Design IIb
exp�βZ� exp�βX� 20(40) 25(50) 30(60) 35(70) 40(80) 45(90) 50(100)

1.5 1.8 0.67 0.75 0.80 0.85 0.88 0.90 0.92
2.0 0.68 0.76 0.82 0.86 0.89 0.92 0.93
2.5 0.68 0.77 0.83 0.88 0.91 0.94 0.96

1.6 1.8 0.72 0.80 0.85 0.89 0.92 0.94 0.96
2.0 0.72 0.80 0.85 0.89 0.92 0.94 0.96
2.5 0.72 0.80 0.85 0.89 0.93 0.95 0.97

1.7 1.8 0.77 0.85 0.89 0.93 0.94 0.95 0.98
2.0 0.77 0.85 0.89 0.93 0.94 0.95 0.98

aNumbers in parentheses are the total number of subjects in the second stage sample.

We note that in order to choose a κ such that
the ñ most variable sets are selected makes κ data
dependent, and this feature is not easily accommo-
dated by the theory. However, we believe that set-
ting κ such that the expected number of selected
sets is ñ in the power and sample size calculation
will well approximate the behavior of the actual
design.

Power and sample size calculations. The asymp-
totic theory described in Borgan, Goldstein and
Langholz (1995) provides the tools for computing
second stage power and sample sizes; the details
are given in Goldstein and Langholz (1995). For the
EMF measures in the Swedish second stage study,
we assume that Z and X are mean and standard
deviation normalized and have a joint bivariate
normal distribution. With βZ the limiting value of
β̂Z under model (17), one can show that the cor-
relation between Z and X is βZ/βX (Xiang and
Langholz, 1995). Hence, power and sample size can
be parameterized in terms of surrogate and true
relative risks. Table 5 gives the power by sample
size for the new design for a few eβZ values near
the relative risk observed in the original Swedish
study of eβ̂Z = 1:6 and various eβX . For comparison,
the power when randomly sampling sets (designs
Ia and Ib) is given in Table 6. The savings by using
the new design can be substantial. For instance,

with eβZ = 1:6, in order to detect eβX = 2 with
90% power, approximately 45 randomly sampled
1:2 matched sets (135 subjects) are required (not
shown in table). To achieve the same power, the
large Z-variability design (design IIa) requires only
25 sets (75 subjects; Table 5, part (A)). Sampling
a single control from each set, then choosing large
Z-variabilty sets (design IIb) yields a slight benefit
compared to design IIa, but the difference in the to-
tal number of second stage subjects needed is small
(70 for 1:1 and 75 for 1:2).

6. DISCUSSION

We have illustrated that the model for risk set
sampling and the associated analysis methods pro-
vide a firm basis for developing designs that are
adapted to the goals of a study and the cost of col-
lecting the component pieces of information needed
to achieve those goals. Indeed, the conceptual frame-
work elucidated by the model creates an awareness
that new designs are possible. We stress, however,
that the methods do not provide a way to gener-
ate an “efficient” design given the goals and cir-
cumstances of the study. The counter-matching and
other new designs presented here were arrived at
after some trial and error. For the time being, de-
veloping the appropriate design for a given situation
is still an art. The development of new designs in-
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Table 6
Power of designs Ia and Ib �random sampling of case-control sets� for rejecting the null hypothesis
H0: βX = 0, two sided α = 0:05, by number of matched sets and relative risk per standard deviation

in X

(A) 1:2 matching: Design Ia
exp�βX� 10(30)a 15(45) 20(60) 25(75) 30(90) 35(105) 40(120)

1.8 0.28 0.39 0.49 0.58 0.66 0.73 0.78
2.0 0.34 0.48 0.59 0.69 0.77 0.83 0.87
2.5 0.46 0.62 0.74 0.83 0.89 0.93 0.96

(B) 1:1 matching: Design Ib
exp�βX� 20(40) 25(50) 30(60) 35(70) 40(80) 45(90) 50(100)

1.8 0.36 0.44 0.51 0.57 0.62 0.68 0.72
2.0 0.44 0.52 0.60 0.66 0.72 0.77 0.81
2.5 0.55 0.65 0.73 0.79 0.84 0.88 0.91

aNumbers in parentheses are the total number of subjects in the second stage sample.

cludes describing putative designs that seem likely
to meet the needs of a study in terms of the con-
trol sampling distribution π�r�i�, and choosing a
cost function based on the cost of the component
pieces of information and the variance of the pa-
rameters of interest. Various designs can then be
compared (to each other and to the full cohort de-
sign) through the use of the asymptotic variance
formulas. Often, insight into features of successful
design strategies comes from examination of a va-
riety of these candidate designs. As an example, we
consider a design that might be proposed as a so-
lution to Problem 1, where exposure is known for
the full cohort and confounder information is to be
gathered on a sample. We refer to the terminol-
ogy and notation used in describing the counter-
matching design and, for simplicity, assume that
exposure is dichotomized into two sampling strata.
The proposed method of sampling is to randomly
sample a single control from each sampling stra-
tum. Selecting controls in this way is appealing for
the same reason counter-matching is appealing in
that there will be increased variability in exposure
in the sampled risk set compared to a random sam-
pling of controls. Thus, the sampled risk set will
consist of three members, the case (who could be
exposed or unexposed) and two controls with op-
posite exposure status from each other. While at
first glance this design may seem quite similar to
counter-matching, it is fundamentally different in
that the composition of the sampled risk set, in
terms of the number of exposed and unexposed, is
completely determined by the case’s exposure sta-
tus. Thus, suppose that r = �1;2;3� with individu-
als 1 and 2 exposed and subject 3 unexposed. Now
π�r�1� = π�r�2� = �n0�n1 − 1��−1, where n0 and n1
are the number of unexposed and exposed in the

