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and Masani (1972)], the process has a spectral representation
¥(2) = [ [exp(iAe) — 1] /(iN)Z(dN),

with Z(-) a random process satisfying cov{Z(d\), Z(dp)} = 8(A — p)F(d)\) du
with 8(-) the Dirac delta function and with F(d))/(1 + A?) a bounded nonnega-
tive measure. The (co)variance function of the process takes the form

cov(¥(t), Y(u)} = [ [exp(iAt) — 1] [exp( —iku) — 1] /N2F(dN).
I would submit that these results and in particular the representation

var Y(t) = /:o(sin At/2)2 /(N /2)2F(d\)

constitute an analysis of variance. It should be further mentioned that there are
accompanying empirical analyses in the case that F(-) is absolutely continuous
see, e.g., Bartlett (1963) and Brillinger (1972).

One way to be led to these results, and indeed corresponding results for
stationary random generalized processes, is to apply the ordinary process results
to a general linear functional, such as f[a(t — u) dY(¢), of the process of interest.
This leads me to propose the following extension of Dr. Speed’s definition. An
anova is said to exist for some group of variates, if they satisfy the conditions of
Dr. Speed’s defintion or if some natural class of functionals of them does. This
definition would seem to obviate the need for some of the particular considera-
tions in the manova case. I wonder if it does not lead to a general algebraic
result on how a manova structure relates to the corresponding anova structure,
quite independently of what the anova design was, for example.

I would like to end by thanking the Editor and Dr. Speed for the opportunity
to comment on this important paper.
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The algebraic aspects of the analysis of variance are an intricate, well worked
piece of ground. I am grateful to Speed and his coworkers for carefully sifting the
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work of our elders and presenting a unified piece in modern language. My
comments will outline a somewhat different point of view, using group theory,
and point to some other problems that must be solved when merging the present
account with modern statistical practice.

Data analysis of anova data. The paper is based on a class of patterned
covariance matrices given by an association scheme. Section 6 shows how such
schemes can be derived from more classical crossing and nesting operations. A
natural basis for algebra of the association scheme now yields projection matrices,
an orthogonal direct sum decomposition and an analysis of variance.

This view takes the underlying stochastic structure, at least to second order,
as basic. This second-order structure is given in terms of equality constraints on
the covariances. From this, a naturally associated analysis of means follows “for
free.”

There is a more primitive base which treats the problem data analytically.
Consider a two-way table with one observation per cell. Perhaps the observed
array can be well approximated by X;; = a + b; + c¢;, where the residuals are
small with respect to the main effects. If this happens, we feel we have a simpler
description of the basic underlying phenomena. We might make plots (or fit
curves) of the main effects versus other variables. We can next examine the
residuals, main effects removed, looking for higher-order structure. If an additive
decomposition fails we can search for other simple decompositions. Tukey (1977)
gives an aggressively illustrated account of data analytic techniques for arrays.

This approach makes sense, without an underlying model, from a data
reduction view. Model or not, most modern statisticians now look at their data
as a matter of course.

For more complicated designs, the basic simple descriptions need to be
thought about more carefully. One idea that captures all the natural examples I
know of involves a group.

Spectral analysis. Consider a finite index set T and data X, indexed by T.
For instance, T might be (i, j), 1 <i< 1, 1 <j < J, giving a two-way array.
Suppose a finite group G can be found that acts transitively on 7. In the
example, G can be taken as S; X S;, where S, is the symmetric group on n
letters.

The observed data X, can be viewed as a function on 7. Let L(T') be the set
of all functions on T. Since G acts on T, G acts on L(T). By an elementary
argument, L(T') decomposes into subspaces invariant under G and irreducible so
no further decomposition is possible,

(1) L(T)=V,e V,® -V,

I have been working with the following definition. Spectral analysis for this
situation consists of the projection of X, into the various invariant subspaces
and the approximation of X, by as many terms as give a reasonable fit.

In the example of a two-way table,

L(T)=V,@ V,® V8V,
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with V; the one-dimensional space of constant functions, V, the row effects, V,
the column effects and Vj; the residuals.

The procedure makes no use of probability. If one makes the usual assump-
tions, one gets an analysis of variance for free from the direct sum decomposi-
tion (1).

Fortini (1977) developed a procedure to produce a natural group G for
analysis of variance problems. Let me briefly describe his idea. A factor F is a set
valued function from T to a range space %#. Since everything is finite, a factor
can be represented as a |T| by | #| matrix, with ones in row # indicating the
assigned set.

Given a collection of factors {F;}, the associated group G consists of all
permutations 7 of T that preserve the factor structure in the sense that for each
i, there is 7; of #; such that F(nt) = =, F(t) for all .

When T indexes a two-way layout, G is S; X S;. As Speed emphasizes in his
Section 7, there is a close connection between the group and association scheme
approaches. With repeated observations, crossing and nesting, Bailey, Praeger,
Rowley and Speed (1983) have made an important contribution which gives a
neat description of G.

