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ASYMPTOTICALLY OPTIMAL CELLS FOR A HISTOGRAM

By ATsuYUKI KOGURE

Fukushima University

The purpose of this paper is to examine the properties of the histogram
when the cells are allowed to be arbitrary. Given a random sample from an
unknown probability density f on I, we wish to construct a histogram. Any
partition of I can be used as cells. The optimal partition minimizes the mean
integrated squared error (MISE) of the histogram from f. An expression is
found for the infimum of MISE over all partitions. It is proved that the
infimum is attained asymptotically by minimizing MISE over a class of
partitions of locally equisized cells.

1. Introduction. Let f be a continuous probability density on an interval I
in the real line. I includes its endpoints if it is finite. Given a random sample
X, X,,..., X, of size n from f, we wish to construct a histogram. Prior to the
actual drawing of a histogram we need to choose cells into which the X,’s are
grouped. Any partition of I can be used as cells. (We call a collection {C;} of
intervals of I a partition of I if C;N C;= & whenever i #j and if I =U,C;)
When a partition @ = {C;} is chosen, the histogram on C; is

H,(x1Q) = F,(C)/IC},
where |C/| denotes the width of cell C; and
n
F(G)=n"' Y {X,€C}.
i=1

Considering the histogram an estimate of f, we adopt the mean integrated
squared error,

(L1) MISE(n, Q) = E[ [ (=19 - 1)) dx]

as the risk is using @. Here E denotes the expectation with respect to the X;’s.
The risk is decomposed into two components as

(1.2) MISE(n, Q) = %ZF(C’)(IIC_J F(G)) + fl( fo(x) = f(x))* dx,

J

where fo(x) = E[H,(x|Q)]. The first component on the right of (1.2) represents
the sampling variability and the second the bias. Shrinking cell sizes decreases
the bias at the cost of increasing the sampling variability. The optimal partition
is to minimize MISE by compromising the conflict between the two components.
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In this paper we examine the properties of the histogram when the cells are
allowed to be arbitrary. We ask how close, in terms of the MISE, the histogram
comes to f. Several authors—including Tapia and Thompson (1978), Scott (1979)
and Freedman and Diaconis (1981)—have investigated this problem. However,
they deal with the subject under the restrictive setting that all cells in a
partition have a common cell width, i.e., for all j, |C| = h for some & > 0. We
pursue this problem with no restrictions on cells. We derive an asymptotic
expression for the infimum of MISE over all partitions and show that the
infimum can be achieved by a “partition of locally equisized cells.”

We analyze the problem under the following conditions on f:

(C.1) f is twice continuously differentiable;
(C2) f, f’ and f " all belong to L,;
(C3) JIf "(x)f(x)[2/3 dx > 0.

An important class of densities excluded by the conditions is that of step
functions. For any such density, the optimal histogram is the density itself.

2. Asymptotic behaviour of MISE. How small can MISE be made as the
sample size tends to infinity? Let £ denote the class of all partitions of I. We
have

THEOREM 1. Let (C.1) and (C.2) be satisfied. Then

(2.1) inf MISE(n,Q) = [ 07 [l @) dx ]—2/3+o(n-2/3).

Under the restrictive setting that all cells in a partition have a common width
h, Freedman and Diaconis (1981) obtained a relation parallel to (2.1):

(2.2) inf MISE(n, h) = [g él/a{f(f( )? dx} 3] ~2/3 4 o(n=2),

where MISE(n, h) is the MISE of the histogram with common cell width A. See
also Scott (1979). The ratio of the leading term of (2.1) to that of (2.2) is
[l /() F(x)3 dxe/{ [;( f "(x))? dx)'/3, which is seen to be no more than 1 by
Holder’s inequality. It is approximately 0.89 for the normal density and 0.24 for
the Cauchy density.

Theorem 1 will be derived by proving the following two propositions. The first
of these gives an asymptotic lower bound for the MISE.

ProposITION 1. Under (C.1) and (C.2) we have

(23)  liminfr®® inf (MISE(n,Q)} = (3)6~° [I1(x)f(x)["" dx

All we need then is to find a partition whose MISE behaves like the lower
bound as n increases. Our scheme for getting such a partition is based on three
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observations:

(i) on a small interval f is well approximated by a linear function;

(i) the bias term [(fy(x) — f(x))*dx of MISE(n, Q) is minimized for a
partition of equisized cells if f is linear; and

(iii) if f does not change much over the region, then the magnitude of the
sampling variation (1/n)X F(C))(1 — F(C;))/|C}| is mostly determined by the
number of cells, regardless of the cell sizes being equal or unequal.

