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ON MEASURING INTERNAL DEPENDENCE IN A SET OF
RANDOM VARIABLES!

BY RoBERT A. KovAk
The Johns Hopkins University

To measure dependence in a set of random variables, a multivariate
analog of maximal correlation is considered. This consists of transforming
each of the variables so that the largest partial sums of the eigenvalues of the
resulting correlation matrix is maximized. A “maximalized” measure of
association obtained in this manner permits statements to be made about the
strength of internal dependence exhibited by the random variables. It is
shown, under a weak regularity condition, that optimizing transformations
exist and that they satisfy a geometrically interpretable fixed point property.
If the variables are jointly Gaussian, then the identity transformation is
shown to be optimal, which extends Kolmogorov’s result for canonical corre-
lation to the principal components setting.

1. Introduction. Consider two random vectors Y = (Y;,...,Y,) and Z =
(Zy,...,2,), each defined relative to a common probability space, with ranges
R(Y) € R? and R(Z) c R An often used measure of association between Y
and Z is the canonical correlation coefficient
(1.1) p(Y,Z) = supcorr(a’Y, b'Z),

a,b
where the supremum is over @ € R” and b € R% As a measure of association,
the usefulness of p(Y,Z) depends on the extent to which the relationship
between Y and Z is linear, as it is if Y and Z are jointly Gaussian. This
restriction can be overcome by considering instead the maximal canonical
correlation coefficient

(1.2) p*(Y,Z) = soufcorr(ﬁ(Y),(#(Z)),

where the supremum is taken over all Borel measurable mappings 6: R(Y) — R!
and ¢: R(Z) — R' having finite second moments. A

In the special case where Y and Z are univariate, p*(Y,Z) is simply the
maximal correlation coefficient, which has received considerable attention in the
statistical literature. Gebelein (1941) is credited with first formulating the con-
cept of maximal correlation and for giving it its present name. The mathematical
properties of maximal correlation have been explored by several authors, among
whom the contributions of Sarmanov (1958a,b), Rényi (1959) and Csaki and
Fischer (1963) are prominent. We note the following properties of the maximal
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1216 R. A. KOYAK
correlation coefficient [see, for example, Csaki and Fischer (1963)]:

PrOPERTY 1. (d) 0 < p*(Y,Z) < 1.

(b) p*(Y,Z) = 0 if and only if,Y and Z are stochastically independent.

(c) p*(Y,Z) = 1 if there exist functions 6* and ¢* such that 6*(Y) = ¢*(Z),
a.e.
(d) If Y and Z are jointly Gaussian, then p*(Y,Z) = p(Y, Z), i.e., the maximal
correlation and the usual product correlation coincide.

It is interesting to note that a converse to Property 1(c), in general, does not
hold: The maximal correlation need not be attained by any transformations of Y
and Z. An example in which this phenomenon is exhibited can be found in Rényi
(1959). However, pathologies of this type can be ruled out if the bivariate
distribution satisfies the mild regularity condition

(1.3) J[2(5, 2) dF, dF. < oo,

where Q(y, 2) = dF,(y, 2)/dF(y) dF(y) is the Radon-Nikodym derivative of
the joint distribution of Y and Z with respect to the product distribution of its
marginals.

Lancaster (1958, 1969) used the term ¢*finite to describe bivariate distribu-
tions satisfying (1.3). Since these distributions have Q(y, z) € Ly(F, X F,), one
can expand Q(y, z) as a Fourier series with respect to an orthonormal basis in
the product distribution

o0
(1.4) Uy, 2) =1+ X p0.(7)9a(2),
n=1
where Y®_,02 < co. Buja (1985) pointed out that (1.4) can be interpreted as a

singular value decomposition with this choice of basis, which in turn gives the
canonical form of Lancaster. The constant term on the right in (1.4) is the
largest, but trivial, singular value corresponding to constant singular vectors.
The remaining singular vectors have zero means and unit variances; furthermore,
the largest of the remaining singular values coincides with p*(Y,Z), and the
corresponding singular vectors are the optimizing transformations 6*(Y) and
¢*(Z).