There are association schemes not generated by groups. There are also
important applied examples of group decompositions which do not arise from
association schemes. It seems worthwhile to give the leading special case, where
something new actually happens.

Balanced incomplete blocks. Consider ¢ flavors of ice cream. Subjects
taste a subset of & < ¢ of the flavors. Suppose ( ;) subjects are recruited so the

experiment involves k( ;) servings. The subjects respond with a rating (say on a
continuous scale). Here, the index set T can be thought of as pairs (i, s), where i
is the flavor of the individual serving and s is an (unordered) subset of size
|s| = kB — 1 representing the other flavors served to the subject receiving this
serving of flavor i.

The symmetric group S, acts transitively on T. The decomposition of L(T')
was one of the problems solved by Young. Now called Young’s rule, it is given in
modern notation by James (1978). It can be set out as

k-1 k-1
L(T)=S'@ 287/ @ St-%* P st=7-1s1,
j=1 j=1

with S* representing the irreducible representations of the symmetric group
indexed by the partition A.

This result was first given by Fortini (1977) who derived it by considering the
structure with two factors—treatment effect and block effect.

The classical analysis of this problem only involves looking at the projection
onto the “grand mean” space S!, the treatment space S*"!'! and block effect
space (adjusted for treatments) S?~22. Fortini’s analysis suggests there is more
to think about. The classical analysis depends critically on the assumptions of
additive treatment and block effects. The full spectral analysis gives a natural
hierarchy of other effects.
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The higher-order terms can be interpreted along the following lines: If tasters
work partially by comparison, then ratings will not be independent of the other
available flavors. Calvin (1954) enlarged the usual model to try to account for
this. Fortini gives a systematic extension.

The point for now is that these other terms make good common sense, and
that they were delivered by the group theoretic analysis.

It is worth noting that James (1957) treated balanced incomplete blocks via
relationship matrices which only give the classical analysis. Later, James (1982)
sketched out an example close in spirit to Fortini’s treatment—dJames treated
the diallel cross recapturing Yates’ (1947) (and Fortini’s) earlier analysis.

One benefit of Speed’s approach using association schemes: The projection
matrices come in a useful form. Decomposing group representations in general
involves a sum over the group. This problem frustrated Fortini’s treatment. I
have solved the computational problem for a wide class of practical
problems—representations induced by Young subgroups—by using ideas con-
nected to Radon transforms. There is more work to be done in relating the
various approaches.

AN # THE. The present paper focuses on the variance decomposition. For
many people this, and the associated F-testing ritual, is all there is. It must be
pointed out how much more is possible. Aside from the data analytic aspects
emphasized by Tukey, there are a host of other practical problems and available
remedies. These include problems of robustness [see, e.g., Hoaglin, Mosteller and
Tukey (1985), Chapters 2-5]. There are the benefits of Stein-like shrinking [see,
e.g., Stein (1966)] or the closely related possibilities of a Bayesian analysis [see,
e.g., Consonni and Dawid (1985)]. There are problems associated to missing data
which seem to plague big designed experiments [see, e.g., Dempster, Laird and
Rubin (1977)]. Finally, there are the possibilities of linking-in with computer
graphics, projection pursuit and other nonlinear analyses.

It will give all of us plenty to do, for years to come, to try to balance the
elegant algebraic treatment emphasized by Speed with the practical realities and
possibilities of modern practice.

Acknowledgments. 1 thank Peter Fortini for allowing me to discuss his
thesis results. I thank Terry Speed for persistent efforts to link statistics with
modern mathematics, and for taking the trouble to explain them in English.
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“Analysis of Variance (ANOVA)” is undoubtedly one of the most used and
most useful techniques in statistics, but it may be one of the least understood
procedures that nonstatisticians use. My experience is that when ANOVA is
discussed in elementary statistical texts or taught in methods courses, particu-
larly to nonstatistics majors, there is very little attempt to clearly state what
variance is being analyzed. Students who take these courses often do not even
realize they are analyzing a variance in an ANOVA so the words do not imply
any special meaning.

It seems to me that there are two aspects to this: (1) a model that contains,
means, variances and covariances; and (2) a statistical analysis of this model
(this is where ANOVA comes in if appropriate for a statistical analysis of the
model under study). It is important to precisely state each. Writers often tend to
use the same words to describe the model and the statistical analysis of the
model.

My understanding of what Fisher meant when he used ANOVA to analyze
means is the following: To test a null hypothesis of equal means there are two
models (1) the original model, and (2) the model specified by the null hypothesis.
An estimate of the variance is computed for each model and if the estimates are
sufficiently different, the null hypothesis of equal means is rejected. If this is
what Fisher meant, then he was indeed analyzing a variance and by ANOVA he



