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LOCAL EXTREMES, RUNS, STRINGS AND MULTIRESOLUTION1

By P. L. Davies and A. Kovac

Universität Essen

The paper considers the problem of nonparametric regression with
emphasis on controlling the number of local extremes. Two methods, the
run method and the taut-string multiresolution method, are introduced and
analyzed on standard test beds. It is shown that the number and locations
of local extreme values are consistently estimated. Rates of convergence
are proved for both methods. The run method converges slowly but can
withstand blocks as well as a high proportion of isolated outliers. The rate
of convergence of the taut-string multiresolution method is almost optimal.
The method is extremely sensitive and can detect very low power peaks.

Section 1 contains an introduction with special reference to the number
of local extreme values. The run method is described in Section 2 and the
taut-string-multiresolution method in Section 3. Low power peaks are con-
sidered in Section 4. Section 5 contains a comparison with other methods
and Section 6 a short conclusion. The proofs are given in Section 7 and the
taut-string algorithm is described in the Appendix.

1. Introduction.

1.1. Approximating data and procedures. Consider a data set �ti� y�ti��,
i = 1� � � � � n in �0�1� × � and a family of nonparametric regression models

Y�t� = f�t� + ε�t�� 0 ≤ t ≤ 1�(1.1)

indexed by f and ε. We always assume that the ti are strictly ordered, 0 ≤
t1 < t2 < · · · < tn ≤ 1. Nonparametric regression is concerned with specify-
ing models, that is, specifying functions f and noise ε such that typical data
sets �ti�Y�ti��� i = 1� � � � � n generated under the model “look like” the given
data set �ti� y�ti��� i = 1� � � � � n [Donoho (1988); Davies (1995)]. Such models
will be regarded as adequate approximations to the data. They are obtained
by manipulating or, more formally, applying a functional to the data and so
defining a statistical procedure [Tukey (1993)]. Two such procedures, the run
procedure and the taut-string multiresolution procedure, are considered in
this paper. Both are based on a decomposition of the data of the form

y�ti� = fn�ti� + rn�ti��(1.2)

which is a special case of the general Tukey decomposition

Data = Signal+Noise�(1.3)
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In general Signal and Noise in (1.3) can be separated by assuming that the
signal is simple and the noise complex. We measure the simplicity of a func-
tion f on �0�1� by the number of local extreme values in the open interval
�0�1�. This is not the standard definition of simplicity which usually refers to
some form of smoothness. Complexity is related to randomness and we use
a stochastically based concept of noise defined in terms of independently dis-
tributed random variables. The two procedures we consider depend on two
different definitions of approximation to white noise. The first is based on
Bernoulli sequences and can be written as

max run�sgn�r1�t1��� � � � � sgn�rn�tn��� ≤ ρn�(1.4)

where sgn�rn�ti�� denotes the sign of the residual rn�ti� and ρn is some given
number. In other words, the residuals rn�ti� may be adequately approximated
by white noise or, more informally, look like white noise if (1.4) holds. The
default value we suggest is

ρn = 
log2 n− 1�47��
which is justified below. The second definition of approximation is based on
Gaussian white noise. Suppose for the moment that n = 2m is a power of 2.
The multiresolution coefficients wi�k are defined by

wj�k = 2−j/2
�k+1�2j∑
i=k2j+1

rn�ti��(1.5)

The residuals may be adequately approximated by Gaussian white noise if


wj�k
 ≤ σn

√
2�5 log n�(1.6)

where σn is some measure of the scale of the residuals rn�ti�. The default
functional we use is

σn = 1�48√
2

Median �
y�t2� − y�t1�
� � � � � 
y�tn� − y�tn−1�
��(1.7)

This is the same as hard thresholding for wavelets except that we use the
factor 2�5 instead of the usual 2. This is for the simple pragmatic reason that
2�5 seems to give better results.

The nonparametric regression procedures we study may now be formulated
as follows.

The run problem. Determine the smallest integer kn for which there
exists a function fn on �0�1� with kn local extreme values and such that the
residuals rn�ti� satisfy the run condition (1.4).

The multiresolution problem. Determine the smallest integer kn for
which there exists a function fn on �0�1� with kn local extreme values and
such that the residuals rn�ti� satisfy the multiresolution condition (1.6).
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Both problems are well defined for any given data set. We give a complete
solution of the run problem and make a laudable attempt at the multiresolu-
tion problem. The difficulty with the multiresolution problem is that of obtain-
ing suitable approximating functions fn with no unnecessary local extreme
values. The method we use is that of the taut string which will be described
below.

The approach given in this paper is neither Bayesian nor frequentist.
It makes no assumption that the data are generated by a random mecha-
nism. Indeed they may well be deterministic. We take the point of view that
models are approximations to data. In particular we make no reference to
“true” regression functions for real data as we do not think that these exist in
the sense that, say, elephants exist. By formulating the problem in terms of
approximation we avoid the embarrassment of using the word “true,” whether
in inverted commas or not. We refer to Davies (1995). Readers who do not like
this may forget this paragraph, move on to the next section and assume or
“know” that all data sets derive from some real existing “true but unknown”
regression function f, whatever that might mean.

1.2. Test beds. Statistical procedures can be evaluated using real data sets
and under the well-controlled conditions of a stochastic model or test bed.
Tukey uses the word “challenge” [Morgenthaler and Tukey (1991)] in this
context. The test beds we use are data sets generated by stochastic models of
the form

Y�ti� = f�ti� + ε�ti�� i = 1� � � � � n�(1.8)

where the ε�ti� are generally but not always taken to be independently and
identically distributed random variables. On test beds one can talk about esti-
mating functions. They have the advantage of allowing a direct comparison
of the function f used to generate the data with functions fn yielded by the
procedures. The comparisons are often visual; indeed these may be the most
convincing ones, but can include, as we shall, statements on consistency and
rates of convergence. Traditional confidence sets are also possible on test beds
but these are of a one-sided nature [Donoho (1988)]. For any given sample size
n it is possible to perturb f in such a way that it has an arbitrarily large num-
ber of local extremes without these being visible in the data. For this reason
it is not possible to give a finite upper bound for the number of local extreme
values of the function f. When considering rates of convergence we use the
supremum norm

�f− fn� = sup
0≤t≤1


f�t� − fn�t�
�

For certain test beds it can be shown that optimal rates of convergence exist.
We show that the run-based procedure has a slow rate of convergence, namely
O
( log log n

log n

)
while the taut-string-multiresolution procedure has the optimal

rate of convergence of O
(� log n

n
�1/3).
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1.3. Smoothness. Smoothness is not a consideration in this paper.
Techniques for smoothing under shape and deviation constraints have been
developed by Metzner (1997), Davies and Löwendick (1999) and Majidi (2000).

1.4. Previous work. Much work has been done on the problem of non-
parametric regression. Of the different approaches we mention kernel estima-
tion [Nadaraya (1964); Watson (1964)], penalized likelihood [Silverman (1985);
Green and Silverman (1994)], wavelets [Donoho, Johnstone, Kerkyacharian
and Picard (1995)] and local polynomials [Fan and Gijbels (1995, 1996)]. None
of these methods is directly concerned with local extremes but research has
been done which explicitly takes the shape of the regression function into
account. Mammen (1991) uses monotone least squares fits between local
extrema whilst Mammen and Thomas-Agnan (1998), Mammen, Marron,
Turlach and Wand (1998), Delecroix, Simioni and Thomas-Agnan (1995) and
Ramsay (1998) modify classical estimators such as spline smoothers and ker-
nel estimators to deal with monotonicity or convexity constraints. None of
these papers is directly concerned with estimating the number or the positions
of the local extreme values. Work in this direction has been done by Dümbgen
(1998b) who applies linear rank tests to locate local extrema. Hengartner and
Stark (1995) use the Kolmogoroff ball centred at the empirical distribution
function to obtain nonparametric confidence bounds for shape restricted den-
sities. Chaudhuri and Marron (1997) assess the significance of zero cross-
ings of derivatives and use their results to provide a graphical device for
displaying the significance the local extremes. Another approach is that of
mode testing. We refer to Good and Gaskins (1980), Silverman (1986), Harti-
gan and Hartigan (1985), Fisher, Mammen and Marron (1994). The positions
of the local extreme values are considered by Minotte (1997) using a proce-
dure which decides for each mode in a mode tree [Minotte and Scott (1993)]
whether it is significant or not. Mächler (1995) presents an approach using a
roughness penalty to penalize points of inflection. The taut string method was
used by Davies (1995) in the context of density estimation; there are connec-
tions with the excess mass approach of Müller and Sawitzki (1991). Further
work in this direction is due to Polonik (1995a, 1999). Other articles on shape
restricted densities and regression functions are Groeneboom (1985), Hartigan
(1987), Robertson (1967), Sager (1979, 1982, 1986) and Wegman (1970). Order
restricted inference is considered in Barlow, Bartholomew, Bremner and Brunk
(1972) and Robertson, Wright and Dykstra (1988). Finally in an article which
appeared whilst the present paper was under revision Polzehl and Spokoiny
(2000) give a method based on adaptive local means.

The run method [Davies (1995); Metzner (1997)] may be seen as the inver-
sion of the run test for testing the independence of a sequence of observations.
It yields the minimum number of local extremes consistent with the observa-
tions as well as approximation intervals for their location. Dümbgen (1998a,
1998b) inverts other tests and obtains better convergence rates on standard
test beds but at the cost of greater computational complexity.
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Taut strings are well understood in the context of fitting an isotone function.
The greatest convex minorant of the integrated data is a taut string and
its derivative is precisely the least squares isotone approximation [Barlow,
Bartholomew, Bremner and Brunk (1972); Leurgans (1982)]. The idea of using
taut strings for densities goes back to Hartigan and Hartigan (1985) who
derived a test for the unimodality of a density. In Davies (1995) it was explic-
itly used to calculate approximate densities. It was first used in the general
nonparametric regression problem by Mammen and van de Geer (1997). They
showed that the taut string is a special case of a penalized least squares func-
tional where the penalty is based on the total deviation norm. The derivative
of the taut string has the smallest number of local extremes of all functions
whose integral lies in the supremum ball. Davies (2000) gives an application
of the string method to spectral density functions.

2. The run method.

2.1. General description. We illustrate the general method of solving the
run problem of Section 1.1 using the data shown in Figure 1 with a maximum
allowable run length ρn = 2. To ease the notation we set ti = i.

Consider a function fn which is initially nonincreasing. The value of fn�3�
cannot exceed max�y�1�� y�2�� y�3�� as otherwise the first three residuals
would be negative giving rise to a run of length 3. This gives the upper bound

fn�3� ≤ max�y�1�� y�2�� y�3���(2.1)

Fig. 1. An artificial data set to illustrate the run procedure.
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No nontrivial upper bounds are available for fn�1� and fn�2�. Similarly, a
lower bound for fn�1� is given by

fn�1� ≥ min�y�1�� y�2�� y�3���
As the function is taken to be initially nonincreasing, the above argument
extended to each point gives rise to a sequence u�j� of upper bounds defined by

u�j� = min
{
u�j− 1��max�y�j− 2�� y�j− 1�� y�j��}(2.2)

with u�1� = u�2� = ∞. To see this we note that the reasoning which lead
to (2.1) gives

fn�j� ≤ max�y�j− 2�� y�j− 1�� y�j���(2.3)

On the other hand if u�j− 1� is an upper bound for fn�j− 1� then
fn�j� ≤ fn�j− 1� ≤ u�j− 1��(2.4)

Combining (2.3) and (2.4) leads to (2.2). The corresponding lower bounds l�j�
are given by

l�j� = max
{
l�j+ 1��min�y�j�� y�j+ 1�� y�j+ 2��}�(2.5)

If at some point i the lower bound l�i� exceeds the upper bound u�i� then
it is not possible for the function fn to be nonincreasing on 1� � � � � i+2 and for
the maximum run length not to exceed 2. Thus at the latest at the point i+ 1
we must switch from a nonincreasing to a nondecreasing function. It turns out
that it is not necessary to calculate the lower bounds in order to determine the
point at which the switch must be made. The point i+ 2 is also the first point
at which the last three values y�i�� y�i+ 1� and y�i+ 2� lie above the upper
bounds u�i�� u�i+1� and u�i+2�, respectively. This can be shown by backward
induction. The result can be seen in the upper panel of Figure 2. The values
of y at the points 14�15 and 16 lie above the upper bounds. Thus at the latest
at the point 15 a switch must be made to a nondecreasing function. This is
done as follows. We set l�14� = l�15� = −∞ and calculate lower bounds for
the nondecreasing section by

l�j� = max
{
l�j− 1��min�y�j− 2�� y�j− 1�� y�j��}� j = 16� � � � �

The lower bounds are calculated until either the end of the data set is
reached or at some point the last three y-values lie below the corresponding
lower bounds. If the latter contingency occurs, a switch is made to a nonin-
creasing function and the upper bounds are calculated as before. For the data
shown in Figure 1, the switch must be made at the latest at the point 28 as
can be seen from the upper panel of Figure 2. The results obtained are the
following. If we start with a nonincreasing function and limit the allowable
run length to 2 then at least two local extremes are required. The first, a local
minimum, must be attained at a point i with i ≤ 15. The second, a local maxi-
mum, must be attained at a point j with j ≤ 28. The process described here is
called “stretching to the right” in Davies (1995). Starting with a nondecreasing
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Fig. 2. The data set of Figure 1 together with the bounds from stretching to the right (upper
panel) and stretching to the left (lower panel).

function leads to one extra local maximum: in general that initial behavior is
chosen which minimizes the number of local extremes. The opposite process,
stretching to the left, starts with the last point of the data set and moves to
the left, calculating the bounds in the same manner. The result is shown in
the lower panel of Figure 2. The number of local extremes is the same, in
this case two, and the lower bounds for the positions of the local extremes
are 8 and 15. The combined result for the data of Figure 1 is that the local
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Fig. 3. Final bounds for a run length of 2 together with a function satisfying the run condition
and lying between the bounds.

minimum must be attained in the interval �8�15� and the local maximum in
the interval �22�28�. In an interval bounding the position of a local minimum
there is no nontrivial lower bound for the function without further specifica-
tion of the location of the local minimum. Similarly, in an interval bounding
the position of a local maximum there is no nontrivial upper bound for the
function. At points where only one lower bound has been calculated (either
from stretching to the right or to the left), this defines the lower bound. At
points where two lower bounds have been calculated, the minimum is taken.
The upper bound is calculated in the corresponding manner. The final bounds
are shown in Figure 3. The outliers at the points 7, 16 and 17 are seen not to
have lead to additional local extremes. A more detailed analysis of the effect
of outliers is given below.

The results so far show that restricting the maximal run length to 2 forces
any regression function to have at least two local extreme values. If fn is a
function with two local extreme values and whose residuals have a maximum
run length of 2 then the function must initially be nonincreasing, the local
minimum must be attained in the interval �8�15� and the local maximum in
the interval �22�28�. Furthermore the function must lie between the bounds
at all data points.