It is readily seen that Properties 1(a)-1(c) also hold for general random
vectors Y and Z in the canonical correlation context. However, the extension of
Property 1(d) is not obvious and is the subject of what is known as Kolmogorov’s
canonical correlation problem. The solution to this problem, due to Kolmogorov,
states that the linear functions of Y and Z obtained in a classical canonical
correlation analysis also achieve the maximal canonical correlation. A proof of
this can be found in Lancaster (1969).

Canonical correlation measures the cohesion between two sets of random
variables and is suitable as a measure of association in a multivariate context
when a partitioning of the variables is appropriate to the analysis. However, a
view in which the variables are considered symmetrically is needed if an
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objective of the analysis is to obtain information of a more general nature about
the multivariate distribution. For an RM.valued random vector X =
(X,,..., X3;), the smallest-dimensional subsurface of RM that does an “ade-
quate job” of containing its variability gives a heuristic measure of the internal
association exhibited by X. If strong linear dependence is exhibited, then ob-
servations on X will tend to concentrate in a lower-dimensional linear manifold
of RM. A measure of this concentration is given by the terms g,(X), which denote
the sums of the & largest eigenvalues of the correlation matrix of X, for
1 < k2 < M — 1. We note some of its properties:

PROPERTY 2. (a) k<g(X)<Mforalll<k<M-1.

(b) If g, (X) =k, for some k,, then necessarily g,(X) =% for all 1 <k <
M — 1, implying that the coordinate variables of X' are uncorrelated. If, in
addition, X is Gaussian, then the coordinate variables of X are mutually
independent.

(0) If gyX) =M for some %, then g,(X) =M for all &, >k, 1 <k, k<
M- 1.

The inequality on the left in Property 2(a) simply states that the eigenvalues
of a correlation matrix majorize the diagonal elements. This is obtained as a
special case of a theorem due to Schur [see Marshall and Olkin (1979)]. From this
majorization property, Property 2(b), also follows. Property 2(c) refers to the
condition where M — k of the eigenvalues of the correlation matrix of X equal 0,
or equivalently, where R(X) is contained in a k-dimensional affine space of RM,
For, if T'(M, k) denotes the space of M X M projection matrices having rank no
greater than k&, we have, letting X represent standardized X,

M
. > 12
- (15) aX)=M- i LE[X-4X]
with A; denoting the jth column of A. Hence, g4(X) = M implies X =4Xae.
for some matrix A € I'(M, k).

The multivariate data analytic method associated with g, is principal compo-
nents. The matrix A achieving the infimum in (1.5) is the eigenprojection of the
correlation matrix of X corresponding to the % largest eigenvalues. If z,..., 2z,
are the normalized eigenvectors corresponding to the % largest eigenvalues
(taken in decreasing order), then

k k
(1.6) A;X = lejizilx = .le_ﬁﬁvi
i= i=

and F, is called the ith principal component. The principal components are
uncorrelated random variables (independent if X is Gaussian), with variances
equal to the corresponding eigenvalues of the correlation matrix. In geometric
terms, the first k2 principal components provide an orthogonal coordinate system
for the k-dimensional linear manifold which best fits the data.

The effectiveness of a principal component analysis can be severely limited
in the presence of nonlinear relationships, as is true of any of the classical
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multivariate techniques derived from normal theory. Hence, g,(X) is inadequate
as a general measure of the internal dependencies exhibited in X. In analogy with
maximal correlation, we derive a “maximalized” version of g,(X),

(1.7) g (X) = sipgk(¢(x)),

where the supremum is taken over all Borel measurable transformations ¢:
R(X) —» RM taking the form ¢(X) = (¢4(X,), ..., ¢2,(X;,)) having finite second
moments. We will assume, without loss of generality, that E[¢,(X;)] = 0 and
E [¢12.(X )] = 1 for every j. The relationship between g;(X) and g,(X) parallels
that between the correlation and maximal correlation coefficients:

PrOPERTY 3. (a) k<giX)<Mforalll <k<M-1.

(b) If g#(X) = &, for some k,, then g¥(X) =% forall 1 <k <M -1, and
the coordinate variables of X are pairwise independent.

(o) If g#(X) = M for some k, then g = M forall k, > k, 1 <k, k<M — 1.
If, in addition, there exists a transformation ¢* such that g*(X) = g,(¢*(X)) =
M, then there exists a matrix A € I'(M, k) such that ¢*(X) = A¢*(X) a.e.

