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LARGE DEVIATIONS OF ESTIMATORS®

By A.D. M. KESTER AND W. C. M. KALLENBERG

University of Limburg, Maastricht and Twente University of Technology

The performance of a sequence of estimators {T,,} of g(f) can be
measured by its inaccuracy rate —lim inf,_ _n"'log Py(||T, — g(0)]| > &).
For fixed ¢ > 0 optimality of consistent estimators wrt the inaccuracy rate is
investigated. It is shown that for exponential families in standard representa-
tion with a convex parameter space the maximum likelihood estimator is
optimal. If the parameter space is not convex, which occurs for instance in
curved exponential families, in general no optimal estimatar exists.

For the location problem the inaccuracy rate of M-estimators is estab-
lished. If the underlying density is sufficiently smooth an optimal M-estima-
tor is obtained within the class of translation equivariant estimators.

Tail-behaviour of location estimators is studied. A connection is made
between gross error and inaccuracy rate optimality.

1. Introduction. Let & be a set of points x and % a o-field of subsets of Z.
The parameter space © is an index set of points § and for each § € ©, P, is a
probability measure on 4. Let X, X,,... be a sequence of i.i.d. random vari-
ables, each defined on . The distribution of S = (X, X,,...) is denoted by Py,
6 € O. Let g be a mapping of the abstract space ® into R¢ and let {7} denote a
sequence of estimators of g(6), where T, is based on n observations. Note that T),
takes values in g(©) only. The performance of {T},} is measured by its inaccuracy
rate

(1.1) e(e,0,{T,}) = — lim infn""log Py(|IT, — 8(6)Il > ¢);

the larger the inaccuracy rate the better the estimator. Due to the fact that the
large deviation probabilities involved are hard to handle inaccuracy rates have
been discussed mainly for ¢ —» 0. See for example Bahadur, Gupta and Zabell
(1980) and Fu (1982 and references therein). In this paper however, the inaccu-
racy rate is investigated for fixed ¢ > 0.

Two main themes are considered:

(i) optimality of consistent estimators;
(ii) the inaccuracy rate of M-estimators for the location problem.

To investigate optimality of a sequence of consistent estimators the inaccuracy
rate of the sequence is compared with an upper bound of (1.1). As usual in large
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deviation theory the upper bound is obtained essentially by application of the
Neyman-Pearson lemma; cf. Bahadur et al. (1980).

ProrposITION 1.1 (Bahadur). If {T,} is a consistent estimator of g(8) for
each 0 € O, then

(1.2) e(e,0,{T,}) < b(e,0),

where b(e, §) = inf{K(n,0): n € 0,|lg(n) — g(0)|| > &} and K is the
Kullback-Leibler information

E,log(dP,/dP;) when P, < P,

o0 otherwise.

(1.3) K(n,6) = {

In view of Proposition 1.1 a sequence of estimators {7, } is called optimal wrt
the inaccuracy rate (IR-optimal) at 6, for ¢ > 0 if {T,} is a consistent estimator
of g(8) for each § € © and

(14) ~ lim n~'log Py (IZ, ~ £(6,)1 > ) = b(e, b)-

Note that IR-optimality at 6, depends on ® in two ways: Bahadur’s bound
b(e, 6,) depends on © and {T,} has to be a consistent estimator of g(8) for each
0 € O; cf. Proposition 1.1. The important role of Kullback-Leibler information in
large deviation theory is apparent from the following simple but useful proposi-
tion of Bahadur (1980, 1983 Section 2), which states that IR-optimality of
(K(T,,0,)} as an estimator of K(6,6,) yields IR-optimality of {g(T,)} as an
estimator of g(4).

ProposITION 1.2 (Bahadur). If g is continuous and {T,} is a consistent
estimator of 0 for each § € © such that for each b < b, = by(6,)

(1.5) — lim sup n~'log P, (K(T,,0,) > b) > b,

n— oo
then {g(T,)} is an inaccuracy rate optimal estimator of g(0) at 8, for each ¢ > 0
with b(e, 8,) < b,.

It is well-known that the likelihood ratio test is often an optimal test in a large
deviation context. One might guess that the maximum likelihood estimator
(MLE) plays a similar role in large deviation estimation theory. It turns out that
for exponential families in standard representation with a convex parameter
space MLE’s are indeed IR-optimal. Exponential convexity (cf. Section 2) is here
the key point. As soon as exponential convexity fails, (1.5) cannot hold true for all
0, and b which are of interest; cf. Lemma 2.4. This occurs for instance in curved
exponential families.