It is easy to show that not every function with the correct monotonicity
behavior and lying between the bounds satisfies the run condition. The con-
struction of a function with only two local extreme values and which satisfies
the run condition is not completely trivial. Suppose that it is possible, as indeed
it is, to define a nonincreasing function which satisfies the run condition with
ρn = 2 on the interval �1�15�. The last two residuals are of necessity positive
as 15 is an upper bound for the position of the local minimum. To prevent
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a run of length 3 the next residual must be negative and the function must
therefore have a value exceeding y�16� = 12. It is clear that this choice of fn

will lead to four local extreme values. To construct a function with only two
local extreme values we proceed as follows. We take the upper bound 15 for
the position of the first local extreme value. The upper and lower bounds u
and l as defined by (2.2) and (2.5), respectively, are calculated for the section
�1�15� of the data. The lower bound is best calculated from right to left with
initial values l�14� = l�15� = −∞. The first two values are defined to be

fn�1� = fn�2� = max�y�1�� y�2��
and the others are defined as follows. If the first i values of fn have been
defined, the value at i+1 is defined as follows. If fn�i� ≤ u�i+1� then we set
fn�i+1� = fn�i�. If fn�i� > u�i+1� we define fn as follows. If y�i+1� ≥ l�i+1�
then we set fn�i+ 1� = l�i+ 1�. If not, we backtrack and determine the first
j to the left of i+ 1 such that y�j� ≥ l�j�. That is,

j = max�m� m ≤ i+ 1� y�m� ≥ l�m���
We then set fn�m� = l�j� for j ≤ m ≤ i+ 1. At the latest we must switch to a
nondecreasing function at the point 15. We do this as follows. We consider the
upper bound of the position of the next local extreme value. For the present
data the is the point 28. We now calculate the lower and upper bounds for
the section of the data on �14�28�. The first two values of the function are
defined by

fn�14� = fn�15� = min�y�14�� y�15���
The function is now defined as on the first section but with the roles of the
lower and upper bounds interchanged. The function fn is continued as a con-
stant until the first time it drops below the lower bound. At this point a
switch is made to the upper bound but only if the value of the observation at
this point does not exceed the upper bound. If not, we backtrack to that first
point where the upper bound exceeds the y-value. This process is continued
in the obvious manner until the end of the data set is reached. The function so
defined satisfies the run condition, has the correct monotonicity behavior and
lies between the upper and lower bounds over the whole range. It is shown in
Figure 3. This construction is due to Davies (1995) and Metzner (1997). The
latter contains further details and variations on the run procedure.

The general recurrence equations for calculating the upper and lower
bounds for a given run length ρn are as follows:

un�i� =
{
min�un�i− 1��max�y�j�� i− ρn ≤ j ≤ i��� nonincreasing�
min�un�i+ 1��max�y�j�� i ≤ j ≤ i+ ρn��� nondecreasing�(2.6)

ln�i� =
{
max�ln�i+ 1��min�y�j�� i ≤ j ≤ i+ ρn��� nonincreasing�
max�ln�i− 1��min�y�j�� i− ρn ≤ j ≤ i��� nondecreasing.(2.7)

Combining these results gives the following theorem.
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Theorem 1. For a given data set �ti� y�ti��� i = 1� � � � � n and a given
maximal run length ρn for the residuals

rn�ti� = y�ti� − fn�ti��
the lower and upper bounds described above specify the minimum number kn

of local extreme values a function must have so that the residuals satisfy the
run condition. Furthermore, there exist functions with kn local extreme values
whose residuals satisfy the run condition. Any function with kn local extreme
values whose residuals satisfy the run condition must lie between the bounds
over the whole range. The local extreme values of any such function must also
be attained in the kn intervals �tli� tri �� 1 ≤ i ≤ kn� determined by the stretching
to the right and left procedures.

The run procedure is easy to apply and requires only the specification of the
maximal run length. To give a default value for the allowable run length ρn
we consider a sequence of i.i.d. Bernoulli random variables taking the values
1 and −1 each with probability 1/2. We denote by Rn the length of the longest
subsequence which is composed entirely of 1’s or −1’s. For any given α� 0 <
α < 1� we denote the α-quantile of Rn by qu�n�α�Rn�; that is,

qu�n�α�Rn� = min�m� P�Rn ≤ m� ≥ α��
For large n we have the simple approximation

ρn = qu�n�α�Rn� ≈ 
log2 n− 2− log2�− log�α����(2.8)

which can be deduced from the results given in Section XIII.7 of Feller (1968)
or shown directly. The default choice of run length is (2.8) with α = 0�5 which
represents a form of median for the number of local extreme values. In this
case,

ρn = qu�n�0�5�Rn� ≈ 
log2 n− 1�47��(2.9)

Nonparametric regression is an infinite dimensional problem. This is one
reason why the bounds ln and un are relatively wide and why the intervals
�tli� tri �� i = 1� � � � � kn� are relatively long. Another is the use of a rather crude
measure of approximation to white noise, namely the run length. The effects
can be seen in the upper panel of Figure 4 which shows 1000 points of a sine
curve contaminated with Cauchy noise as in (2.10):

y�t� = 10 sin�t� + ε�t�� ε�t� i.i.d. standard Cauchy.(2.10)

The bounds are based on a run length ρn = 9 which is the default value
given by (2.9) and result in kn = 2 local extreme values. One method of obtain-
ing narrower bounds is to decrease the run length whilst maintaining just
two local extreme values. For the sine curve the run length can be reduced
to ρn = 6 without introducing any further local extremes. The lower panel of
Figure 4 shows these new bounds.

The bounding intervals based on a run length of ρn = 9 are �141�376� for
the local maximum and �600�878� for the local minimum. The corresponding
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Fig. 4. 1000 data points generated under (2.10). Upper panel shows bounds with default run
length ρn = 9 given by (2.9). Lower panel shows bounds with minimal run length ρn = 6 consistent
with two local extremes.

intervals for the run length ρn = 6 are �178�340� and �630�823�, respectively.
These hold for any function which satisfies the run condition. It is however
possible to specify points within these intervals near which the function is
required to have a local extreme value. The data of Figure 1 show that it may
not be possible to have local extremes at exactly these points and still fulfil
the run condition. A modification of the construction given above of a func-
tion within the bounds which satisfies the run condition shows the following.
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Fig. 5. The upper panel shows bounds with run length ρn = 6, a local maximum near 259 and a
local minimum near 726. The lower panel shows bounds with run length ρn = 6, a local maximum
near 180 and a local minimum near 820.

Given any points tci in the intervals �tli� tri � there exists a function satisfy-
ing the run condition with exactly kn local extremes which are attained at
points differing from the prescribed tci by at most the run length. Different
choices lead to different functions. This can be interpreted as an attempt to
visualize the variability of the set of adequate functions. One obvious choice
for the points tci is the centers of the intervals. The top panel of Figure 5
shows the result of doing this for the Cauchy sine data using a run length
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of ρn = 6. The local extreme points are required to be near the centers of the
intervals �178�340� and �630�823�, namely 259 and 726. The lower panel of
Figure 5 shows the bounds when the local extremes are required to be near
180 (maximum) and 820 (minimum).

If a specific approximating function for the data is required, there are sev-
eral alternatives. One method is to calculate the bounds either with or with-
out minimizing the run length and with or without specifying the positions
of the local extremes. From this a specific function which satisfies the run
condition and lies between these bounds can be obtained from the algorithm
described above. The upper panel of Figure 6 shows this function together
with the underlying sine curve. It is based on the bounds shown in the upper
panel of Figure 5. Although bounds are constructed using the run criterion
the statistician is not obliged to consider only functions which satisfy it. The
simplest manner of obtaining a function is to take the average of the lower
and upper bounds. The lower panel of Figure 6 shows the average of the
bounds of the upper panel of Figure 5 together with the approximating sine
curve.

That no nontrivial bounds are available at the local extreme values or at
the start and finish of the data set is related to the ability of the run method
to withstand outliers. We analyze the situation for a block of outliers. If the
observation before the block of outliers lies below the upper bound then the
method can withstand a block of large positive outliers of length equal to
the run length. If, however, the last s observations before the block of outliers
lie above the upper bound then only a block of length ρn−s of arbitrarily large
positive outliers can be tolerated.

Similar considerations apply to the lower bounds. Figure 7 shows Gaussian
noise with 9 outliers in the center. The upper panel shows that they are ignored
if the run length is ρn = 10 (upper panel) but detected if the run length is
ρn = 9 (lower panel). The reason is that the observation just before the block
of outliers lies above the upper bound.

2.2. Behavior on test beds. We consider a data set generated on a test bed
of the form (1.8). LetKα

n denote the number of local extreme values determined
by the run procedure using the α-quantile of the length of the longest run (2.8).
The following theorem holds.

Theorem 2. Consider data generated on the test bed �1�8� where the func-
tion f has k local extremes and the errors ε�t� are independently distributed
with P�ε�t� < 0� = P�ε�t� > 0� = 1

2 � Then

P�k ≥ Kα
n� ≥ α�

The residuals ε�t� fulfil the run condition with probability at least α and
from Theorem 1 it follows that at least Kα

n local extreme values are required
if the run length of the residuals is not to exceed qu�n�α�Rn�.
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Fig. 6. The upper panel shows a function satisfying the run condition with ρn = 6 and lying
between the bounds of the upper panel of Figure 5. The lower panel shows the average of the
bounds of the upper panel of Figure 5. The underlying sine curve is shown in both panels.

As mentioned in Section 1.2 this form of result is best possible for fixed
n. If however the sample size increases and the design points ti� 1 ≤ i ≤ n�
become dense in �0�1� then the procedure will determine the correct number
of local extremes for sufficiently large n. The precise statement is contained
in the next theorem where we assume ti = i

n
� 1 ≤ i ≤ n� The theorem shows

that f can be consistently estimated and gives a rate of convergence. As the
rate of convergence applies to the bounds it holds for any function fn lying
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Fig. 7. The upper panel shows the bounds for n = 1000 and run length ρn = 10 with Gaussian
noise and a block of 9 outliers in the center. The lower panel shows the effect of reducing the run
length to ρn = 9.

within the bounds as long as it has the same monotonicity behavior as the
bounds. It is not necessary for the function to give rise to residuals which
satisfy the run condition. In particular the rate of convergence holds for the
function defined to be the mean of the bounds. The intervals which contain the
local extremes will be denoted by Iei�n�α�� i = 1� � � � �Kα

n and their midpoints
by tei�n�α�� i = 1� � � � �Kα

n. The following theorem holds.
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Theorem 3. Consider the test bed �1�8� where:

(i) f has a bounded continuous first derivative f�1� and exactly k local
extreme values at the points 0 < te1 < · · · < tek < 1.

(ii) f�1��t� = 0 only for t ∈ �te1� � � � � tek�.
(iii) The ε�t� are independently and identically distributed, have median

zero and a continuously differentiable distribution function in a neighbourhood
of zero.

Then the following hold:

(a) For all δ > 0,

lim inf
n→∞ P

(
�Kα

n = k� ∩
{
max
1≤i≤k


Iei�n�α�
 ≤ δ

}
∩
{
max
1≤i≤k


tei�n�α� − tei 
 ≤ δ

})
≥ α�

(b) For a sequence of functions fn within the bounds and with the same
monotonicity behavior as the bounds, the locations of the extreme values of the
fn converge in probability to those of f.

(c) There exists a constant b > 0 such that for any sequence of functions fn

as in (b),

lim
n→∞P

(
sup

�t�
f�1��t�
≥δ�

f�t� − fn�t�
 ≤ b

log log n
log n

)
= 1�

for all δ > 0�
(d) There exists a constant b > 0 such that

lim
n→∞P

(
inf

�t�
f�1��t�
≥δ�
un�t� − f�t� ≥ b

log log n
log n

)
= 1

and

lim
n→∞P

(
inf

�t�
f�1��t�
≥δ�
f�t� − ln�t� ≥ b

log log n
log n

)
= 1

for all δ > 0�

3. The taut-string-multiresolution method.

3.1. Multiresolution and local averages. The multiresolution problem of
Section 1.1 is based on the white noise approximation defined by (1.5), (1.6)
and (1.7). If the sample size n is not a power of 2 then the interval ��k2j+1�/
n� �k+ 1�2j/n� of (1.5) can be replaced by ��k2j + 1�/n�min��k+ 1�2j/n�1��.
This is legitimate because of the subadditivity of probability measures. An
alternative is to use the techniques of Kovac and Silverman (2000).

The wj�k can be replaced by discrete wavelet coefficients or, more gener-
ally, coefficients generated by any multiresolution scheme. Prior knowledge of
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the shape of the peaks to be detected can be incorporated into the shape of
the multiresolution functions. The advantages of multiresolution schemes are
that they work well in practice, that they result in almost optimal rates of
convergence on appropriate test beds and that the calculations are of order n.
The bound (1.6) can be replaced by the more general bound

σn

√
τ log n(3.1)

with σn again given by (1.7). The idea behind the bound (3.1) is that for a
sequence of random variables Z1�Z2 · · · with a common sub-Gaussian distri-
bution (see Theorem 6 below),

lim
n→∞�

(
max

i=1�����n

Zi
 <

√
τ log n

)
= 1

for some τ > 0. This follows from the tail estimate

��
Zi
 ≥ x� ≤ c exp�−x2/τ�(3.2)

for some τ > 0 which continues to hold for sums Z = 1√
n

∑n
1 Zi of i.i.d. random

variables. The multiresolution coefficients are of this form and so we may use
a threshold of the form (3.1).

3.2. Strings and bounds. Although the multiresolution problem of
Section 1.1 is well posed the difficulty is that, in contrast to the run prob-
lem, there is no immediate connection between the number of local extremes
on the one hand and the multiresolution definition of white noise approxi-
mation on the other. To overcome this, we use an unrelated method, the taut
string, to produce candidate functions fk

n with k local extreme values and then
to take the smallest k for which the residuals

rkn

(
i

n

)
= y

(
i

n

)
− fk

n

(
i

n

)
approximate white noise. The success of this approach depends entirely on the
efficacy of the taut string method to provide such candidate functions.

The left panel of Figure 8 shows a small simulated data set y� i
n
�� i =

1� � � � � n: the right panel the integrated process y◦
n defined by

y◦
n

(
j

n

)
= 1

n

j∑
i=1

y

(
i

n

)
� j = 0� � � � � n�(3.3)

Integrated or summed processes will always be distinguished by a super-
script ◦. Consider the lower ln and upper bound un for y◦

n defined by

ln = y◦
n − C√

n
(lower bound)�(3.4)

un = y◦
n + C√

n
(upper bound)(3.5)
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Fig. 8. Integrating the data. The left panel shows a small simulated data set and the right panel
their partial sums.