For the independence assertion in Property 3(b), suppose X, and X,, say, are
dependent. Then, by Property 1(b), p*(X,;, X,) >0 and g*(X) is therefore
greater than 1. It is also clear from this argument that if the X; are pairwise, but
not mutually independent, g# = k would still obtain. In Property 3(c), we again
note that the existence of an “optimal transformation” ¢* is not automatically
ensured. However, we show in Section 2 that optimal transformations exist if
each of the bivariate marginal distributions of X satisfies (1.3). In analogy with
Kolmogorov’s result for canonical correlation, it is of interest to ask whether
8F¥X)=g,X) for all 1 <k<M-1 if X is Gaussian. Since Property 1(d)
ensures that nonlinear transformations of the X; cannot increase the individual
correlations, it seems both plausible and intuitive that Kolmogorov’s result
extends to principal components. We give a proof of this in Section 3.

2. Mathematical framework. We begin by considering the space of all
Borel-measurable function of the form ¢(X) = (¢,(X), ..., ¢,,(X)), which satisfy
' E[¢}(X)] <0, Jj=1,...,M.

The inner product of any two members ¢ and ¢ of this space is defined as
M M
(2:2) (6,90 = X (8 ¥y = X E[6;(X)¢,(X)],
j=1 j=1

and the pseudonorm derived from (2.2) is denoted by

(2.3) llllae = (b, $)/>.

This function space, which we will denote H¥, can be viewed as the M-fold
Cartesian product of Hilbert space H with itself, where H is the space of all
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scalar-valued functions of X having zero mean and finite variance. Denote by
HM the subspace of H for which an element takes the form

(2.4) $(X) = (6:(X1), ..., e (Xn))'s

which, in turn, can be expressed as the Cartesian product of Hilbert spaces
H,,...,H,,, where H; is the subspace of H consisting of scalar-valued functions
depending on X only through X, We restrict our attention to transformations
satisfying

(2'5) ”¢]” = 1, ] = 17"'7M,

which entails no loss in generality due to the scale invariance property of the
correlation matrix. The set of transformations satisfying (2.5) will be denoted @,
which is a proper subset of the yM -sphere in H.

A transformation ¢* € ® shall be called optimal for a k-factor multivariate
dimensionality reduction analysis (MDRA) if g.(¢*(X)) = g(X). An optimal
transformation ¢* will typically depend on k&, although this dependence has been
notationally suppressed. We will, subsequently, also drop the notational depen-
dence on X and simply denote the corresponding quantities by g,(¢) and g},
respectively. Our, perhaps cumbersome, choice of nomenclature for this problem
is motivated by our desire to avoid confusion with a different nonlinear general-
ization of principal components, which is discussed in Koyak (1985).

The k-factor MDRA problem can be given a distance interpretation in H¥,
Let S, denote the set of of elements of H, which take the form A¢, where A is
an element of I'(M, k) and ¢ is an element of H™. In analogy with (1.5), we
write

8x(¢) = sup E[trace A¢¢’]
Ael(M, k)
(26) =M- inf |l¢—-Ad|2
Aer(M,k)lqb Sllms
so that
(2.7) M - gi(¢) = inf |6 — {3
;’ES,,

An optimal transformation ¢* therefore attains the minimum distance between
an element in ® and its closest point in S,. Deriving an optimal transformation
(even under complete stochastic knowledge) is a substantial problem, as neither
S, nor @ are linear or even convex subsets of H. An algorithm for constructing
optimal transformations and a discussion of its mathematical properties can be
found in Koyak (1985). At a point in ® for which the distance between the two
sets is minimized, projecting into S, and then projecting back into ® reproduces
the point of minimization. This is equivalently expressed as a fixed point
property:

(2.8) T.o* = ¢*,

where T}, denotes the compound of the two nonlinear projection operators.
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3. Existence of optimal transformations. Let g7 denote the supremum
of g,(¢) over ® and let ¢™ denote a sequence in @ for which g(¢™) > g as
n — oo. Because @ is not strongly compact in H?, it does not directly follow
that there exists an element of @ for which this supremum is attained. For a
bivariate random variable, a one-factor MDRA problem is equivalent to finding
a transformation to achieve the maximal correlation, so the force of Rényi’s
example mentioned earlier is applicable to the present framework.