In Section 3 shift families {P;} = {p(x — 0): § € R} are considered. Here p is
a Lebesgue density. Only in some exceptional cases shift families are exponen-
tially convex. We may therefore expect that IR-optimal estimators usually do not
exist. Sievers (1978) came to the same conclusion, be it apparently on a more
empirical basis.
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In shift families it is natural to restrict attention to (translation) equivariant
estimators. When p(x — ¢)/p(x + ¢) is nondecreasing in x, Sievers (1978) ob-
tained an upper bound for the inaccuracy rate of equivariant estimators by
application of the Neyman-Pearson lemma. Remarkably, Sievers’ bound can be
higher than Bahadur’s bound. The reason is that Sievers’ bound concerns
equivariant estimators, which are not necessarily consistent; cf. Example 3.1.
However, when p is symmetric and sufficiently regular, Sievers’ bound is not
larger than Bahadur’s; cf. Kester (1985), page 71, and Fu (1985).

For a wider class of shift families we derive in Section 3 an upper bound, which
coincides with Sievers’ bound when p satisfies his condition. When p is suffi-
ciently smooth and e is small enough (but fixed), an M-estimator is constructed
which attains this bound. This result (Theorem 3.4) provides optimal equivariant
estimators even for such densities as the Cauchy density; cf. Example 3.2. In
contrast to Sievers, who applies a finite sample result, we employ a typical large
deviation approach. It is also shown that in the double exponential family a
trimmed mean attains Sievers’ bound.

Apart from investigating optimality of equivariant estimators the inaccuracy
rate of quite general M-estimators is obtained.

In the last section tail-behaviour of location estimators is discussed, mainly for
a fixed sample size. Jureckova (1979) has shown that the sample mean has a
certain gross error optimality property when the distribution of the observations
has exponentially decreasing tails. Here it is shown that the inaccuracy rate
optimal estimator for a fixed error, say &, converges to the sample mean when
¢ — o0, i.e. when gross errors come in.

2. Exponential families, exponential convexity. Let {F;: 0 € O} be a
k-parameter exponential family in standard representation given by its densities
wrt a o-finite measure p on R*

(2.1) dPy(x) = exp{6'x — ¢(0)} du(x), x € R%, 0 € 0 cC 0*C R,

where © is a subset of O* = {(§ € R*: [exp(6’x)du(x) < oo} and ¢(8) =
log fexp(8’x) du(x), 6 € ©*. Here 6’x denotes the inner product of # and x.
Assume without loss of generality that the covariance matrix of P, is nonsingular
for 0 € int ®*. Define 0, = {§ € ©*: E,||X,|| < 0}, then int®* C O, C O*
and the mapping A: § = E,; X, is 1-1 on 0,; cf. Berk (1972). The likelihood of a
sample X,,..., X, is maximized over ®* at the point

(2.2) br =2"Y(X,)

when X, € A = {A(8): 6 € ©,}. Noting that the Kullback-Leibler information
K(n,0) = (n — 0YAX(n) — ¢(n) + ¢(0) when n € O, and § € O*, it is seen that
maximizing the likelihood over a subset ® of ©* is equivalent to minimizing
K(}\_‘(X ), 0) = K( ,0) over § € ® when X, € A; cf. Efron (1978). If it exists

the unique point 0(17) minimizing K (7, ) over § € O is called the Kullback-
Leibler projection of 1 on ©. Thus when X, € A and b exists at A"Y(X,),

(2.3) 8,=48(67)
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is the MLE of 6 on ©. Before stating a lemma which establishes existence of the
MLE we introduce the “Kullback-Leibler distance” K(8) of the boundary of ®*
to 6 by

(2.4) K(0) =sup{a: {n: K(n,0) < a} C C, C int ©*, where C, is compact}.

LEMMA 2.1. Let © be a relatively closed convex subset of ©* and let
n€int®* If K(n,0)< K(0) for some 6 € ©, then the Kullback-Leibler
projection H(n) exists; thus 0 exists when

U (n: K(n,0) <K(8)}).

(2.5) X, e A(
fec®

Moreover, if K(n,0) < K(6) for some 0 € O, then K(0(n),0) < K(n,0) and
hence O(n) € int O*.