Fig. 9. A taut string between two bounds.

for some C > 0. Consider a piece of string attached with one end at the point
�0�0� and the other at the point �1� y◦

n�1�� and constrained to lie between ln
and un. Suppose that the string is now pulled until it is taut. It defines a
function s◦n on �0�1�. This is shown in Figure 9. We shall use the derivative of
the taut string as an approximation to the data as shown in Figure 10.

The string can be defined analytically as that function s◦n on �0�1� with the
smallest length

length�s◦n� =
∫ 1

0

√
1+ s◦n�1��t�2 dt�

which satisfies

s◦n�0� = 0� s◦n�1� = y◦
n�1�� ln�t� ≤ s◦n�t� ≤ un�t�� 0 ≤ t ≤ 1�(3.6)
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Fig. 10. The derivative of the taut string of Figure 9 together with the data.

It can be shown that s◦n also has the smallest total variation under the side
conditions (3.6). That is, s◦ minimizes

TV�s◦n� =
∫ 1

0

s◦n�1��t�
dt�(3.7)

subject to (3.6). In practice the restrictions (3.6) only hold at a finite number of
points i/n� i = 0� � � � � n. The calculation of the ensuing string can be performed
quickly and the complexity of the algorithm is O�n�. The algorithm we use
is explained in the Appendix. The description of the taut string in the finite
case is the following [see also Mammen and van de Geer (1997)]. The points
at which the string coincides with either the lower or upper boundary are
called knots. Between knots the function is linear. Between two knots xi and
xj where the string touches the upper bound un and between which it does
not touch the lower bound ln the string is the largest convex minorant of the
upper bound un. Similarly, if the knots are ones where the string touches the
lower bound ln and between which it does not touch the upper bound un then
it is the smallest concave majorant of the lower bound ln. At points where the
string switches from the upper bound un to the lower bound ln the derivative
sn = s

◦�1�
n has a local maximum. At points where the string switches from the

lower bound ln to the upper bound un the derivative sn has a local minimum.
It is clear from the description of the taut string that its derivative sn has

the smallest number of local extremes among all functions gn whose integral
g◦
n�x� = ∫ x

0 gn�t�dt satisfies the conditions (3.6). It is precisely this property
which makes the taut string so efficacious in controlling the number of local
extremes. It is possible that the chosen initial and final conditions of (3.6) may
themselves cause additional local extremes. This can be overcome by attatch-
ing the ends of string either to the upper or to the lower boundary at the
start and at the end. Those of the four strings whose derivative has the small-
est of local extremes minimizes the number of local extremes of all functions
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whose integral lies within the bounds. Dümbgen has pointed out to us that
the effect of the initial conditions disappears in the limit. The advantage of
the string defined by (3.6) is that end effects are reduced. We therefore use
it in the examples, although the theorems are stated in terms of the string
which minimizes the number of local extremes.

Bounds of the form (3.4) and (3.5) will be referred to as a tube with center
y◦
n and radius C√

n
� it will be denoted by T

(
y◦
n�

C√
n

)
�

T

(
y◦
n�

C√
n

)
= �gn� ln ≤ g ≤ un��(3.8)

Other bounds derived from local squeezing will be used later. As already men-
tioned, the derivative sn�C� of the taut string s◦n�C� is used as a candidate
regression function. As s◦n�C� is piecewise linear, sn�C� is piecewise constant.
It is perhaps worth mentioning some properties of the derivative sn�C�. Con-
sider two knots of the string at the points i

n
< j

n
where the taut string touches

the upper bound un and are such that the string does not touch the lower
bound between the two knots. The derivative sn�C� is then the least squares
monotone increasing approximation to the y-values between the knots. In
other words the sn�C��m

n
�� m = i� � � � � j solve

minimize
j∑
i

(
y

(
m

n

)
− am

)2

subject to ai ≤ · · · ≤ aj�

[see Barlow, Bartholomew, Bremner and Brunk (1972)]. On sections where the
string is the smallest concave majorant of the lower bound ln the derivative
sn of the string solves the corresponding problem where the values are non-
increasing. This implies the following. Between two successive knots either
both on the upper bound or both on the lower bound the derivative is the
mean of the observations between the knots. Between knots defining a local
minimum or maximum the derivative is again the mean of the observations
but increased or decreased, respectively, by the diameter of the tube at that
point [see also Proposition 8 of Mammen and van de Geer (1997)]. Compared
to the data, local maxima will tend to be too small and local minima too large.

3.3. Previous work. The first use of the taut string method in statistics
would seem to be due to Barlow, Bartholomew, Bremner and Brunk (1972).
Hartigan and Hartigan (1985) were the first to use it in connection with modal-
ity, it being an integral part of their dip test for unimodality. It was explicitly
used by Davies (1995) to construct k-modal densities. Mammen and van de
Geer (1997) extended its use to the nonparametric regression problem but do
not mention the connection with the number of local extreme values.

3.4. Behavior on test beds. The next three theorems are concerned with
the asymptotic behavior of the taut string on the test bed (1.8). In particu-
lar it is shown to have an optimal rate of convergence away from the local
extremes. The first theorem corresponds to Theorem 2 for the run procedure.
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We denote the number of local extremes of the derivative of the taut string in
the supremum tube with upper and lower bounds given by (3.4) and (3.5) by
KC

n � Theorems 4, 5 and 6 refer to the taut string which minimizes the number
of local extremes. Dümgen has proved that the theorems continue to hold with
suitable modifications, for example, replacing the Brownian motion on �0�1�
of Theorem 4 by the Brownian bridge on �0�1�, if the initial conditions (3.6)
are imposed.

Theorem 4. Consider the test bed �1�8� but where the errors ε�t� are
independently and identically distributed with mean 0 and finite variance σ2.
Then

lim
n→∞P�k ≥ KC

n � = H

(
C

σ

)
�

whereH denotes the distribution of sup0≤t≤1 
W�t�
whereW denotes a standard
Wiener process.

It is worth pointing out that the rate of convergence in Theorem 4 does not
depend on the function f of the test bed but only on the rate of convergence
of the partial sums

√
nε◦

n�t� = 1√
n

�nt�∑
1

ε

(
j

n

)
to a Wiener process. To make the theorem applicable without knowledge of
the variance σ2 an estimate of it is required. We use (1.7).

The taut string based on the radius C/
√
n will be denoted by S◦

n = S◦
n�C�

with derivative Sn = Sn�C�� We write Iei�n�C�� 1 ≤ i ≤ KC
n� for the inter-

vals where Sn attains it local extreme values and denote the midpoints of
these intervals by τen�n�C�� 1 ≤ i ≤ KC

n � The next theorem corresponds to
Theorem 3(a) for the run procedure.

Theorem 5. Consider the test bed �1�8� where f satisfies the conditions
of Theorem 3 and where the errors ε�t� are identically and independently dis-
tributed with mean 0 and finite variance σ2. Then for all δ > 0,

lim
C→∞

lim
n→∞P

(
�KC

n = k� ∩
{
max
1≤i≤k


Iei�n�C�
 ≤ δ

}
∩
{
max
1≤i≤k


τei�n�C� − tei 
 ≤ δ

})
= 1�

We note that the rate of convergence to the correct number of local extremes
depends much more heavily on the function f than the rate of convergence in
Theorem 4. It is for this reason that we state Theorem 5 separately.

In the following the length of an interval I will be denoted by 
I
.
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Theorem 6. Consider the test bed �1�8� where f satisfies the conditions of
Theorem 3 and additionally:

(i) f has a bounded second derivative f�2� which is nonzero at the k local
extremes.

(ii) The errors ε�t� are independently and identically distributed
sub-Gaussian random variables, that is, E exp�λε�t�� < exp�cλ2� for all λ for
some c > 0�

Then

(a) lim
C→∞

lim
n→∞P�tei ∈ Iei�n�C�� 1 ≤ i ≤ k� = 1�

(b) lim
C→∞

lim
n→∞P

(
1−δ ≤ n1/6
f�2��tei�
1/3
Iei�n�C�


�24C�1/3 ≤ 1+δ

)
= 1 for all δ > 0.

(c) Let xi and xi+1 denote successive knots which are either both on the
upper or both on the lower bound. Then there exists an A > 0 such that

lim
C→∞

lim
n→∞P

(
max

i
�xi+1 − xi�
f�1��xi�
2/3 ≤ A

(
log n
n

)1/3)
= 1�

(d) There exists an A > 0 such that

lim
C→∞

lim
n→∞P

(
sup
t∈An


f�t� −Sn�t�


f�1��t�
1/3 ≤ A

(
log n
n

)1/3)
= 1�

where An = [
A
( log n

n

)1/3
�1−A

( log n
n

)1/3]∖∪n
i I

e
i�n�C��

(e) There exists a constant A > 0 such that

lim
C→∞

lim
n→∞P

(
sup
t∈Bn


f�t� −Sn�t�


f�2��t�
1/3 ≤ AC2/3n−1/3

)
= 1�

where Bn = ∪k
1I

e
i�n�C�.

The definition of sub-Gaussian given above implies that the mean is zero
[see Kahane (1968), page 62, Exercise 10]. We note that (d) implies that Sn is
optimal at points t with 
f�1��t�
 > δ > 0. At points t with f�1��t� = 0 its rate
of convergence is n−1/3 compared with the optimal rate of n−2/5 [Leurgans
(1982)]. As the length of the interval is n−1/6 as against the optimal n−1/5,
this cannot be alleviated by replacing Sn�t� for t ∈ ∪k

1I
e
i�n�C� by the mean of

the y−values. Nevertheless, the change of boundaries at local extremes does
alter the behavior of the multiresolution coefficients described in the following
section.

Donoho, Johnstone, Kerkyacharian and Picard (1995) consider four sets of
simulated data, the Blocks data, the Bumps data, the Heavisine data and
the Doppler data. They were also analyzed by Fan and Gijbels (1995), (1996).
Figure 11 shows the taut string method to the Blocks signal contaminated with
Gaussian white noise. The tube radius is 1�149σ/

√
n. The choice C = 1�149

corresponds to the 0�5 quantile of the maximum of the absolute value of a
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Fig. 11. The Blocks signal. The signal was contaminated with white noise and afterwards the
taut string approximation calculated using the C/

√
n tube with C = 1�149.

standard Brownian motion on �0�1� [see Freedman (1971), (34) Proposition,
page 27].

3.5. Strings and multiresolution. As stated above, the derivative of the
taut string tends to be too small at local maxima and too large at local minima.
A simple analysis shows that this effect alone will cause some of the multires-
olution coefficients of the residuals to exceed the bound as n → ∞ regardless
of the value of τ in (3.1). The problem may be rectified to some extent by the
simple expedient of replacing Sn by S̃n where S̃n is constant between knots
where it is equal to the mean of the y−values between the knots. The inte-
grated S̃n will be denoted by S̃◦

n. It may be seen that S̃◦
n coincides with Y◦

n at
the knots and is linear in between. This alteration does not effect the number
of local extremes but it improves the rate of convergence at local extremes.
The behavior of the multiresolution coefficients for candidate functions based
on S̃n is covered by the next theorem.

Theorem 7. Suppose the assumptions of Theorem 6 hold and consider the
multiresolution coefficients of the residuals of S̃n, that is,

Wi�j = 2−i/2
�j+1�2i∑
m=j2i+1

(
Y

(
m

n

)
− S̃n

(
m

n

))
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with supports �j2i + 1� �j+ 1�2i�. Then for each constant A > 0 there exists a
τ > 0 such that the following hold:

(a) All multiresolution coefficients Wi�j taken from intervals whose support
is of length at most A�log n/n�1/3 are eventually smaller than the bound �3�1�.

(b) All multiresolution coefficients Wi�j the endpoints of whose supports do
not lie in ∪k

1I
e
i�n�C� are eventually smaller than the bound �3�1�.

(c) At each local extremum tei of f there exists an interval Je
i�n�C� ⊃

Iei�n�C� of length at most O� 1
log n� for which the following holds. All multireso-

lution coefficients Wi�j with one endpoint in Iei�n�C� for some i and the other
outside of the corresponding Je

i�n�C� are eventually smaller than the bound
�3�1�.

(d) For each interval Iei�n�C� of �b� there exists a multiresolution coefficient
Wi�j with support in Iei�n�C� and whose absolute value eventually exceeds the
threshold �3�1� whatever the value of τ.

Theorem 7 shows that for an appropriate choice of τ in (3.1) all multiresolu-
tion coefficients will eventually be below the threshold (3.1) apart from some
in shrinking intervals which contain the local extreme points of the func-
tion f. Furthermore there are multiresolution coefficients which will even-
tually exceed the bound (3.1) whatever the choice of τ. In other words, the
suboptimal rate of convergence at local extremes will be detected by the mul-
tiresolution analysis of the residuals. Figure 12 shows the application of the
taut string method to the Bumps data of Donoho, Johnstone, Kerkyachariar
and Picard (1995). The left panel shows the intervals where the multiresolu-
tion coefficients of the residuals exceed the threshold (3.1). The right panel
shows the effect of squeezing globally until all multiresolution coefficients are
below the threshold. It results in several spurious local extreme values. In the
next section we describe how local squeezing may be used to eliminate the
spurious local extremes.