A mild condition on the distribution of X is required to ensure the existence of
optimal transformations. Let P; denote the conditional expectation operator
mapping H into H,

(3.1) By = E[y(X)X;],
and let P{H; denote the restriction of P; to H,.

AssUMPTION 3.1. The restricted conditional expectation operators P|H; are
compact for every pair (i, j) with i # .

PROPOSITION 3.1. A sufficient condition for Assumption 3.1 to hold is that
each of the bivariate marginal distributions of X satisfies (1.4).

ProoF. This is a result of long standing in the theory of integral operators
and can be found, for example, in Edwards (1965). The canonical form (1.4),
however, permits a straightforward proof, which we now proceed to give.

Let ¢ and j be any two positive integers less than or equal to M, where i # j.
In accordance with (1.4), write

(3.2) Q(x;, x)=1+ > P, n(%) 9, (%),
N=1

where the p, are square summable and {¢, ,} is an orthonormal basis for H,,
r =i, j. Let {¢{™} denote a weakly convergent sequence in H; and let ¢; denote
the weak limit. The proposition is proved by showing that Pz,b('”) -, P¢J
m - oo.

From (3.2) we have

(33) PA = 04,0, 0000

and therefore

(3.4) 20 =) = oo = 49,7

Since every weakly convergent sequence is bounded in norm, the dominated
convergence theorem can be applied to take the limit as m — oo inside the

summation in (3.4) and doing so gives a limiting value of 0 for the term on the
left. Therefore, P,y{™ -, Py as claimed. O
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ProPOSITION 3.2. Under Assumption 3.1, for every integer k between 1 and
M — 1, there exists an element ¢* € ®, depending on k, such that g,(¢*) = g}*.

ProoF. Let {¢™} denote a.sequence of ®-transformations for which
g(¢'™) = g and let {¢*)} denote a subsequence converging weakly to an
element ¢. The weak convergence of each of the coordinate functions ¢(”) to qu
in H; is thereby implied and ||¢J|| <1 for all j (examples abound Where these
1nequaht1es are strict). Assume initially that none of these norms is equal to zero.
Let d; = ||4;j||‘1 and let D = diag(d,,..., d,,). Take ¢* = Dé, which is an
element of ®. If it is shown that

(3.5) g(¢*) = lim g,(¢™) = gi,

it will directly follow that ¢* is an optimal transformation.
Let U(¢) have elements u; (¢) equal to (¢,, ¢;). For ¢ € ®, we have u;(¢) =1
for all j. For i # j we have

u (™) = (¢{, ¢)
= <Pj(4’$n/) - $i)’ ¢§n,)> + (& ™).

The first inner product on the second line of (3.6) goes to zero as n’ — oo, since

(B (6 - 4,60 < B (s - )],

which by Assumption 3.1 goes to zero as n’ — oo. Using the weak convergence of
{¢{*"} on the second inner product on the second line of (3.6), it is seen that
llmn oalti (8) = uu(¢) for all pairs i # j.

For any symmetric M X M matrix U, let G,(U) denote the sum of the %
largest eigenvalues. Then G,(U) = g}, where U = lim ,, _, [U(¢™?). The covari-
ance matrix of ¢* satisfies

(3.6)

U(¢*) = DU(¢)D’,
(37) (¢*) = DU(4)
U(¢*) - I=D(0O -I)D'.
It will be shown that Gk(D(fJ -NDY>G k(ﬁ — I). Since every M X M rota-
tion matrix diagonalizes the identity matrix, it will follow from (3.7) that ¢* is
optimal, since

£x(¢*) = G(D(C - D)D) + &

g¥r=G,(0-1)+%.

The idea, then, is that if the convergence of {¢*7} is not strong, by concentrat-
ing on the off-diagonal elements of the covariance matrix, one can find an
element of ® which is optimal. Of course, if the convergence is strong, the limit is
optimal a fortiori.

(3.8)

To facilitate this argument, the following lemma is introduced:
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LEMMA 3.1. Let A be an M X M symmetric matrix, and W an M X M
symmetric -matrix with each diagonal element equal to zero. Let D denote a

diagonal matrix with each diagonal element d;; > 1. There exists a diagonal

matric A with each diagonal elefnent §;; equal to +1 or —1 such that
trace AW < trace AADWD'A'.