With these observations we might expect that the desired partition can be
found in a class of partitions of locally equisized cells (POLEC). A POLEC is
constructed by “dividing I twice,” a process separated into two steps:

Step 1. Choose a reference point x, € I and a mesh width w > 0 to obtain an
equally spaced net {A;|i € Z}, where Z is a set of integers and

A =[xy + (i — Dw, x, + iw),
i€z
Step 2. For each i € Z choose a positive integer %2, and divide A; into k&,
cells, allowing different &;’s for different A;’s. Put k:= {k;)i € Z} and let

Q(w, k) denote the resultant POLEC.
Let {w,} and {U,} be sequences of positive numbers such that

(2.5) n P <uw, <«<n?, U, <n’3  (w,/U)<n3
where a, < b, means limsup, _, .(a,/b,) = 0. Define a class of POLECs as
(2.6) P(w,,U,) = {Q(w,, k)|, < U, foralli € Z}.

Then we have

ProrosITION 2. Under conditions (C.1) and (C.2) we have
inf(MISE(n, Q): @ € #(w,,U,)}

(2.7) _ (3)6‘1/3‘/1[f'(x)f(x)lz/den-z/B + o(n~%3).

Clearly, Propositions 1 and 2 together imply Theorem 1. The proofs of the
propositions occupy the next section.
Another implication of the two propositions is

inf(MISE(n, @): Q € #(w,,U,)} = Qi,nfga{MISE(n’Q)} + o(n=23).

This means that there is a POLEC whose associated MISE is nearly as small as
that of the optimal partition as the sample size grows large. This may call forth
some interest in developing a data-driven rule for choosing a POLEC. Some
discussion on this can be found in Kogure (1986). For the related subject of the
data-based choice of a cell width, see Scott (1979), Rudemo (1982), Chow, Geman
and Wu (1983) and Stone (1985).
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3. Proofs.

PrOOF OF PROPOSITION 1. For each interval C let

¥(C) = (3)87%folf "(x) () dx
and for each @ = {C;} € 2 let a,(Q) = n**MISE(n, Q) — v(I).
Put h, = (n*°logn)~! and define a subclass £, of Z as

2,={Q=(C}|0<(C| < h, forall j}.
For each interval C, 0 < |C| < oo, let
8.(C) = (&) (n1C1)" + fe(f(x))" dx + (n°1CI) T F(C)
and for each @ = {C;} € 2, let B(Q) = L(8,(C;) — ¥(C))). Observe that
o inf «,(Q) = inf £,(Q) + int (,(Q) - A,(Q))
| +( inf ,(Q) ~ int a,(@)).

Then it suffices to show that each term on the right of (3.1) has a nonnegative
lower limit. First, we will show

2 liminf inf > 0.
2 it got, Q) 2

Fix Q= {C;} € #,. Foreach C;€ Q
1/3
5.(0) = (e~ [ (1) ) (R(G)”
> (%)6_1/3[0| f/(x)f(x)[*?dx  (by Holder’s inequality)

=v(G)-
Thus, B,(Q) > 0, which implies (3.2).
Second, we will show

Fix @ = {C;} € #,. Then
a,(Q) = B.(Q) = n*°MISE(n, Q) - £8,(C;)
J

64 = o) = 12 e = () TIGP (1) ]

2
—n'* L(F(G)) /IC).-
J
It is easy to see that for each ; there is a point x; inside c; such that

J(fat) = 1)) e = (B)( ()

J
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Then, by Lemma 2.22 of Freedman and Diaconis (1981), we have

(#5163 - [ (1)

<2C) [ |17(x)f "(x)] ds.

Thus,
[Uiax) = 1)) ax = (H)ZICP [ (f/(x))" de
(3.5) J J
2 =28} f|1(x)] "(x)|d.
Note that
(36) L(F(G))/101 = [(fo(x)) de < [(f(x))" ds.

J
Combining (3.4), (3.5) and (3.6) and recalling that h, = (n?/°logn)~! we have
(3.3).
Lastly, we will show

(3.7) ll:rllgf{éré;an(Q) - Qlél;nan(Q)} > 0.