3.6. Local squeezing and multiresolution. The results of the last section
show that although the taut string is locally adaptive [Mammen and van
de Geer (1997)] it is not sufficiently so. Furthermore, as the Bumps data in
Figure 12 show, the problem cannot be solved by decreasing the radius of the
tube globally. The calculations used in the proof of Theorem 6 show that if
the radius is of order n−3/5 instead of n−1/2 then the length of the interval
which contains a local extreme value is of order �log n/n�1/5 and the rate of
convergence is of order �log n/n�2/5. This is almost optimal and calculations
show that all multiresolution coefficients will now be smaller than the bound
(3.1). However a global radius of order n−3/5 for the tube will eventually give
rise to spurious local extremes. This may be countered by decreasing the radius
of the tube only in an n−1/5-neighborhood of those local extremes found with
the tube radius Cn−1/2. As it stands this is not feasible as the taut string
with radius n−1/2 locates the local extremes only with an accuracy of order
n−1/6. One possibility is to decrease the radius of the tube on the intervals of
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Fig. 12. These figures show the application of the taut string methods to the Bumps signal. In
the left panel the tube radius is 1�149σ/

√
n and the lines at the bottom indicate regions where

multiresolution coefficients are too large. The right panel shows the global squeezing procedure
where the tube is squeezed until all multiresolution coefficients are below the threshold value.

order n−1/6 which contain the local extreme points. For sub-Gaussian random
variables with variance σ2 we have

P
(

max
l≤i≤l+m−1

1√
m

∣∣∣∣ i∑
j=l

ε

(
j

m

)∣∣∣∣ ≥ σλ

)
≤ a exp�−cλ2�

for all λ > 0 for some constants a and c� Translating this inequality into one
for the integrated process Y◦

n gives the following:

P
(

max
l≤i≤l+m−1

∣∣∣∣Y◦
n

(
i

n

)
+ 0n − f◦

(
i

n

)∣∣∣∣ ≤ γ�n�m�
)

≥ 1− a exp�−cλ2��(3.9)

where

0n = f◦
(
l

n

)
−Y◦

n

(
l

n

)
(3.10)

and

γ�n�m� = λ

√
m

n
�(3.11)

The inequality (3.9) implies that with high probability depending on λ the
integrated process f◦ lies in the locally squeezed tube

T�Y◦
n + 0� γ� I� = �g� max

t∈I

Y◦

n�t� + 0− g�t�
 ≤ γ�(3.12)

with 0 = 0n given by (3.10), γ = γ�n�m� given by (3.11) and I = I�l�m�n� =[
l
n
� l+m−1

n

]
� In other words, local squeezing on the interval I is accomplished by
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shifting the integrated process Y◦
n by an amount 0 on I and then using the

modified lower and upper bounds

ln�t� I� = Y◦
n�t� + 0− γ and un�t� I� = Y◦

n�t� + 0+ γ

for t ∈ I� The size of the shift 0 is not known in advance; (3.9) and (3.10) say
that for some shift, namely that given by (3.10), the integrated process f◦ lies
in the locally squeezed tube with high probability. This means that 0 should
be chosen to minimize the number of local extreme values of the derivative
of the taut string through the modified tube. This may be accomplished by
calculating the taut string over a grid of the possible values of 0�

The effect of local squeezing on an interval where the derivative of the taut
string has a local extreme value may be analyzed by setting m = mn = cn5/6

[Theorem 6(b)] in (3.9). This results in γn = λ
√
cn−7/12� The radius of the tube

is now n−7/12 compared with the optimal radius of n−3/5. The proportional dif-
ference is n−1/60. Repeating this procedure will always improve the asymptotic
rate of convergence but no finite number of steps will result in the optimal
radius of n−3/5. Suppose however we know the points where f takes on its local
extreme values. Under these circumstances it is possible to squeeze the tube
locally at the local extremes over intervals which contain cn4/5 points. The
result is described by (3.9) with γn = λ

√
cn−3/5� The taut string through the

modified tube will behave asymptotically as before but will have an improved
and indeed optimal rate of convergence at the local extreme values of f. If
this is taken into account then the proof of Theorem 7 shows that all mul-
tiresolution coefficients will now be set to zero. The problem is that we cannot
at the moment locate the local extremes of f with the required accuracy. We
now show how this can be done, at least in principle, using a multiresolution
analysis of the residuals.

We consider the taut string using a tube of radius Cn−1/2 and the modified
derivative S̃n. As shown above, this will, in the limit, result in the correct num-
ber of local extremes and all the extreme points will lie in the corresponding
intervals of S̃n whose lengths will be of order n−1/6. Furthermore all multires-
olution coefficients will be smaller than the bound (3.1) apart from some whose
support is strictly contained in shrinking neighborhoods of the local extreme
points. We now gradually squeeze the tube locally at the intervals where S̃n

has local extreme values. This is continued until all the multiresolution coef-
ficients of the residuals drop below the threshold (3.1).

We show first that this process will not terminate too soon, that is, before
the optimal rate of convergence is obtained. To demonstrate this we consider
a function g defined on �0�1� and a sequence of piecewise constant functions
gn used to approximate g� The change of notation is to emphasize that the
following arguments relate only to the approximation of g by the piecewise
constant functions gn� We assume the following:

1. g has a finite number of local extreme values in �0�1��
2. g has a first derivative g�1� which is zero only at the local extremes.
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3. g has a continuous second derivative g�2� which is nonzero at the local
extremes.

4. gn is piecewise constant and with the same monotonicity behavior as g on
each interval.

5. If g has a local extreme at te then gn is constant on an interval which
contains te and is of length at least c

( log n
n

)1/5 for some constant c > 0�

Condition 4 means that if g is monotone on an interval I then so is gn and
with the same form of monotonicity. The converse need not hold.

Suppose now that the multiresolution coefficients of the differences g− gn

are all smaller than the bound (3.1). We consider what implications this has
for the maximal deviation of gn from g. Consider first a point t with dn =

g�t� − gn�t�
 and where g and gn are nondecreasing with g�1��t� > 0� We
write dn = 
g�t� − gn�t�
 and suppose that g�t� > gn�t�� The other case is
treated similarly. Let the interval In of length λn be the support of some
multiresolution coefficient with In ⊂ �t − dn/g

�1��t�� t�. The multiresolution
coefficient is

1√
λn

∫
In

�g�u� − gn�u��du ≥ 1
2
λ3/2n g�1��t��

If this coefficient does not exceed the threshold (3.1) then

1
2
λ3/2n g�1��t� ≤

√
τ log n

n
�

which gives

λn ≤
(
4τ log n
ng�1��t�2

)1/3

�

As there exists some multiresolution coefficient with λn ≥ dn/�2g�1��t�� this
implies

dn

2g�1��t� ≤
(
4τ log n
ng�1��t�2

)1/3

or

dn ≤ 25/3
g�1��t�
1/3
(
τ log n

n

)1/3

�(3.13)

At the local extremes of the function g we can no longer exploit Assumption 4
but use instead Assumption 5. Let g have a local extreme value at te and set
dn = 
g�te� − gn�te�
� The function g is locally quadratic at te and arguments
similar to the ones just used show the following. If none of the multiresolu-
tion coefficients with support close to the local extreme point te exceed the
threshold (3.1) then


dn
 ≤ 2
g�2��te�

1/5

(
τ log n

n

)2/5

�(3.14)
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We now apply the above results to the nonparametric regression problem.
The residuals are

rn�t� = Y�t� − fn�t� = f�t� − fn�t� + ε�t��
On setting g = f and gn = fn, we note first that if the ε�t� are i.i.d. sub-
Gaussian then their contribution to the multiresolution coefficients will lie
below the threshold for some value of τ� If fn and f satisfy Assumptions 1 to
5 above and if all the multiresolution coefficients of the residuals rn do not
exceed the threshold, it follows that multiresolution coefficients of the differ-
ences f − fn will also lie below the threshold. This implies that the rate of
convergence of the fn to f will be optimal away from the local extremes in
the sense of uniform convergence. At the local extremes themselves the rate
of convergence will be at least

( log n
n

)2/5 as against the optimal rate of n−2/5�
Let now fn = S̃n where S̃n denotes the modified taut string through the tube
which is now locally squeezed at the local extremes with mn = C�log n�1/5n4/5

in (3.6). The proof of Theorem 7 shows that all multiresolution coefficients of
the residuals will now be below the threshold. This implies the following. Sup-
pose we start with a tube of radius C/

√
n and then gradually locally squeeze

the tube at the local extremes of S̃n� As the lengths of the intervals where S̃n

has its local extreme values are initially of order n5/6 (Theorem 6) we see that
this process will eventually lead to local squeezing over intervals containing
mn = C�log n�1/5n4/5 observations. At this point all multiresolution coeffi-
cients will be below the threshold. This implies that if we stop squeezing at
the local extremes of S̃n as soon as all multiresolution coefficients drop below
the threshold then g = f and gn = S̃n will satisfy Conditions 1 to 5 above.
The resulting rate of uniform convergence will be

( log n
n

)1/3 away from the local
extreme values of f� At the local extreme values of f the rate of convergence
will be

( log n
n

)2/5
� We have therefore shown that in principle local squeezing

based on a multiresolution analysis of the residuals results in almost optimal
rates of convergence at the local extreme values. In practice local squeezing
must be done by an algorithm and to complete the proof it must be shown that
the algorithm attains what is in principle possible. We do not pursue this any
further and we simply describe the algorithm we use without a proof that it
is asymptotically correct. In practice it works very well.

3.7. A practical implementation. Local squeezing is described by (3.12)
and requires the specification of the shift 0, the radius of the tube γ and
the interval I� The intervals on which local squeezing is performed are deter-
mined by the multiresolution analysis of the residuals. As mentioned in the
discussion of local squeezing given above, the choice of shift 0 seems not to
be critical and is set to zero. Finally the radius of the tube γ must be speci-
fied and this is critical. It is implemented by reducing the radius of the tube
locally by a constant factor ρ�0 < ρ < 1� If ρ is small, say ρ = 0�5, then
the procedure terminates quickly as all multiresolution coefficients soon drop
below the threshold. This occasionally leads to too many local extreme values.
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If ρ is nearly 1, say ρ = 0�95, then the calculations require more time but this
choice of ρ has in our experience not led to superfluous local extreme values.
The following simple procedure turned out to be very reliable and was used
for all the examples.

First, the scale of the noise is calculated using (1.7). The next step is to
choose a large initial global tube radius γ0. A reasonable choice is such that
the straight line connecting �0�0� and �1� y◦

n�1�� lies inside the tube. An alter-
native is to use Theorem 4 and use an initial tube radius γ0 = C/

√
n where C

is set to 2�242� the 0�95-quantile of the distribution of the maximum of a
Brownian motion. Given the initial radius the taut string is calculated as
described in the Appendix.

We use the modified version s̃n of the derivative sn as described just before
Theorem 7. If all multiresolution coefficients of the residuals r̃n

(
i
n

) = y
(
i
n

) −
s̃n
(
i
n

)
are smaller than the bound (3.1) the algorithm terminates. If not we

define local tube radii γ1
i (i = 0� � � � � n) by γ1

i = ργ0 if a multiresolution coef-
ficient which depends on yi or yi+1 exceeds the bound (3.1) and by γ1

i = γ0
elsewhere. The tube is squeezed centrally, that is, 0 = 0� The squeezing fac-
tor ρ is set to 0�95� A new candidate function is finally defined by the result
of the taut string procedure.

The algorithm proceeds by calculating the multiresolution analysis of the
new residuals. If again some coefficients are still too large, further squeezing
is applied by reducing the tube radius in the relevant intervals by a factor
of ρ until eventually all coefficients are below the threshold. As indicated in
Section 3.1 the value of τ we use is 2�5.

3.8. Examples. The effect of local squeezing on the bounds is shown in
Figure 13. Displayed are the final bounds for the Bumps signal of Figure 12
in the left panel and the reconstruction in the right panel. This should be
compared with Figure 12.

4. Lowpowerpeaks. Mostworkonnonparametric regressionanddensity
problems evaluates procedures in terms of rates of convergence on test beds of
the form (1.8). The distribution of the errors ε�t� is specified and the regression
function f is kept fixed while the number n of observations is increased. In
this situation there exist optimal rates of convergence [Khas’minski (1978);
Ibragimov and Khas’sminski (1980); Stone (1982)]. As shown, the taut string
method based on a ball of radius Cn−1/2 attains the optimal rate away from the
local extremes for functions with a specified number of local extremes. The run
method falls well short with a rate of convergence of order �log log n�/ log n�
In spite of this the run-based procedure can give better results than an optimal
taut string method based on a tube of constant radius. To investigate this
phenomenon we consider a different form of test bed. Let f be a continuous
function with k peaks. We consider an interval �an� bn� which does not contain
a peak and graft a peak onto the function f� The height of the peak is hn and
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Fig. 13. Local squeezing and the Bumps data. The left panel shows the final upper and lower
bounds together with the taut string. The Bumps data and the derivative of the taut string are
plotted in the right panel.

we denote the new function by fn. The power of the peak is defined to be

Pn =
∫ 1

0

f− fn
 =

∫ bn

an


f− fn
�(4.1)

Consider now the asymptotic test bed

Yn� i = fn

(
i

n

)
+ εn� i(4.2)

with Pn = o�n−1/2� and limn→∞ hn = ∞. For large C the tube T�fn◦�C� will
contain f◦ with large probability. As f has k local extremes so will the taut
string through the ball. From this it follows that Theorems 5 and 6 will con-
tinue to hold for the asymptotic test bed (4.2). In other words the taut string
method will fail to identify the peak at �an� bn�. Similar considerations apply
to kernel estimation. If the optimal global window is used, a low powered peak
will not be detected if Pn = o�n−1/5�.

In the case of the run method on the test bed (4.2) the peak will be detected if

lim inf
n�bn − an�

log2 n
> 1�

If

lim inf
n�bn − an�

log2 n
< 1�

it will not be detected. Figure 7 shows this effect.
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Fig. 14. A regression function corrupted with Gaussian noise and the reconstructions based on
n = 2048 observations. The left panel shows the effect of globally squeezing until the peak near 0�5
is detected. The right panel shows the result of the local squeezing procedure.

The local squeezing method using local averages will clearly identify the
peak of fn. Indeed the method will pick up a signal confined to one single
observation as long as hn ≥ B

√
log n where B depends on f and the bound

parameter τ. This is demonstrated by Figure 14 where a very low power peak
defined by a single observation is detected without introducing any spuri-
ous peaks.

5. Examples and comparisons.

5.1. Artificial data. Figure 15 shows the results of applying the taut-
string-multiresolution procedure to the data sets of Donoho, Johnstone,
Kerkyacharian and Picard (1994). The Doppler signal is displayed in the upper
left corner. Local squeezing detects the oscillations near the origin very well
without introducing spurious extreme values at other positions. The main
feature of the Heavisine signal in the upper right panel is the presence of dis-
continuities near 1/3 and 2/3. The taut string reproduces them, again with-
out introducing spurious extreme values elsewhere. The Blocks data signal is
piecewise constant so it is not surprising that the taut string performs very
well. Indeed the reconstruction can hardly be distinguished from the original
signal. Finally the Bumps data can be compared with Figure 12. Local squeez-
ing has identified all the relevant peaks without introducing spurious ones.

5.2. Real data. Figure 16 shows the results of a spectroscopical analysis
of a gallstone. The chemists involved informed us that for this particular data
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Fig. 15. Four noisy test signals and their reconstructions using the taut string procedure with
local squeezing.

all the peaks found were real ones and no spurious peaks were introduced.
We note that between peaks the reconstruction is almost constant. This data
set, although real, is not much different from the Bumps data sets of Figure 13.

5.3. Comparison with other methods. Comparison with other methods is
always difficult especially when the aims may be different. This paper is con-
cerned with the number of local extremes, only secondarily with rates of con-
vergence and not at all with L2 errors. Other methods are concerned with
smoothness and rates of convergence in spaces of smooth functions. The prob-
lem of comparison is made more difficult by the lack of available software.
We therefore restrict the comparisons to wavelets for which standard soft-
ware is available. Even here many options are open, such as the choice of
the wavelet and the threshold level. The left panel of Figure 17 shows the
block data and the wavelet reconstruction. The Haar wavelet was used, which
is presumably the best for this data. Nevertheless, pseudo-Gibbs effects are
apparent and lead to 47 local extreme values. The corresponding result for the
taut-string-multiresolution method is shown in the right panel of Figure 17.
It gives the correct number of local extremes, namely nine.

6. Conclusion. We have introduced two methods for obtaining regression
functions while keeping the number of local extremes under control. Each
method has advantages and disadvantages. The run method can be calculated
quickly in O�n� operations and it has certain desirable robustness properties.
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Fig. 16. Data from spectroscopy. The upper panel shows data that were gathered during a spec-
troscopical analysis of a gallstone. The reconstruction is shown in the second panel and an excerpt
in the bottom panel.