PROOF. Let D; and A; denote diagonal matrices where
1, i#j,
(D), = { 7
o \dy, i=],
(3.9)
1, i+],
(Af)ii = {8}.}., i=J
Obtain a recursive system of matrices as follows:
Wo=W,
VVr = A,.D,.W._ID;A’,.

for r=1,..., M. At the end of this recursion, W;, = ADWD’A’. The lemma will
be proved by establishing the chain of inequalities

(3.10)

(8.11) trace AW,_, < trace AW,
through a choice of A.
Start with r = 1. Using w,; = 0, one can write
M M
trace AW, = Y ) a, w@
i=1j=1
M M M
=Y X aw+28,d, ) awf
(3.12) =2 jog 7 -1
M
> ) X aijwi(J(‘)) +2) aw
i=2 j=2 i=1
= trace AW,
by choosing

M
= & 0
oy, = Slgn[ ) ailwi(l)]°

i=1
We proceed recursively in this manner. At the rth stage, use w,, = 0 and take
M
8rr = Sign Z a; i(:_l) ’
i=1

to obtain trace AW, > trace AW,_; by the same argument used in (3.12), thus
finishing the proof of the lemma. O
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We now complete our proof of Proposition 3.2. Let A € I'(M, k) denote the
eigenprojection matrix corresponding to the k largest eigenvalues of U (and
hence also of U — I). For any matrix A satisfying the conditions of Lemma 3.1,
we have .
8x(9*) = g,(2¢*)

= sup trace BAD(U - I)D'A + &k

BeT(M, k)

> trace AAD(U — I)D'A’ + k.
However, by Lemma 3.1, A can be chosen so that
(3.14) trace AAD(U — I)D'A’ + k > trace A(U — I) + k = gi*.
From (3.13) and (3.14) together, we get g,(¢*) > g5, implying g,(¢*) = g} since
&y is the supremum of g,(¢) over ¢ € ®, which completes the proof in the case
that none of the ||¢,| is equal to zero.

Now, if any of the terms ||¢;| should equal zero, the limiting correlation
matrix U will contain zeros on the off-diagonal for every such term. Replacing ¢;
by any ¢; in H; having norm 1 will produce a correlation matrix whose sum of
the %k largest eigenvalues is no smaller than that of U. Lemma 3.1 can be
employed to produce an element ¢* in @ attaining the supremum of g,(¢),
finishing the proof. O

(3.13)

4. Measuring association: The Gaussian case. Now suppose that X is
Gaussian, with each X; marginally N(0,1). A pairwise stochastic representation
of X is given by
(4.1) X;=p;X; + (1 - pfj)l/zeij a.e.,
where ¢, ; is distributed as N(0,1) independent of X; and p,; is the correlation
coefficient for X; and X;. For a positive integer r, let A} denote the rth
standardized Hermite—Chebyshev polynomial under N(0,1). Note that {A}(X})}
can be taken as an orthonormal system over H; for each j, and an arbitrary

polynomial transformation of order L in H; can be expressed as
L

(4.2) $(X;) = X m.h3(X),

n=1

for some constants 7;,. We require
L
(4.3) =1,
n=1

so that ||¢,]| = 1. Let C, ; denote the subset of H; consisting of polynomials
having order no greater than L and let C, denote their M-fold Cartesian
product over j. Using the fact that (A}(X;), h¥(X})) = §,,p]; [Lancaster (1969)],
a typical correlation for an element ¢ € C; N ® takes the form
2 L
(4.4) <¢i7 ¢J> = Zl Tin":fnp:'fr

ne

Take C = UP_,C,. It is well known that C is a complete class in H.
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PrOPOSITION 4.1. If ¢* € @ satisfies g8,(¢*) = g,(¢) for every ¢ € C, N D,
for every positive integer L, then ¢* is an optimal transformation for a k-factor
MDRA problem.

Proor. This is a straightforward consequence of the completeness of C and
the continuity of g,(¢) with respect to the norm topology. O

Let £ denote the identity map: £(X) = X. Observe that £; coincides with A}
for every j, from which it is clear that ¢ is an element of( C. N ® for every
positive integer L. The assertion of optimality of ¢ will be proven if it is shown
that £ is optimal among all ¢ € C, N @, regardless of L and k.

In order to make use of the representation afforded by (4.4) we introduce

DEFINITION 4.1. Let A and B denote matrices having common dimension.
Their Schur (or Hadamard) product, denoted A e B, is the matrix of the same
dimension composed of the elementwise products of A and B:

[A- B]ij = a;;b;;.