risk set, respectively. However, π�r�3� = 0 since sub-
jects 1 and 2 are both exposed and could not have
both been picked as controls for 3 under the given
sampling scheme. Thus, subject 3’s term in the par-
tial likelihood (8) is weighted by zero. Thus, in this
situation and generally, only the two subjects from
the same sampling stratum contribute to the par-
tial likelihood; clearly not an efficient use of expo-
sure information. The moral of this story is that the
structure of the sampled risk set should not “give
away” the identity of the case.

While we have focussed on risk set sampling
methods and the semi-parametric approach to anal-
ysis, we stress that other approaches may be better
suited to specific cohort sampling situations. Other
design options include the case-cohort (e.g., Kup-
per, McMichael and Spirtas, 1975; Prentice, 1986;
Self and Prentice, 1988) and “grouped time” (e.g.,
Mantel, 1973; Fears and Brown, 1986; Wild, 1991;
Weinberg and Wacholder, 1993) approaches. For in-
stance, if a single set of covariates is to be evaluated
for a large number of diseases, a case-cohort sam-
pling design is likely to be a better option than risk
set sampling. A grouped time approach may be con-
sidered when logistical considerations make control
selection on an individual basis difficult. While a
discussion of the relative merits and limitations of
these approaches is beyond the scope of this paper,
we note that risk set sampling is inherently bound
to a time scale and any matching factors. Further,
because partial likelihood is tied to the propor-
tional hazards model, models that are not of this
form currently cannot be easily fitted. [One notable
exception is the Aalen linear model (Borgan and
Langholz, 1995).] If these are limitations in a par-
ticular study, one of the other sampling approaches
may be more appropriate.



52 B. LANGHOLZ AND L. GOLDSTEIN

ACKNOWLEDGMENTS

This work was funded by National Institutes of
Cancer Grants CA42949 and CA65123 and Na-
tional Science Foundation Grants DMS-90-05833
and DMS-95-05075.

REFERENCES

Adelhardt, M., Møller Jensen, O. and Sand Hansen, H.
(1985). Cancer of the larynx, pharynx and oesophagus in
relation to alcohol and tobacco consumption among Danish
brewery workers. Danish Medical Bulletin 32 119–123.

Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model
for counting processes: A large sample study. Ann. Statist.
10 1100–1120.

Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1992).
Statistical Models Based on Counting Processes. Springer,
New York.

Benichou, J. and Gail, M. (1995). Methods of inference for es-
timates of absolute risk derived from population-based case-
control studies. Biometrics 51 182–194.

Benichou, J. and Wacholder, S. (1994). A comparison of
three approaches to estimate exposure-specific incidence
rates from population-based case-control data. Statistics in
Medicine 13 651–661.

Boice, J., Blettner, M., Kleinermam, R., Stovall, M. and
Moloney, W. (1987). Radiation dose and leukemia risk in
patients treated for cancer of the cervix. Journal of the Na-
tional Cancer Institute 79 1295–1311.

Borgan, Ø., Goldstein, L. and Langholz, B. (1995). Methods for
the analysis of sampled cohort data in the Cox proportional
hazards model. Ann. Statist. 23 1749–1778.

Borgan, Ø. and Langholz, B. (1993). Non-parametric estima-
tion of relative mortality from nested case-control studies.
Biometrics 49 593–602.

Borgan, Ø. and Langholz, B. (1997). Estimation of excess risk
from case-control data using Aalen’s linear regression model.
Biometrics. To appear.

Breslow, N. and Cain, K. (1988). Logistic regression for two
stage case-control data. Biometrika 75 11–20.

Breslow, N. and Langholz, B. (1987). Nonparametric estima-
tion of relative mortality functions. Journal of Chronic Dis-
eases 131 89S–99S.

Breslow, N. and Patton, J. (1979). Case-control analysis of co-
hort studies. In Energy and Health (N. Breslow and A. Whit-
temore, eds.), 226–242. SIAM, Philadelphia, PA.

Breslow, N. E. and Day, N. E. (1987). Statistical Methods in
Cancer Research. Volume II. The Design and Analysis of Co-
hort Studies. International Agency for Research on Cancer,
Lyon.

Breslow, N. E., Lubin, J. H., Marek, P. and Langholz, B.
(1983). Multiplicative models and cohort analysis. J. Amer.
Statist. Assoc. 78 1–12.

Clayton, D. and Hills, M. (1993). Statistical Models in Epidemi-
ology. Oxford Univ. Press.

Cox, D. R. (1972). Regression models and life-tables (with dis-
cussion). J. Roy. Statist. Soc. Ser. B 34 187–220.

Cox, D. R. (1975). Partial likelihood. Biometrika 62 269–276.
Fears, T. and Brown, C. (1986). Logistic regression methods for

retrospective case-control studies using complex sampling
procedures. Biometrics 42 955–960.

Floderus, B., Persson, T., Stenlund, C., Wennberg, Å. Ö. and
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