It can withstand many isolated outliers and can also be tuned to detect blocks
of outliers of a specified length. The disadvantage is a slow rate of convergence.
The taut-string-multiresolution method has a complexity of O�n log n� and
has almost optimal rates of convergence on standard test beds. It is extremely
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Fig. 17. Wavelet thresholding and local squeezing. Both methods were applied to the Blocks data.
Wavelet thresholding tends to produce pseudo-Gibbs effects near discontinuities leading to 47 local
extreme values. The taut string method with local squeezing attains the correct modality of nine.

sensitive, able to identify peaks of very low power. This very sensitivity makes
it susceptible to outliers. Implementations are available from our home page
at http://www.stat-math.uni-essen.de.

7. Proofs.

7.1. Proof of Theorem 3. To prove (c) we analyze the behavior of the upper
bound un�·� = un�·� α� defined by (2.6). We have from (2.7),

qn = qu�n�α�Rn� = log2 n+O�1��

Let

6i = max
�i−1�qn+1≤j≤iqn

ε�tj�� i = 1� � � � �
⌈
n

qn

⌉
�

If F denotes the common distribution function of the ε
(
i
n

)
then the common

distribution function of the 6i is Fqn . We set an = ⌈n log log n
�log2 n�2

⌉
and define

8i = min
�i−1�an+1≤j≤ian

6j� i = 1� � � � �
⌊

log n
log log n

⌋
�
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The common distribution function of the 8i is 1−�1−Fqn�an . On using F�x� =
1
2 + ax for small x with a > 0 it follows that

P
(
8i ≥

b log log n
log n

)
= O

(
exp�−c�log n�b′ �

)
�

where c > 0 and where b may be chosen so that b′ > 0. For this choice of b
we have

P
(

max
1≤i≤ log n/ log log n!

8i ≥
b log log n

log n

)
= O

(
�log n� exp�−c�log n�b′ �

)
�

The upper bound un is nonincreasing and we first analyze its behavior on
an interval where f�1��t� > δ > 0. Without loss of generality we set I = �0� j

n
�.

The above estimates show that

un�t� ≤ f�0� + A log log n
log n

� t = log log n
log n

�(7.1)

The corresponding result for the lower bound ln is

ln�t� ≥ f

(
j

n

)
− A log log n

log n
� t = j

n
− log log n

log n
�(7.2)

As both the upper and lower bounds are nonincreasing, (7.1) and (7.2) imply

A
log log n
log n

+ f�0� ≥ f

(
j

n

)
−A

log log n
log n

�(7.3)

As f�1��t� > δ > 0 on this interval we have

j

n
≤ A

log log n
log n

�(7.4)

It follows that if the bounds have the wrong monotonic behavior this will
be detected at latest on an interval of length O

( log log n
log n

)
where the constant

depends on the size of the derivative of f on the interval.
The case where the bounds have the same monotonic behavior as f is as

follows. Because of the construction of the intervals, it is clear that f will
remain below the upper bound and above the lower bound with probability at
least α. On combining these two results we see the monotonic behavior of the
bounds which minimizes the number of local extreme values that will coincide
with the monotonic behavior of f with probability at least α as n tends to
infinity. In other words the number of local extreme values will be determined
correctly for large n with probability at least α� The reasoning also shows that
the lengths of the intervals Iei�n�α� tend to zero with n and that the midpoints
converge to the local extreme points of f. Finally the reasoning which lead to
(7.1) and (7.2) implies the rate of convergence of (b) of the theorem.

To prove (d) of the theorem it is sufficient to consider the upper bound on a
stretch where f is monotone decreasing. On writing t = i

n
and h = j

n
we have

un�t� = min�un�t− h��M�i�� � � � �M�i− j+ 1��(7.5)
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where

M�m� = max
{
Y

(
m

n

)
� � � � �Y

(
m− qn

n

)}
�

As Y�t� = f�t� + ε�t� and f is nonincreasing it follows that

M�m� ≥ f�t� + :�m��
where

:�m� = max
{
ε

(
m

n

)
� � � � � ε

(
m− qn

n

)}
�(7.6)

On substituting this into (7.5) we obtain

un�t� ≥ min�un�t− h�� f�t� + :�i− j+ 1�� � � � � f�t� + :�i���
As f�t− h� ≤ un�t− h� and f�t− h� = f�t� − hf�1��t��1+ o�1�� this implies

un�t� ≥ f�t� +min�−hf�1��t��1+ o�1��� :�i− j+ 1�� � � � � :�i���(7.7)

We have

P
(
:�m� ≥ b log log n

log n

)
= 1−P

(
:�m� ≤ b log log n

log n

)
= 1−F

(
b log log n

log n

)qn

�

which implies

P
(
:�m� ≥ b log log n

log n

)
≈ 1−

(
1
2

+ ab log log n
log n

)qn

≈ 1− 2−qn exp
(
qn

2ab log log n
log n

)
≥ 1− 1

n
exp�3ab log log n�

for large n. From this it follows that

P

(
i⋃

m=i−j+1

{
:�m� ≤ b log log n

log n

})
≤ j

n
exp�3ab log log n��

If we set j = ⌈n log log n
log n

⌉
and choose b so that 3ab < 1

2 it follows that h ≈ log log n
log n

and

P
(

min
i−j+1≤m≤i

:�m� ≥ b log log
log n

)
≥ 1−O

(
log log n
�log n�1/2

)
�

On using this in (7.7) it follows that

un�t� ≥ f�t� +min
{
−f�1��t� log log n

log n
�
b log log n

log n

}
with b > 0 and f�1��t� < 0. This completes the proof for the upper bound on
stretches where f is monotone decreasing. The other cases follow by appro-
priate changes of sign. ✷
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7.2. Proof of Theorem 4. The assumptions of the theorem imply that the
integrated error process

ε◦
n�t� = 1

n

�nt�∑
1

ε

(
j

n

)
converges weakly to a Wiener process on �0�1�:

√
nε◦

n ⇒ σW�

where W denotes the standard Wiener process. In particular we have

lim
n→∞P

(
max
0≤t≤1


√nε◦
n�t�
 ≤ x

)
= P

(
max
0≤t≤1


W�t�
 ≤ x

σ

)
= H

(
x

σ

)
�

It follows that on the test bed (1.8),

lim
n→∞P

(
max
0≤t≤1


Y◦
n�t� − f�t�
 ≤ C√

n

)
= H

(
C

σ

)
�

As n tends to infinity the probability that the function f lies in the tube
T�Y◦

n�C/
√
n� tends to H

(
C
σ

)
. As the taut string minimizes the number of

local extremes in T�Y◦
n�C/

√
n� we see that

lim
n→∞P�KC

n ≤ k� = H

(
C

σ

)
� ✷

7.3. Proof of Theorem 5. We note that for f satisfying the assumptions of
the theorem

inf
g∈Mk−1

sup
0≤t≤1


f◦�t� − g◦�t�
 > 0�

where Mj denotes the set of functions on �0�1� with at most j local extremes.
This implies

lim
n→∞P�KC

n < k� = 0 for all C > 0�

In the other direction Theorem 4 implies

lim
C→∞

lim
n→∞P�KC

n ≤ k� = 1

and hence

lim
C→∞

lim
n→∞P�KC

n = k� = 1�

The other claims are proved similarly. If the lengths of the intervals Iei�n�C�
do not converge in probability to zero then

max
t∈Iei�n�C�


Sn�t� − f�t�


does not converge in probability to zero and this carries over to the integrated
functions. A similar argument applies to the convergence of the location of the
local extreme points. ✷
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7.4. Proof of Theorem 6. The proof of Theorem 6 relies on the modulus of
continuity of the integrated process ε◦

n as expressed by

lim
δ→0

P
(

sup
0≤t� t+h≤1� h≤δ

√
n
ε◦

n�t+ h� − ε◦
n�t�
 ≤ A

√
−δ log δ

)
= 1(7.8)

for some A > 0� This follows from the sub-Gaussian form of the ε�t�. This will
be used for δ = δn of the form �log n�αn−β with α ≥ 0 and β > 0 in which case
we have

lim
n→∞P

(
sup

0≤t� t+h≤1� h≤δn

√
n
ε◦

n�t+ h� − ε◦
n�t�
 ≤ A

√
−δn log δn

)
= 1�(7.9)

The proofs given below require that the taut string through the tube of radius
C/

√
n has the correct shape; that is, it has the same number of local extremes

as f. In order for this to happen in probability as n tends to infinity we have
to let C tend to infinity. The order is first n to infinity and then C to infinity.
As the distribution of the maximum of a Brownian motion on the interval
�0�1� behaves exactly like the tails of the standard normal distribution, the
probabilities tend very quickly to 1 as C increases. In practice C = 3σn with σn

a robust scale functional such as (1.7) is a large value of C.
The proofs can probably be best understood by taking a probability space

�<�� �P� and considering a sequence of events <0�C�n� which are chosen as
the need arises but which satisfy

lim
C→∞

lim
n→∞P�<0�C�n�� = 1�

We can, for example, put

<1�C�n� =
{
ω � sup

0≤t≤1

Y◦

n�t� − f◦�t�
 ≤ C√
n

}
�

Then clearly

lim
C→∞

lim
n→∞P�<1�C�n�� = 1�

From Theorem 5 it follows that there exists a sequence �δn�∞1 tending to zero
such that

lim
C→∞

lim
n→∞P�<2�C�n�� = 1�

where

<2�C�n� =
{
ω� KC

n = k�max
1≤i≤k


Iei�n�C�
 ≤ δn�max
1≤i≤k


τei�n�C� − tei 
 ≤ δn

}
�

Similarly for another given sequence �δn�∞1 tending to zero we may define

<3�A�n� =
{
ω � sup

0≤t� t+h≤1� h≤δ

√
n
ε◦

n�t+ h� − ε◦
n�t�
 ≤ A

√
−δn log δn

}
�



LOCAL EXTREMES 39

For some appropriate A > 0 we have limn→∞P�<3�n�� = 1. Such choices are
made according to our m needs and finally we set

<0�C�n� = <1�C�n� ∩<2�C�n� ∩ · · · ∩<m�C�n��
For all ω ∈ <0�C�n� all relevant properties hold such as, for example, S̃n

having the same monotonicity behavior as f. The terms O and o used below
can be translated into inequalities that will hold for each n and for all ω ∈
<0�C�n�.

Proof of (a). Suppose S◦
n is initially convex. Then S◦

n is the largest convex
minorant of Y◦

n+C/
√
n until it reaches the left endpoint tl1�n�C� of Ie1�n�C� =

�tl1�n�C�� tr1�n�C��. Then with h0 = tr1�n�C� − tl1�n�C� we have

h0 = argmax
0≤h≤δ

Y◦
n�tl1�n�C� + h� −Y◦

n�tl1�n�C�� − 2C√
n

h
(7.10)

for arbitrarily small δ as n tends to infinity. On writing tl1�n�C� = te1 − κ we
may rewrite (7.10) to obtain

h0 = argmax
0≤h≤δ

Y◦
n�te1 − κ+ h� −Y◦

n�te1 − κ� − 2C√
n

h
�

A Taylor expansion together with the modulus of continuity of ε◦
n gives

h0 = argmax
0≤h≤δ

(
−1
6
h�3κ− h�f�2��te1��1+ o�1�� − 2C√

nh
�1+ o�1��

)
�

This implies

− 1
6
�3κ− 2h0�f�2��te1��1+ o�1�� = − 2C√

nh2
0

�1+ o�1��(7.11)

and as f�2��te1� < 0 we may conclude 3κ ≤ 2h0�1 + o�1�� which implies te1 <
tr1�n�C�. In the other direction we have

h0 = argmax
0≤h≤δ

Y◦
n�tr1�n�C�� −Y◦

n�tr1�n�C� − h� − 2C√
n

h
�

On writing tr1�n�C� = te1 + κ∗ we obtain

− 1
6
�3κ∗ − 2h0�f�2��te1��1+ o�1�� = − 2C√

nh2
0

�1+ o�1���(7.12)

This implies 3κ ≤ 2h0�1 + o�1�� and hence te1 > tl1�n�C� so that te1 lies in the
interval �tl1�n�C�� tr1�n�C�� as was to be proved.

Proof of (b). On adding (7.11) and (7.12) we obtain

−�3�κ+ κ∗� − 2h0�f�2��te1��1+ o�1�� = − 24C√
nh2

0

�1+ o�1��
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and as κ+ κ∗ = h0 this implies

h0 ∼ �24C�1/3
f�2��te1�

−1/3

n−1/6�

Proof of (c). It is sufficient to consider x1 and x2 and to suppose that f◦

and S◦
n are both convex on �x1� x2�. On writing x1 = i1/n and x2 = �i1 + l1�/n

we see that l1 is the local argmin of

Y◦
n�x1 + l

n
� −Y◦

n�x1�
l
n

�

A Taylor series expansion gives

Y◦
n�x1 + l

n
� −Y◦

n�x1�
l
n

= f�x1� +
1
2
f�1��x1�

l

n
+ ε◦

n�x1 + l
n
� − ε◦

n�x1�
l
n

+O

((
l

n

)2)
�

The modulus of continuity (7.8) of
√
nε◦

n implies

√
n

∣∣∣∣ε◦
n

(
t+ l

n

)
− ε◦

n�t�
∣∣∣∣ ≤ A

√
l log n

n

uniformly in t and l, 1 ≤ l ≤ n9/10� say. On setting

l = a
f�1��x1�

−2/3

n2/3�log n�1/3

we have

Y◦
n�x1 + l

n
� −Y◦

n�x1�
l
n

≥ f�x1� +
1
2
a
f�1��x1�


1/3
(
log n
n

)1/3

− A√
a

f�1��x1�
1/3

(
log n
n

)1/3

+O

(

f�1��x1�


−4/3
(
log n
n

)2/3)
�

From (b) of the theorem 
f�1��x1�
 ≥ An−1/6 for C ≥ C0 and consequently
the term

O

(

f�1��x1�


−4/3
(
log n
n

)2/3)
may be neglected. This implies that for a sufficiently large,

Y◦
n�x1 + l

n
� −Y◦

n�x1�
l
n

≥ f�x1� +
1
4
a
f�1��x1�


1/3
(
log n
n

)1/3

�(7.13)
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The lower bound

Y◦
n�x1 + l

n
� −Y◦

n�x1�
l
n

≤ f�x1� + a
f�1��x1�

1/3

(
log n
n

)1/3

(7.14)

is obtained analogously. On putting a = a1 in (7.13) and a = a2 in (7.14)
with a1 = 4a2 with a2 sufficiently large it follows that the local minimum is
attained at a point x1 + l

n
with

l

n
= O

(

f�1��x1�
−2/3

(
log n
n

)1/3)
�

This proves (c) of the theorem.
Proof of (d). We consider first the case where t = xi is a knot which does not

delimit the position of a local extreme value of Sn. We take S◦
n to be convex

at xi. We have

Sn�xi� ≤ Y◦
n�xi + l

n
� −Y◦

n�xi�
l
n

�

A Taylor expansion of order two combined with (7.8) gives for

l = Af�1��xi�−2/3n2/3�log n�1/3�

Sn�xi� ≤ f�xi� +A
f�1��xi�
1/3
(
log n
n

)1/3

�
(7.15)

Using

Sn�xi� ≥ Y◦
n�xi� −Y◦

n�xi − l
n
�

l
n

�

a similar argument gives

Sn�xi� ≥ f�xi� −A
f�1��xi�
1/3
(
log n
n

)1/3

�

which when combined with (7.15) gives


f�xi� −Sn�xi�
 = O

(

f�1��xi�
1/3

(
log n
n

)1/3)
at all knots xi which do not delimit a local extreme value of Sn. For a point t
not in �A� log n

n
�1/3� 1−A� log n

n
�1/3�\∪k

i=1I
e
i�n�C� we have


f�t� −Sn�t�
 = 
f�t� −Sn�xi�

≤ 
f�xi� −Sn�xi�
 + 
f�t� − f�xi�


≤ 
f�xi� −Sn�xi�
 +A
f�1��xi�

f�1��xi�
−2/3
(
log n
n

)1/3

≤ A
f�1��t�
1/3
(
log n
n

)1/3

�
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where we have used

sup
xi≤t≤xi+1

∣∣∣∣f�1��xi�
f�1��t� − 1

∣∣∣∣ ≤ A

for all intervals �xi� xi+1� which do not delimit a local extreme value. This
follows from (b) of the theorem.