An exposition on the range of uses of Schur products in multivariate statistics
can be found in Styan (1973).

Let U, = U({) denote the M X M correlation matrix of the identity, with
(i, /)th element p;. For a transformation ¢ satisfying (4.2) and (4.3), let
T, = diag(my,,...,Ty,) for n=1,..., L, and let the nth Schur power of U, be
denoted U§™, with (i, j)th element p7,. The covariance matrix of ¢ then has the
representation

L
(4.5) U(¢) = X T,G"T,.

n=1

Take U{? to be the M X M matrix of 1’s, and reexpress (4.5) as

L
v - | £ oo
n=1
= D($)°U($).

Each of the matrices U{"~V is positive semidefinite: U® has M as its only
nonzero eigenvalue and for n > 1, U{™ is the correlation matrix obtained by
taking A} as the transformation on each coordinate. Since each diagonal element
of D(¢) is equal to one, D(¢) is itself a (possibly degenerate) correlation matrix.
Therefore, (4.6) suggests a Schur factorization of the covariance matrix of an
element of C;, N ® into two correlation matrices, one of which corresponds to
the identity transformation.

For the case k =1, (4.6) is sufficient to establish the optimality of £ Let
Y1 =Yy cc+ =7y be the eigenvalues of U, with z,,..., z,, the associated
eigenvectors. Collect these eigenvectors into a matrix Z, where the jth column of
Z is zj, and let Z; = diag(z;). Then

(4.6)

M
(4.7) D(¢)°U(%) = glv,-Z;Dw)Zj-

J
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If w is the eivenvector of U(¢) corresponding to its largest eigenvalue, then

£(6) = w[D(8) UE)w = ¥ ywZD(9)Zw

[ j-l
4.8) M
( < vw'| X ZiD(9)Z; |w = yw'[I° D(¢)]w
j=1
=y, = &(%).

This argument does not depend on L and it follows from Proposition 4.1 that £
is therefore an optimal transformation in ®.

The derivation of (4.8) can be found in Gekeler (1981); it was originally
established by Schur (1911). However, it does not extend in a simple way for &
greater than one. We extend this result to the multifactors case with the
introduction of an additional concept:

DEFINITION 4.2 [Marshall and Olkin (1979)]. Let x and y denote M-vectors,
with x;; and y[;; representing the ith largest of their respective elements. We
say that x is majorized by y, denoted x < y, if

m m
> X< > i
i=1 i=1

for every m = 1,..., M — 1, with equality holding for m = M.

For an arbitrary symmetric M X M matrix U, let A(U) be the eigenvalues of
U written as a vector, with elements ordered from largest to smallest, and let
A(U) = diag M(U). The following theorem extends the ideas expressed in (4.8).

LEMMA 4.1 [Bapat and Sunder (1985)]. Let A and B be M X M matrices,
with A self-adjoint and B a correlation matrix. Then

(4.9) A(A°B) < A(A).
The reader is referred to the paper by Bapat and Sunder for the proof.

THEOREM 4.1. Let X be distributed as Gaussian with mean zero and
marginal variances each equal to 1. Then, for every k=1,...,M — 1, the
identity transformation ¢ € ® is optimal for the k-factor MDRA problem.

ProoF. Fix integer L > 0 and consider the problem restricted to C; N ®. An
element ¢ € C;, N ® takes the form suggested by (4.2) with covariance matrix
U(¢) having the Schur factorization (4.6). As noted earlier, D(¢) is itself a
correlation matrix, and since U(§) is a correlation matrix, it is self-adjoint. It
therefore follows from Lemma 4.1 that

(4.10) AMU(¢)) < MU(£)).
Majorization, however, implies
(4'11) gk(¢) Sgk(g), k= 1’°°°’M_ 1.

Since equality is obtained by choosing ¢ = £, £ is an optimal transformation in
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C, N ®. Since this is true regardless of the value of L, Proposition 4.1 implies
that £ is optimal in ® and the proof is complete. O

It is interesting to consider whether the force of this result applies to other
spherically symmetric distributions having finite second moments. This can be
answered in the negative by considering a r.v. X having a spherically symmetric
distribution with the identity as its correlation matrix. Since the coordinate
variables of X are independent in this case if and only if X is Gaussian [Kelker
(1970)], Property 3(b) asserts that the identity is not optimal. I am grateful to a
referee from a different journal for bringing this to my attention.