It would suffice to show that for each @ € 2, there is Q° € 2, such that for all
sufficiently large n

(3.8) 0(Q) — @,(Q°) 2 1,

where {r,} is a sequence of real numbers such that liminf, , _r, = 0. Because
then for all sufficiently large n: infg e »a,(Q) — infgep ay(Q) 217, —n7". We
construct such Q° as follows. Fix C € Q. If |C| < h,, then let C be included in
Q°. If |C| > h,, then divide C equally into subintervals of width A*. Set h*
equal to A, if |C| = co. If |C| < oo, then there is a positive integer m > 2 such
that A, (m — 1) < |C| < h,m. Set h} equal to |C|/m in this case. Let the
subintervals thus made be included in Q°. Repeat this for each C € . Then we
have

0,(Q) — ,(Q°)

= n2/3{f1( fo(x) = f(x)) dx — .,;( fo(x) — F(x))" dx

(3.9) +(1/n)( Y F(C)-F(C)/cl

ceQ, CeQ’

> F(C)(I—F(C))/ICI)}-

CeQ,CeQ’

Note that Q° is finer than @ in the sense that for each C € Q there is C° € Q°
such that C° c C. Thus

(3.10) [(iox) = 1(x)) dx = [(foo(x) = §(x))" .
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Observe that
-1
(3.11) Y F(e)/|C| s( inf |C|) < Qh: L.
CceQ,CceQ’ ceQ’

Combining (3.6), (3.9), (3.10) and (3.11) we have

(@) ~ (@) = —n~ (201 + [(1()" ).

This in turn implies the existence of {r,} in (3.8). The proof of the proposition is
now complete. O

PROOF OF PROPOSITION 2. The mean value theorem implies that for each
i € Z there is x; € A, such that

(312) L@@ de = wl () 1),

where A; is defined as at (2.4). For each i € Z define a real-valued function H,(-)
on (0, o0) as

(3.13) Hy(t) = (F)wd(f(x.))*/82 + f(x,)t/n.
Put Z°:= (i € Z|f(x;) # 0 and f’(x;) # 0)}. For each i € Z° let

tr = 67 (f(x))/f(x)}) P,

t¥ minimizes H(t) and Hy(t*) = ()67 |f "(x)f(x)|*® dxn~%3. By (3.12)
Ja)f /(%) f(x)|*/® dx = 0 for i € Z°. Thus,

(3:14) T H(tr) = (2)67 fI£/(0) (&) dun 2.
iez® 1
Let @(w,, k) be a partition in #(w,, U,), where #(w,, U,) is defined as (2.6).
It is easy to see that
(3.15) MISE(n, Q(w,,k)) = ¥ H(k;) + o(n”*?),
ie€Z

where the o(n~2/3) term is bounded by a quantity which converges to zero faster
than n~2/3, uniformly in both {x,} and k. In the light of (3.14) and (3.15) the
conclusion follows if we verify the existence of a sequence of positive integers
{kXli € Z, k¥ < U,} such that

(3.16) Y Hi(k) - X H(t¥) =o(n™%?).

iezZ iez®

If both f’(x;) and f(x;) are zero, then H,(¢) = 0. Thus, assume that at least one
of f’(x;) and f(x;) is not zero. For any i € Z°, let k? be the smallest positive
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integer such-that H,(k?) is closest to H,(t}*). For each i € Z define k* as

kO ifieZand k< U,

B = U,-1 ifieZand k)> U,
' U, if f’(x;) # 0and f(x;) =0,
1 if f’(x;) =0and f(x;) # 0.

Now consider the four possible cases and the respective inequalities below. For
the first two cases we utilize the following relation: If i € Z°, then

(3.17) 2(5)(F/(x) w2 2 (f(x,)/n)t, ittt 2.
Casel. i€ Z°and k? < U,. By (3.17)
H(t*+1) < ('3)( f(x;)/n)(t + 1)

and
Hy(t¥) = (%)( f(x;)/n)ex.
Thus,
0) _ H.(t* (t* — H(t*
= (%)( f(x;)/n).

Case 2. i€ Z°and k) > U,. Then t* + 1 > U,. Thus,
(3.19) H(U, - 1) < (})(f(=)"wi(U, - 1) 7"

Case 3. f’(x;)# 0and f(x,) = 0. Then
(3:20) H(U,) = ()(1"(x:)"wU; .

Case 4. f’(x;) =0and f(x;) # 0. Then
(3:21) H{(1) = f(x;)/n.
Combining (3.18)-(3.21) we have

Y Hi(k}) - XL Hf(t¥)
ez iez’
(3.22) )
< @) T f)/m+ @) T (1)) i, -7
ieZ ez
By Corollary 2.24 of Freedman and Diaconis (1981) we have
(3.23) T f(x)w, — [f(x) dx| < w,[|f(x)| de
i€z I I
and
324) | X (F (=) w— [(£(2)) x| < 2, [| f(x)f(x)] .
iez I I
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Equation (3.22) together with (3.23) and (3.24) implies

Y H(kr) - ¥ H(tr) O((nwn)-l + (wn/Un)Z)

ieZ iez°

= o(n").

The last relation holds because of (2.5). This completes the proof of Proposition
2. 0
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