Proof of (e). This follows as in the other cases but using the next term of
the Taylor expansion as f�1��t� = 0 for some point in the interval. ✷

7.5. Proof of Theorem 7.

Proof of (a). The multiresolution coefficient wj�k is given by

wi�k =
√
n

2j/2
·
(
Y◦

n

(
k2j

n

)
− S̃◦

n

(
k2j

n

)
−Y◦

n

( �k+ 1�2j
n

)
+ S̃◦

n

( �k+ 1�2j
n

))
�

(7.16)

To show that all multiresolution coefficients of the noise are smaller than
the bound (3.1) for some τ > 0 it is sufficient to show that each coefficient wi�k

is at most σ
√
τ log n. This in turn follows from the inequality


Y◦
n�tl� − S̃◦

n�tl� − �Y◦
n�ti� − S̃◦

n�ti��
 ≤ A
√

tl − ti


√
log n
n

�(7.17)

where �ti� tl� is one of the pairs ��k2j−2j−1�/n� k2j/n�� �k2j/n� �k2j+2j−1�/n�.
We have

Y◦
n − S̃◦

n = ε◦
n + f◦ − S̃◦

n�

and on using the modulus of continuity of
√
nε◦

n as given by (7.8) we obtain
for any points ti and tl with 
tl − ti
 ≥ 1/n,∣∣∣Y◦

n�tl� − S̃◦
n�tl� − �Y◦

n�ti� − S̃◦
n�ti��

∣∣∣
≤ A

√

tl − ti


√
log n
n

+
∣∣∣f◦�tl� − S̃◦

n�tl� − �f◦�ti� − S̃◦
n�ti��

∣∣∣�(7.18)

As


f◦�tl� − S̃◦
n�tl� − �f◦�ti� − S̃◦

n�ti��
 =
∣∣∣∣∫ tl

ti

�f�t� − S̃n�t��dt
∣∣∣∣

≤ 
tl − ti
 sup 
f�t� − S̃n�t�
�
(c) and (d) of Theorem 6 imply


f◦�tm� − S̃◦
n�tm� − �f◦�ti� − S̃◦

n�ti��
 ≤ A
tm − ti

(
log n
n

)1/3

≤ A
√

tl − ti


√
log n
n
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if


tl − ti
 ≤ A

(
log n
n

)1/3

�(7.19)

Thus (7.17) holds for all intervals satisfying (7.19).
Proof of (b). This follows from (a) and Theorem 6(c).
Proof of (c). Consider a multiresolution coefficient whose support is �t1� t2�

with t1 ∈ Iei�n�C� and t2 &∈ Iei�n�C� for some i, the other outside of the same
interval. Let x1 be the right endpoint of Iei�n�C�. It follows from the defini-
tion of S̃◦

n that 
Y◦
n�t� − S̃◦

n�t�
 ≤ C/
√
n for all t ∈ Iei�n�C�. In particular we

have


Y◦
n�x1� − S̃◦

n�x1� − �Y◦
n�t1� − S̃◦

n�t1��
 ≤
2C√
n
�

This is also the worst case for the other point t2 and the result is the inequality


Y◦
n�t2� − S̃◦

n�t2� − �Y◦
n�t1� − S̃◦

n�t1��
 ≤
4C√
n
�

The multiresolution coefficient will satisfy (7.17) if

t2 − t1 ≥ 16C2

τ log n

as was to be shown.
Proof of (d). Consider a multiresolution coefficient whose support is con-

tained in Ie1�n� c� with length h ≥ 1
2 
Ie1�n�C�
. From Theorem 6 we have

h ≈ c1n
−1/6 and 
f�t� − s̃n�t�
 ≥ c2n

−1/3 for some constants c1 > 0 and c2 > 0.
Without loss of generality we may assume that f�t� − s̃n�t� ≥ c2n

−1/3 on the
support of the multiresolution coefficient. This implies that the absolute value
of the multiresolution coefficient is at least c3n−1/2 for some c3 > 0 which even-
tually exceeds the bound√

τh log n
n

≤ c4n
−7/12√τ log n�

whatever the value of τ. ✷

APPENDIX

The taut string algorithm. We give a short description of the taut string
algorithm. Without loss of generality we suppose the data points are �i� y�i��,
i = 0� � � � � n. Let l and u denote the lower and upper bounds for the integrated
process y◦ given by

y◦�k� = 1
n

k∑
i=1

y�i�� 0 ≤ k ≤ n�
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We assume that the endpoints of the string are fixed, that is, l�0� = u�0�
and l�n� = u�n�. Starting from the point �0� l�0�� and for given i the greatest
convex minorant sxi of the upper bound �j�u�j��, j = 0� � � � � i and the small-
est concave majorant svi of the lower bound �j� l�j��, j = 1� � � � � i are both
calculated. The greatest convex minorant sxi may be calculated as follows
[see also Barlow, Bartholomew, Bremner and Brunk (1972)]. Suppose sxi has
been calculated. It is defined by knots �k�j�� u�k�j���, 1 ≤ j ≤ K�i� where it
touches the upper bound and it is linear in between. The first and last points
are knots. The line joining �i + 1� u�i + 1�� is now included as a knot. If the
resulting linear interpolation is convex then this is sxi+1� If not, then the knot
to the left of �i+1� u�i+1�� is permanently eliminated. If the resulting linear
interpolation is convex this is sxi+1. If it is not convex, then again the knot
to the left of �i + 1� u�i + 1�� is eliminated. This process is continued until
a convex interpolation is attained and this defines sxi+1� This algorithm has
complexity O�i� for calculating all the functions sxj and svj 0 ≤ j ≤ i. It
is clear that the taut string must lie between the sxi and svi. The functions
sxi and svi are linear between the knots where they touch the upper and
lower bounds, respectively. After sxi and svi have been calculated it is checked
whether

sx
�1�
i �0+� > sv

�1�
i �0+�(A.1)

holds where sx�1�
i �0+� and sv

�1�
i �0+� denote respectively the right hand deriva-

tives at 0 of sxi and svi. These are nothing more than the gradients of the
first sections of the functions sxi and svi. If (A.1) holds then sxi+1 and svi+1
are calculated. This process is continued until for some i (A.1) does not hold.
At this point the leftmost knot of the set of knots of both the sxi and svi is
determined whereby the very first knot �0� u�0�� is not counted. This leftmost
knot is the first knot of the taut string and we denote it by �k1� s�k1��. It may
be either a knot from the upper bound or from the lower bound. Figure 18
demonstrates this procedure.

The process is now repeated. The origin is moved to the point �k1�0� with
translated upper bounds �j�u�k1 + j��, j = 0� � � � � n − k1 and lower bounds
�j� l�k1 +j��, j = 0� � � � � n−k1. Starting from the point �0� s�k1�� the greatest
convex minorant of the upper bounds and the smallest concave majorant of
the lower bounds are calculated as before. The important point to notice is
that these calculations have already been done for the first i − k1 points.
If the first knot of the string is on the upper bound, that is, �k1� s�k1�� =
�k1� u�k1��, then the convex minorant for the section 0 ≤ j ≤ i − k1 of the
translated bounds coincides with the translation of convex minorant already
calculated. The concave majorant is simply the straight line joining �0� s�k1��
and �i − k1� l�i��. A corresponding statement holds if the first knot is on the
lower bound. It is this which makes the calculation of the taut string O�n�.
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Fig. 18. Example of the taut string method. Moving from the left to the right, the greatest convex
minorants of the upper bounds and the smallest concave majorant of the lower bounds up to the
current position are calculated until both curves intersect. The leftmost knot is added to the taut
string.
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The calculations just described are continued until the last point is reached.
The taut string is now determined by linear interpolation between its
knots.
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Today’s understanding of how well elementary techniques work owes
much to both mathematical analysis and experimentation by computer.—
John Tukey (1977)

The history of the arts and sciences could be written in terms of the
continuing process by which new technologies create new environments
for old technologies.—H. Marshall McLuhan (1964)

Man makes tools whose use then reshapes his life. Technological advances
in statistical computing and in empirical process theory have swept away
statistics as a normative mathematical philosophy. Our subject is under recon-
struction on a more scientific foundation of computational experiments linked
to mathematical probes of statistical methods. Environmental stimuli, notably
competition from data-analytic techniques that fall outside the statistical
canon, favor the evolution of statistics towards empirically tested, falsifiable
theory.

In presenting their innovative nonparametric regression estimators, Davies
and Kovac carefully distinguish among data, statistical procedure and proba-
bility model. Computational experiments have brought this fundamental dis-
tinction to the forefront of statistical thought. Tukey’s (1977) Exploratory Data
Analysis made the point dramatically by not using probability models at all
in the exposition.

1. Experimental and theoretical statistics. Davies and Kovac remark
that “statistical procedures can be evaluated using real data sets and under
the well-controlled conditions of a stochastic model or test bed.” Their figures
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illustrate another possibility, trying a procedure on artificial data. We delve a
little further into the matter.

Until recent decades, the primary tools available to a statistician were
mathematics and logic. A powerful technology, measure-theoretic probability
theory, directed statistics toward probability models for data, toward discus-
sions of abstract principle and toward test statistics or pivots whose distribu-
tions could be tabulated because they did not depend on nuisance parameters.
Simple probability models can motivate promising classes of statistical pro-
cedures. The rules (1.4) and (1.6) that Davies and Kovac propose as part of
their nonparametric regression technology are in this tradition. More complex
probability models can be used in studying mathematically the performance
of statistical procedures. The asymptotic theorems of Section 3 reflect this
second tradition.

Advances in computing and graphical output have brought about rapid
development of experimental statistics. One type of computational experiment
elicits finer details of a procedure’s performance in repeated pseudorandom
realizations from probability models. These details may supplement results
from asymptotic theory, such as rates of convergence and asymptotic mini-
max bounds, whose implications for statistical practice are less than clear.
Of course, pseudorandom realizations constitute a mathematical model for
data that deserves study in its own right. Such artificial data mimics only some
features of the motivating probability model and has properties not envisaged
by that probability model. This point tends to be minimized in the statistical
literature.

Another type of experiment consciously investigates performance of proce-
dures outside probability models. Case studies on actual data or on idealiza-
tions of actual data are important. So are comparative analyses with pertur-
bations of real or artificial data. One might change signal-to-noise ratio or
sample size in the Blocks example in Figure 11. One might add a high fre-
quency sine wave to that example, increasing the frequency of the sinusoid in
order to discover at what point the regression estimators in this paper first
lose sight of its regularity and at what point they fail completely to detect
it. Such perturbation experiments provide interpretable ways of comparing
competing nonparametric regression estimators. Though the human eye often
fails to spot high-frequency patterns amidst noise, good regression techniques
do better.

Assessing procedures under a probability or other mathematical model is
a bold speculation that relies on two hopes: the ability of the model to mimic
observational data and the ability of the mathematical analysis to address
questions of data-analytic interest. Greater interplay between computational
experiments and mathematical probes of procedures has replaced speculation
about data analysis with the rudiments of scientific method. Nevertheless,
reproducibility of published computational experiments still has low priority
in core statistical journals. In an unpublished technical report, Buckheit and
Donoho (1995) discussed what is required to make computational portions of
statistical research reproducible.
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2. The one-way layout in nonparametric regression. A regression
model that motivates parts of the paper is

y�ti� = f�ti� + ε�ti�� 1 ≤ i ≤ n�(1)

where the values 0 < t1 < t2 < · · · tn < 1 are strictly ordered. Estimation of
the function f on the basis of the observed ��yi� ti�� is the task undertaken.
In theoretical study of function estimators fn under probability models, it is
customary to compare fn with f through quantities such as the supremum
norm and to impose conditions on f such as differentiability (cf. Section 3 of
the paper).

Nonparametric regression combines two distinguishable problems, each of
which may be studied constructively on its own. The first problem is estimation
of the values �f�ti�� 1 ≤ i ≤ n�. This amounts to estimation of the values �µi�
in the one-way layout

yi = µi + εi� 1 ≤ i ≤ n�(2)

where yi = y�ti�� µi = f�ti� and εi = ε�ti�. That the least squares estimator
y = �yi� of µ = �µi� is not a good answer to the problem was pointed out
by Stein (1956). This naive estimator can have relatively high risk under a
probability model.

Once we have devised a more efficient estimator of µ, the second problem
is interpolation among its components so as to estimate the function f. This
is essentially a problem in approximation theory and is considerably more
sensitive to assumptions on the nature of f than is the estimation of the
�f�ti��. Because the data will not tell us how many derivatives f has, we
might settle, in the absence of strong prior information, for linear or spline
interpolation among the estimated components of µ. Instead, the Davies and
Kovac estimators of f simultaneously determine the estimator of µ and the
interpolation scheme by minimizing the number of local extrema in fn, subject
to achieving residuals at the �ti� that behave like white noise. Their idea
is refreshingly novel. Comparing the performance of their estimators with
linearly interpolated thresholding competitors when f is very wiggly seems to
be a natural question.

To consider separately the estimation and interpolation aspects of nonpara-
metric regression clarifies what we can achieve in each respect. In particular,
handling the practically important case where the �ti� are not all distinct can
begin with treating an unbalanced one-way layout.