5. Discussion. Maximalized measures of association are informative in two
ways:

(i) They quantify association /dependence under minimal assumptions on the
variables.

(ii) The corresponding optimal transformations prescribe actions that can be
taken to enhance a linear analysis.

By rephrasing the problem in a function space context, linear data analysis
techniques such as canonical correlation and principal components can be given
nonlinear generalizations related to deriving a maximalized measure of associa-
tion. These techniques can be made operative on data by establishing a fixed
point property such as (2.8), which forms the rationale for an iterative method of
constructing both the maximalized measure of association and its corresponding
optimal transformations. This idea has been successfully implemented by
Breiman and Friedman (1985) in the context of least-squares multiple regression,
Breiman and Thaka (1984) in discriminant analysis, Owen (1983) in autoregres-
sive time series and Koyak (1985) in principal components.

We emphasize that taking this approach to data analysis is not a new idea: It
is a research area of long standing, especially in the psychometric community.
The technique known as optimal scoring, often attributed to Fisher (1940) but
with antecedents due to Hirschfeld (1935) and others, is an algorithm for finding
the maximal correlation of two categorical variables. The ideas of optimal
scoring form the basis for the alternating least-squares techniques of de Leeuw,
Young and Takane (1976) and the “French School” method of correspondence
analysis of Benzécri (1969) and his colleagues. The nonlinear principal compo-
nents framework developed by de Leeuw (1982) is a finite-dimensional predeces-
sor to the work represented in this paper.

Our treatment of g,(¢) as the natural multivariate analog of maximal correla-
tion may seem unduly restrictive in that only marginal transformations are
considered. In the framework we have adopted, it is not clear how general joint
transformations can be accommodated. A different framework might allow
general nonlinear transformations in lieu of the linear functions comprising the
principal components, taking the least-squares approach embodied in (1.5) to
derive a measure of association. This is similar to the nonlinear factor analysis of
McDonald (1967) and Hastie (1984) has developed an interesting methodology in
this spirit. A drawback to using nonlinear functions of more than one variable is
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the lack of computationally efficient smoothing or estimation techniques that
operate in high dimensions.

The canonical form, given by (1.4) for bivariate distributions, points to the
need for caution in interpreting the outcome of a maximal correlation analysis
since the solution is only the lead hontrivial term in an expression relating the
distribution to that obtained under independence. That this is not an idle
concern can be demonstrated with an example, reported by several of the
discussants following the paper by Breiman and Friedman [Pregibon and Vardi
(1985) and Buja and Kass (1985)] and attributed by one of them to Charles
Stone. Consider a bivariate r.v. (X, Y) for which R(X)=A U Band R(Y)=C
U D, with A and B and C and D disjoint Borel sets on the real line and where
P(Ye C|X € A)=P(Y € D|X € B)=1. Then p*(X,Y) =1 and it is achieved
by the transformations $*(X) =1, X € A, and 0*(Y)=1, Y e C.

From a practical point of view, using bivalent transformations to enhance a
linear analysis is very unappealing, since other aspects of the dependence are
completely eliminated. In the above example, the canonical form (1.4) tells the
story: The largest nontrivial singular value is equal to 1 and all others are 0.
Hence, an analysis which relies solely on the largest nontrivial singular value,
which is essentially a maximal correlation analysis, can be highly misleading.
Finding transformations corresponding to these lesser singular values, easily
accommodated in ACE or optimal scoring routines, is a recommendable comple-
ment to the analysis as Buja (1985) pointed out.

The lesson of this example also bears on the general multivariate problem, of
which maximal correlation analysis is a special case. It may be considered a
drawback to using maximalized measures of association that an effective inter-
pretation cannot be made in the absence of the corresponding optimal transfor-
mations. It should be noted, however, that a “ pathology” like that demonstrated
in the preceding example can be useful when the difficulty of detecting inhomo-
geneity in multivariate data is considered. Unlike the bivariate case, there does
not seem to be a convenient or tractable canonical form for general multivariate
distributions in which g} plays the role of a lead nontrivial singular value, so an
obvious analog of a lower eigensolution does not present itself.
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