3. Loss estimates as diagnostic tool. A statistical practitioner needs
credible indications of a procedure’s success or failure in analyzing the data at
hand. Ensemble results such as minimaxity of a procedure or asymptotic rate
of convergence under a probability model do not diagnose adequacy of a proce-
dure applied to specific data, though they may suggest instructive experiments
with competing procedures in worst-case scenarios. The residency system for
practical training of physicians arose in the second half of the nineteenth cen-
tury, replacing a system whereby the training of medical practitioners was
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mostly theoretical. Surgeons and army doctors who worked with their hands
long had lower social status, even as they pioneered important medical pro-
cedures. Improved computing environments now encourage developments in
statistical diagnostics and statistical training that may parallel, at an abstract
level, the evolution of modern scientific medicine.

Feedback about which nonparametric regression procedure to use in a par-
ticular data analysis can come from estimated performance summaries, from
diagnostic plots and from the substantive field in which the observations were
obtained. A broadband diagnostic approach is surely more effective than any
single tool. For example, estimated losses sharpen visual scrutiny of compet-
ing regression estimators and their residuals by prompting one to see why one
estimated loss is larger than another. Estimated losses are especially helpful
when the domain of the regression function is not one- or two-dimensional.

We discuss here technical aspects of estimating the quadratic loss

�3� Ln�µ̂� µ� = n−1
µ̂− µ
2

for the estimator µ̂ = µ̂�y�. Let g�y� = µ̂�y� −y. If the errors �εi� in the one-
way layout are i.i.d. N�0� σ2� and g satisfies assumptions detailed in Stein
(1981), then the risk of µ̂ is

�4� Rn�µ̂� µ� σ2� = σ2 +E

[
2σ2n−1

n∑
i=1

∂gi�y�/∂yi + n−1
g�y�
2
]
�

Let U be an orthogonal matrix whose columns from a basis for Rn and are
increasingly wiggly as column index increases. For example, U might be the
orthogonal polynomial basis or the discrete cosine basis for Rn. Let z = U′y.
Some approaches to estimating σ2 are typified by the formulas,

�5� σ̂2
D = �2�n− 1��−1

n∑
i=2

�yi − yi−1�2 and σ̂2
H = �n− q�−1

n∑
i=q+1

z2i

and robustifications like (1.7) in the paper. Consistency theorems for these
estimators of σ2 and their variants suggest diagnostics that guide their use.

Let

�6� L̂n = σ̂2 + 2σ̂2n−1
n∑

i=1
∂gi�y�/∂yi + n−1
g�y�
2�

For consistent σ̂2 and and certain classes of estimators µ̂, the loss Ln�µ̂� µ�
and the risk Rn�µ̂� µ� σ� converge together as n tends to infinity; and L̂n also
converges, in an L1-norm sense, to the common asymptotic value of loss and
risk. Further details are given in Beran (2000) and references cited there.

The proposal being made is to consider L̂n as a diagnostic tool for assessing
nonparametric regression estimators. When µ̂�y� lacks a tractable closed form,
the partial derivatives needed in (6) may be approximated numerically. Let ui
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denote the vector inRn whose ith component is 1 and whose other components
are 0. Then, for small real values of δ,

�7� ∂gi�y�/∂yi ≈ δ−1�gi�y+ δui� − gi�y��� 1 ≤ i ≤ n�

Computing these difference quotients requires computing µ̂�y� = y+g�y� and
the n perturbed estimators �µ̂�y+ δui�� 1 ≤ i ≤ n�.

Like other statistical procedures, diagnostic tools need experimental test-
ing. In trials on pseudo-random artificial data, we may compare the actual
loss of a regression estimator with loss estimates such as L̂n. In the author’s
experiments, approximate evaluations of L̂n on pseudo-Gaussian data have
yielded respectable estimates of loss for the James–Stein estimator of µ and
for more efficient linear shrinkage and soft-thresholding estimators. The find-
ings suggest trial of L̂n as a performance diagnostic for the Davies and Kovac
regression estimators and further theoretical investigation of loss estimators
outside Gaussian models.
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DISCUSSION
Lutz Dümbgen

Medical University at Lübeck

Laurie Davies and Arne Kovac have written a nice and very stimulating
paper on nonparametric regression. They propose a novel approach to curve
estimation, combining the traditional notion of estimation error (measured
by supremum norm) and the complexity of the fitted function (measured by
its modality). My comments are formulated in terms of a “true” underlying
regression function f.
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Despite its slow rate of convergence, the runs method has its own merits.
For if one fixes an upper bound for the number of modes, this method yields
a confidence band for the underlying curve f, while the taut string methods
provide only point estimators. In addition, at jump points of f the confidence
band’s horizontal width may become as small as Op�log�n�/n�. Here one could
bring up the multiresolution idea by replacing the runs test statistic (1.4) with
a multiscale sign statistic such as

max
0≤a<b≤n

(
�b− a�−1/2

∣∣∣∣∣ b∑
i=a+1

sign �rn�ti��
∣∣∣∣∣−Cn�b− a�

)
�

where Cn�d� �= �2 log�n/d��1/2. This statistic yields confidence bands for
monotone median functions with the correct asymptotic width [cf. Dümbgen
and Johns (2000)]. My guess is that the authors’ method of “stretching to the
right (or left)” can be adapted to this test statistic, yielding an algorithm with
running time O�n2�. While the bands produced by the runs method are okay
in situations with low noise level, the alternative statistic should yield better
results if the sample size is large and the data are rather noisy.

As for the taut string method, Theorem 3.1 is a nice example for a non-
parametric lower confidence bound for the modality of a curve. In the context
of density estimation this procedure was proposed by Donoho (1988), but here
is an explicit algorithm for computing this bound together with a candidate
f̂ for f. I tried this method for density estimation and the results look very
promising indeed. The true modality tends to be underestimated quite often,
so that some version of local squeezing seems to be appropriate.

The taut string method with local squeezing can be viewed as an ad hoc
method for (almost) solving the following optimization problem: find a curve
f̂ whose total variation is as small as possible (or such that the graph of the
function t )→ ∫ t

0 f̂�x�dx has minimal length) under the constraint that

�∗�
∣∣∣∣∣ b∑
i=a+1

�y�ti� − f̂�ti��
∣∣∣∣∣ ≤ cn�a� b�

for all integers 0 ≤ a < b ≤ n. The authors’ multiresolution analysis corre-
sponds to

cn�a� b� �= σ̂n�2�5 log�n��1/2�b− a�1/2

if a = j2d� b = k2d for some integers j� k and d ≥ 0, and cn�s� t� �= ∞
else. Now I wonder whether this optimization problem can be solved directly.
Furthermore, one might replace the constraints (∗) with∣∣∣∣∣ b∑

i=a+1
sign �y�ti� − f̂�ti��

∣∣∣∣∣ ≤ cn�a� b��

This would lead to a really distribution-free nonparametric method for esti-
mating a median curve which is consistent with the data and as “simple” as
possible.
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DISCUSSION
J. A. Hartigan

Yale University

This paper contains interesting new theoretical and practical results for
approximating a data set by a function with few extreme values. Davies and
Kovac consider three technologies: runs, taut strings and multiresolution eval-
uation of residuals. I will confine my remarks to the taut strings part of the
paper, since that method (referred to as stretched strings) was used in Hartigan
and Hartigan (1981). Some work on stretched strings for multimodal density
estimation appears in Hartigan (2000).

I believe the stretched string fit of a function f�ti� to data y�ti� is best
expressed by finding the function f that minimizes the criterion

∑
i

�y�ti� − f�ti��2 + λ
n∑

i=2

�f�ti� − f�ti−1�
�

Perhaps the penalty function could be the weighted function

λ
n∑

i=2

�f�ti� − f�ti−1�/�ti − ti−1�
�

Using the weighted penalty function gives essentially the same mathematics.
It is quite common in smoothing to use instead a squared penalty function

such as

λ
n∑

i=2
��f�ti� − f�ti−1��2/�ti − ti−1��

which specifies that f be Brownian motion, in a Bayesian framework. Linear
kernel estimates of the unknown f follow. So it is interesting to discover the
effect of replacing the squared difference by the absolute difference; an obvious
effect is that we will be much quicker to accept sharp changes in f.
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A probability model that would justify the above criterion would be inde-
pendent normal errors and a Laplace process for the unknown f. Perhaps if
we wish to be insensitive to a few outliers, we should use∑

i


�y�ti� − f�ti��
 + λ
n∑

i=2

�f�ti� − f�ti−1�
�

Davies and Kovac define their taut string fit through an optimization on
the summed data

0� y
(
1
n

)/
n�

[
y

(
1
n

)
+ y

(
2
n

)]/
n� � � � � �

[
y

(
1
n

)
+ · · · + y

(
n

n

)]/
n�

The taut string is a curve of minimum length passing between the graph
of these sums plus or minus a constant (I call these upper and lower limit
graphs the jaws) and tied down at the endpoints (0,0), (1,ȳ). The taut string
is a straight line when the constant is large, having slope (the fitted value of
f) equal to the mean of the observations.

I agree with the general idea of local squeezing, which is analogous to
the idea in kernel density estimation that the kernel width should be varied
according to discovered behavior in the underlying density. However, I am
uneasy about the multiresolution route for analyzing residuals, because, as
the authors acknowledge, it is not connected in any way to the taut string fits.

We are well set to consider the fits for all operators λ. We begin with a
single straight line stretched string between (0,0) and (1, ȳ). As the jaws close
around the graph of cumulative sums, one or other jaw touches the string and
it begins to bend, at each touch adding a new straight line segment to the
stretched string. When the aperture is zero, there will be a perfectly accurate
fit to the data. Considering all the straight line segments formed along the
way, we see that they form a hierarchical tree with a total of 2n−1 segments,
and taking O�n log n) to compute.

Our fitting problem is to decide which partition of segments selected from
that hierarchical tree is the appropriate one to use in the fit. The particular set
of segments selected will consist of segments from different stretched string
fits. Corresponding to each segment, the fitted value is the mean of the k
observations in a segment, adjusted down by λ/k at a maximum, and adjusted
up by λ/k at a minimum. Thus we want λ/k to be small to prevent bias, but
we want λ large to encourage long segments with small variance.

In Hartigan (2000), for multimodal densities I use the analogue of the fol-
lowing rule to select the partition of segments within each of which the fit is
constant: Consider a segment whose endpoints are on the upper cumulative
jaws at some λ. A similar process is followed for segments with endpoints on
the lower jaws.

The data within that segment defines a cumulative sum process that begins
at one endpoint of the segment, terminates at the other endpoint, and always
remains above the segment. If indeed the unknown function f were constant
in the segment, the asymptotic distribution of this process would be that of an
excursion of a Brownian motion. We estimate the variance for the Brownian
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motion by the mean squared difference of the successive sums in the segment;
we will split the segment (rejecting its inclusion in the final partition) if the
maximum excursion is surprisingly large, indicating a nonconstant f within
the segment. The maximum of a Brownian excursion that passes through (1,0)
[from Kennedy (1976)] has distribution function

F�x� = ∑
−∞<j<∞

exp�−2j2x2��1− 4x2j2��

So the proposal for selecting the final partition is as follows:

1. Construct all 2n− 1 segments for all apertures λ.
2. Eliminate all segments that touch the same jaw twice if the corresponding

excursion of partial sums is too large, and eliminate all segments that
include them.

3. Select the final partition to consist of the maximal remaining segments.

I offer no theoretical or empirical comparisons of this selection method with
the multiresolution method of Davies and Kovac; I advance it because the
selection process analysis follows simply from the fitting method.
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DISCUSSION
Enno Mammen and Sara van de Geer

Ruprecht-Karls-Universität Heidelberg and University of Leiden

1. This is a nice paper, which we enjoyed reading. As J. Tukey does, the
authors follow the practice of decomposing data into two parts. The first part
is the signal which is defined as having a simple structure. The second one,
denoted “noise,” is the remaining part having high complexity and nearly no
structure. The crucial point of this approach is to define a simple structure.
In this paper, for a one-dimensional function, simplicity is defined as having
a small number of modes. This is a very appealing notion of simplicity. How-
ever, there also exist other definitions which are more appropriate in certain
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applications. For example, in the last century a related notion was introduced
in Sprague (1887). In the analysis of mortality tables he defines smoothness
(or in the terminology of the paper of P. L. Davies and A. Kovac, simplicity)
of a function as the number of modes of the first derivative (or equivalently,
the number of concave or convex pieces of the function). For more history on
smoothing (in actuarial sciences) and this notion of Sprague, see also Diewert
and Wales (1993). By the way, Sprague was also one of the first researchers
who considered smoothing as construction of roads through rough terrain.
Removing hills and valleys as done in restricting the number of modes could
also be motivated by this image. This is nicely illustrated in this paper [see
also Mammen and van de Geer (1997)]: taut strings are constructed by moving
earth from (local) hills to valleys. Also other measures of smoothness implic-
itly used in smoothing methods could be used in the approach of Davies and
Kovac. The notion of simplicity that is used should depend on the aims of the
statistical application.

2(a). In many applications some a priori knowledge on the structure of
the signal is available that might be incorporated into the model. Then a sim-
ple criterion like the number of modes of the signal is no longer appropriate.
Moreover, it may not be the aim of the statistical analysis to find a simple
model for the signal.

2(b). For higher-dimensional data sets it is not immediately clear which
criterion can be used. If no structure on the high-dimensional signal is
assumed, clearly one can also look at the number of modes of the signal. How-
ever, for high-dimensional functions the geometric shape is not fully described
by the number of modes. An informative qualitative description of the shape
would need other shape characteristics.

2(c). The second approach of the paper is based on two steps. In the first
step a scale of candidate regression functions is calculated (having different
amounts of simplicity). The generation of these functions is done by the taut
string method (and modifications). Also, for multivariate signals one could
consider a generalization of the taut string method. This could be done if one
looks for another more appropriate notion of a simple signal or even if one
uses the criterion of number of modes. For univariate data the taut string
estimate is given by the minimizer of

n∑
i=1

�Yi − f�ti��2 + λTV�f��(1)

where TV (f) is the total variation of the function f and λ is a smoothing
parameter. A possible generalization of the taut string method to multivari-
ate data is given by the minimizer of (1) where now TV (f) is the higher-
dimensional total variation of the function f. A discussion of this estimator
can be found in Mammen and van de Geer (1997). A related approach has
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been proposed by Kuensch (1994) in the context of image restoration. He looks
at (monotone transforms of) the absolute differences between values of f at
neighboring points and uses their sum as penalty term. The question remains
how to define what is a simple signal in higher dimensions [see 2(b)].

3. The taut string method is based on minimization of penalized least
squares. Other losses could be used as well. Then one would look at the min-
imizers f̂λ of

�2� G�λ�f� =
n∑

i=1
ρ�Yi − f�ti�� + λTV �f��

where ρ is an appropriate loss function. For a large class of functions ρ the
minimizer f̂λ can be taken as a piecewise constant function with number of
modes decreasing in λ. At a piece J = �k� · · · � k + m� the value γ̂ of f̂λ is
defined as the minimizer of

∑
i∈J ρ�Yi − γ� + cγ where the constant c depends

on the value of f̂λ in the neighboring pieces. If f̂λ is monotone c is equal
to 0, if f̂λ has a local extreme in the piece then c is equal to +2λ or −2λ.
For convex ρ, the value of ±2λ leads to a down shifting at local maxima and
to up shifting at local minima. This coincides with the behavior of the taut
string estimate. A popular choice of ρ would be ρ�x� = 
x
. Then f̂λ is a local
median that is down- or up-shifted at local extremes. The estimate can be
easily calculated by using standard L1 fitting routines. This can be done by
minimizing theL1 norm between �θ1� � � � � θn� λ�θ2−θ1�� � � � � λ�θn−θn−i� and the
artificial observation vector (Y1� � � � �Yn�0� � � � �0�. Here we write θi = f�ti�.
Alternatively, one could directly apply linear programming methods; see also
the next point. It would be natural to use these L1 fits instead of taut strings
in case one has a model (a test bed) with median zero errors. In particular, it
would be more appropriate for heavy tailed errors like Cauchy errors, therefore
a good alternative to the run method of the paper.

4. Minimizers of (2) have been proposed in the literature on regression
quantiles for the modified penalty TV (f′). With the total variation of the
derivative of f instead of f, the resulting minimizer is now a piecewise linear
function. This penalty corresponds to Sprague’s definition of smoothness. The
estimates can easily be calculated by linear programming; see Koenker, Ng
and Portnoy (1994). For asymptotic theory see also Portnoy (1997) and van de
Geer (2000). Using this estimate in the approach of Davies and Kovac would
be more satisfactory than Sprague’s method. He proposed just drawing curves
by hand.
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DISCUSSION
J. S. Marron

University of North Carolina, Chapel Hill

There are at least two levels on which this paper is very interesting to
read. First the underlying philosophical view is not standard in the mathe-
matical statistics community. Second, a fascinating alternative paradigm for
developing smoothing methods is presented.

I agree that the underlying concept “there is no true underlying regression
curve, only data,” is not discussed much in the mathematical statistics litera-
ture. Why is this? Perhaps it comes from the fact that mathematics requires
assumptions, and a “true curve” is an assumption that leads to a lot of useful
and insightful mathematics. In particular, this assumption, labelled as “test
bed,” leads to both the interesting mathematics and the convincing simula-
tions of the present paper.

However, the idea of “what we are doing is only an approximation” does
deserve the highlighting it has gotten here. How can this important concept
be harnessed, and used to address serious problems? One approach is the scale
space view of kernel smoothing, discussed in Chaudhuri and Marron (2000)
and used for statistical inference in Chaudhuri and Marron (1999). Assuming
the existence of a true underlying curve for a moment, an important part of
the scale space view is that there is not enough information in the data to
completely estimate the true curve. Hence, one should instead focus on other
“targets” which reflect what aspects of the true curve are obtainable from the
data. This seems to be a useful position that lies in between the two sides of
the debate as to whether or not a “true underlying curve exists.”

The specifics on the interesting new approaches to curve estimation are
connected to some ideas of Tukey. The “Tukey terminology” can be carried one
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step further, in that Tukey sometimes used the terms “smooth and rough” for
what is presently called “signal and noise.” The new approach seems to be
unique in that it strives to control the properties of the rough (e.g., the sign
change run length), and then optimize the smooth subject to that constraint.
This viewpoint is reminiscent of smoothing splines [see, e.g., Wahba (1990) or
Green and Silverman (1994)], where an approach is to control the smoothness
of the smooth and then to minimize the rough subject to that constraint. The
former is in some sense an unexpected and deep reversal of the latter.

Can something be gained from combining these ideas? Section 1.3 stresses
that smoothness is not an issue presently under discussion, which is fair
enough for the present first pass at this approach. However, in future work it
may be sensible to try to put these together.

A potentially exciting future area is suggested in Section 1.2: “confidence
sets are also possible.” Development of new smoothing methods, and calcu-
lating their rates of convergence is fun. However, the real value added by
statistical methods in the actual analysis of data comes not from suggesting
a smoothing method, but instead from providing meaningful inference. For
example, an often central issue is which features (e.g., bumps or spikes) in a
smooth are really there (as opposed to being sampling artifacts)? The present
approach has potential in this direction, and it would be very good see it
developed in future work.

The one perhaps unsettling point of the proposed methodology is the choice
of the threshold 2.5 in (1.6). It seems clear that 2 will create difficulties, but
why 2.5 as opposed to 2.2 or 3? The “it worked well in the few examples
that we tried” suggestion is not very satisfying. Perhaps this problem could
be addressed using an analog of the scale space approach to kernel smooth-
ing: instead of focussing on a single threshold, present the family of curve
estimates for a range of thresholds.
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REJOINDER
P. L. Davies and A. Kovac

Universität Essen

We thank all the discussants for their contributions and the interest shown
in our work.

The main motivation for this paper was to put forward a view of statistics
based on the idea of approximation and exemplify this in the context of an
interesting statistical problem. Although most if not all statisticians regard
probability models as useful pragmatic approximations, this is not reflected
in statistical theory or terminology or, to a large extent, in statistical practice.
As an example we mention that the additivity of beliefs in Bayesian statistics
is based on truth. If we accept the approximate nature of statistical models
then it seems quite natural to use it in a consistent manner. However, as far
as we are aware, this idea seems to be new. In some unpublished comments on
an earlier version of Davies (1995), Tukey (1993b) states that the “emphasis
on approximation is well-chosen and surprisingly novel.” We have no closely
knit paradigm to offer such as the Bayesian one and no “principles” of sta-
tistical inference. Indeed, we do not think there are any apart from a critical
“distanced” view of one’s own statistical theory and practice. This is not to say
that the approach has no consequences. We think it has many, although they
may not be obvious at first sight. One immediate consequence is the strict
separation of data and model mentioned by Beran. Given that the model is
only an approximation to the data, the two must be strictly separated. This
separation is not new. In the context of the two-way table, we find on page
254 of Tukey (1993a) the following equations:

∗ yij = t+ ai + bj + cij�

and

∗∗ yij = τ + αi + βj + γij�

Tukey writes

� � � there is a great danger, almost an overriding certainty, that the
conventually trained will look at (∗) and see, or think seriously
about (∗∗) with conventional probabilistic assumptions about the
Greek “population” quantities.

Earlier he writes

The conventional approach would have been unchallengeable IF, (a)
IT WOULD INDEED BE CARRIED THROUGH, which may or may
not be possible, and (b) ITS ASSUMPTIONS WERE SECURELY
CORRECT, which they never are. One � � � but also with an unmen-
tioned (unmentionable) logical gap between the assumptions and
the data.



62 REJOINDER

We also emphasize the role of procedures (again advanced by Tukey) by
which we probably mean algorithms with default values for all nonobvious
parameters. It makes no sense to restrict a statistical procedure to data which
fulfil certain assumptions such as the ubiquitous “i.i.d.” triad. There is sim-
ply no way in which such an assumption can be verified. Instead we should
use both empirical experiments and theoretical investigations to understand
the strengths and weaknesses of a procedure. We use here the words “test
bed” which correspond to Tukey’s “challenge.” We again quote Tukey (1993a),
page 250:

Theoretical results typically have assumptions. However applicable
procedures, even those suggested by theoretical results, are typi-
cally never used where theory’s assumptions apply exactly and in
detail. Thus applicable procedures do not themselves have
assumptions—only some circumstances in which they work (i.e.
serve our purposes) better, and some in which they work less well.
� � � I know some will think these statements heretical, but I find no
escape from them and their implications.

Beran makes a strong case for analyzing procedures on test beds where they
begin to break down. He has made explicit suggestions for such experiments
in the context of nonparametric regression and we intend to carry them out.
He has made further interesting suggestions about other more theoretical
investigations of the performance of a procedure. They could be perhaps be so
tuned to measure the accuracy with which peaks are identified and not only
whether the correct number is found.

Beranremarksquitecorrectly thatoursimulateddatasetsusepseudorandom
variables.With the possible exception of the spectroscopy data they are all deter-
ministic. This raises the interesting question as to the status of randomness.
On the one hand there are deterministic sequences such as the prime num-
bers which can, in a well-defined sense, be proved to behave randomly. We
refer to Kac (1959) who writes “the primes, indeed, play a game of chance.”
On the other hand the Bohmian version of quantum mechanics opens up the
possibility that the universe is a super-deterministic system. We refer to Bell
(1987), Albert (1992), Berndl, Daumer, Dürr, Goldstein and Zanghi (1995) and
Goldstein (1998a,b). None of these pose any difficulties of interpretation if one
abandons the concept of truth for statistical models and replaces it by approx-
imation. We very much welcome Beran’s contribution, which is in the same
spirit as our paper.

Marron mentions the usefulness of the idea of a “true” regression function f.
There is no doubt that stochastic models give useful insights for analyzing
data. As Beran mentions, both (1.4) and (1.6) are based on stochastic models.
They can also suggest concrete procedures such as using the mean squared
error to derive a procedure for the choice of the local bandwidth for kernel
estimates. We do not think that it is necessary even in this case to assume the
truth of a model. Everything can be formulated in terms of approximation.
We mention in passing that local bandwidth selection for kernel estimators
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can also be done using a multiresolution analysis of the residuals. We are not
sure what a position between a “true” f and an “approximate” f would look
like. Marron calls the reversing of the roles of smooth and rough “unexpected.”
From the point of view of approximation this approach seems quite natural.
Our attitude is the following. Given a data set, a fully or sometimes a partially
specified model and a concept of approximation it should be decidable whether
or not the model is an approximation to the data in the stated sense. Suppose
that the model is

Y�t� = f�t� + σε�t�
with ε�t� denoting standard Gaussian white noise. We now specify a func-
tion f and ask whether this is an adequate approximation to the given data
�x�ti�� y�ti��� 1 ≤ i ≤ n� To do this we form the residuals r�ti� = y�ti� − f�ti�
and check whether they satisfy the multiresolution condition (1.6) with σn

given by (1.7). This can be done and checked for any given function f� Indeed,
one can bet on whether a given f is a good approximation to the data set
or not. Moreover, these bets can be called in as they are decidable. The odds
however do not give rise to a probability measure over the parameter space.
If required, the concept of approximation can be made to include the value of
σ� The requirement of specifying exactly what is meant by an approximation
includes a specification of the approximation for the random part of the model.
From this point of view it seems natural to define an approximation to the
noise and then to maximize simplicity for the signal.

The choice of 2�5 was pragmatic. For some data sets in the area of spec-
troscopy a choice of 1�8 led to results more in line with the expectations of the
chemists. It is unlikely that theoretical investigations will lead to a correct
value of the threshold and so it will probably remain a pragmatic choice.

Dümbgen restricts his remarks to the two approximization problems. As he
notes, the run method provides bounds for regression functions rather than
an explicit candidate. The run bounds are obtained by inverting a run test
for independence. He suggests another possibility which will in general lead
to tighter bounds and which has a complexity of O�n2�. For many data sets
this will be sufficient and it may be possible to obtain approximations for
larger data sets. He points out correctly that the taut string method is an ad
hoc attempt to solve the multiresolution approximation problem and suggests
that it may be possible to solve it explicitly. Since writing the paper we have
occasionally had simulated data sets where the taut string method, even with
local squeezing, has produced a superfluous local extreme. It is therefore of
interest to solve the problem exactly. It may also be easier to analyze the
behavior of the exact procedure rather than that of the taut string procedure.

Mammen and van de Geer discuss the simplicity criterion. There were two
reasons for choosing the number of local extremes. First, we wanted to remove
small local fluctuations which many methods exhibit. One can overlook these
with the eye but we felt it was a challenge to remove them. Second, there are
data sets where the detection of peaks is of prime interest. One example is
spectroscopy data. In a forthcoming paper we discuss the problem of densities.
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Much of the work done in this area is based on L2 errors although the ensuing
examples are discussed in terms of detecting, or more often, not detecting
peaks. Other choices of simplicity are clearly possible. One is to minimize the
number of intervals where the function takes on different values. In higher
dimensions some thought will have to be given to the form of the geometric
constraints. These will depend on the type of data which are to be analyzed.

Mammen and van de Geer and also Hartigan point out that the taut string
with a tube of constant diameter is the solution of the following minimization
problem:

n∑
1

�y�ti� − f�ti��2 + λ
n∑
2


f�ti� − f�ti−1�
�(1)

where λ is related to the diameter of the tube. As mentioned by Dümbgen, the
taut string is an ad hoc method for solving the multiresolution problem and in
this respect solutions of (1) are not good enough. This is shown, for example,
by the Bumps data. It was this failure of the raw taut string method which
lead us to look for improvements. The result was the local squeezing method
and it was only then that we felt the results were worth publishing. Dümbgen
has pointed out to us that local squeezing as implemented in the algorithm
may be seen as the solution of the minimization problem

n∑
1

�y�ti� − f�ti��2 +
n∑
2

λi
f�ti� − f�ti−1�
(2)

with data driven λi�
Mammen and van de Geer discuss other variants such as

n∑
1


y�ti� − f�ti�
 + λ
n∑
2


f�ti� − f�ti−1�
�(3)

We have already experimented with solutions of (3) and the results are very
promising. What we would like to do is to solve the multiscale sign statistic
problem posed by Dümbgen; it seems plausible that solutions of (3) will be
related to it. However, it may again be the case that (3) must be replaced by

n∑
1


y�ti� − f�ti�
 +
n∑
2

λi
f�ti� − f�ti−1�
(4)

before acceptable results are obtained. Mammen and van de Geer say that
solutions of (3) may provide an alternative to the run method. One has to be
careful about this. Solutions of (3) can be used as a data analytical tool by
varying λ and this is indeed suggested by Mammen and van de Geer (1997) in
the context of solutions of (1). If one is interested in a well-defined statistical
procedure then some form of automatic choice of λ must be given and the
performance of the procedure will be determined by this choice. If the choice
is the maximal run length of the residuals then solutions of (1) will have at
least as many local extremes as the run method provides. Thus solutions of
(1) can only be judged in combination with some automatic choice of λ.
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Hartigan points out that the taut string method is not related to the mul-
tiresolution scheme. This is indeed the case. As mentioned above we regard
the taut string with local squeezing as an ad hoc method for solving at least
approximately the multiresolution problem. Our interpretation of his method
is that he suggests a different definition of approximation to white noise which
is based on the partial sums process of the residuals, the behavior of which
is approximated by that of the limiting Brownian motion. He then suggests a
scheme for splitting the intervals defined by the taut strings. We are not sure
whether this will control the number of local extremes of the resulting regres-
sion function but it is certainly an interesting and novel idea which deserves
further investigation.

We would like to thank all the discussants for their contributions. We must
also thank Dümbgen and Hartigan for pointing out an error in our initial
definition of the taut string. This has been corrected in the paper.
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