PROOF. Let 7 € int ©* and 0 € O satisfy K(n, 0) < K(8). On the compact
set ® A {{ € O*: K({,0) < K(n,0)} the infimum of K(n,-) is attained at =,
say. Consider ¢ € © satisfying K(¢,8) > K(n,0) and let § > 0. Define §, =
af + (1 — «)f and let 0 < & < 1 be such that K(n, {;) < K(n, §) + . Note that
(¢, 0 < @ < &) Cint ®*. Now K(#,-) attains its infimum on the compact set
(£,:0 < a < &) at £,., say. Since K(n, té,« + (1 — ¢)0),0 < ¢ < 1, is minimal for
¢ = 1, its derivative is nonpositive at ¢ = 1: (£, — 0)(A({,+) —A(n)) < 0. In
combination with K(& 4+, 0) — K(1,0) = (£, — 0Y(Mé4) — A1) — K(n, §,0) it
follows that ¢,.€ O A {{ € 0* K({,0)<K(n,0)} and hence K(n, 7)<
K((m, &) < K(n, &;) < K(n, £) + 8. Since 8 > 0 was arbitrarily chosen we have
K(n, 7) < K(n, £), implying that the infimum of K(7, -) on @ is attained at =.
Unicity of 9(17) = g follows from the convexity of ® and the strict convexity of

One of the main results of the paper, optimality of MLE’s in convex exponen-
tial families, is presented in the following theorem.

THEOREM 2.2. Suppose © is a convex relatively closed subset of int ©*,
where ©%* is the full parameter space of an exponential family in standard
representation. Let 8, = g(T,) where T, = 0 whenever the MLE 0 of 0 exists.
If g is continuous then {8,} is inaccuracy rate optimal at 0 for each ¢ >0
satisfying

(2.6) b(e,0) < K(0).
Before proving Theorem 2.2 we mention the following special case.
COROLLARY 2.3. Let ® = ©* be open. Suppose that
(2.7) {xEIRk: 0su£ {6'x —y¢(0)} < oo} is open,
O

then { 0¥} is inaccuracy rate optimal for all € > 0 and § € ©*.
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ProOOF. Apply Theorem 2.2 with ® = ©*, g(6) =60 and note that (2.7)
implies K(8) = oo for each § € ©*; cf. Kourouklis (1984). O

PrOOF OF THEOREM 2.2. Since 0O is locally compact and © C int ©*, it
follows by Theorem 3.1 and Corollary 3.3 of Berk (1972) that {#,} and hence {T,}
is a consistent estimator of 6 for each § € ©. Let § € © and & > 0 satisfy (2.6).
For each b < K(8) we have

(2.8) Py(K(T,,0) >b) <Py(A"YX,) €A, K(T,,0) > b) + By(X, & A(A))

with A = {n € 0* K(7,0) < b}. By Lemma 2.1 A~ (X ) € A implies that
67,, exists and K(T,,60) = ( 0) < K(H* 0)=K(A~ 1(X ), ) < b. It follows
that the first term in the right-hand side of (2.8) equals zero. The second term
equals exp{ —nb + o(n)} as n = oo by Theorem 6 of Efron and Truax (1968).
Application of Proposition 1.2 completes the proof. O

REMARK 2.1. At first sight one might guess that IR-optimality of {0 } can be
proved as follows: Define g(8) = 6(0), show that g is continuous, prove directly
IR-optimality of {0*} in the full parameter-space ®* and apply Proposition 1.2.
As a result one obtains

— lim n='logP,(||f, — 0] > ¢) = inf{K(n,0): n € ©%,]|0(n) — 0]| > ¢},

n—oc

while one has to show

— lim n"'logPy(||f, — 0] > €) = inf{K(n,0): 1 € O,||n — 6] > &).
n—oc
(Bahadur’s bound depends on the parameter space; cf. Section 1.)

In general the second infimum is larger than the first one. Under the condition
that © is a relatively cosed convex subset of ®* it is seen by Lemma 2.1 that
both infima are equal. This argument is also used in the preceding proof applying
the crucial inequality K (0,,, 0) < K( 9,,*, 0). Convexity is the key point as is
further elaborated in a wider context in the rest of this section.

In general one cannot expect IR-optimality of the MLE when © is not convex.
To explain this we need the concept of exponential convexity.

We return to.the general framework of Section 1.

Let {P,, 0 e (:T)} be the class of all probability measures on (%, #). For
7,0 € © denote by dP, and dP, the densities of P, and P, wrt a domlnatmg
measure p. The family {P () Y(@) € 0,a € [0, 1]} between P, and P, is defined
by its p-densities

d
29) R (x) = e alog ()  47(a)| AR (o),
where ™% a) is a normalizing constant. Further for 7,0 € ® we denote by

['(n, 8) the set {y(a): a € [0,1]}, where y(a) is determined by (2.9). A family
{Py:0 € O} is called exponentially convex when n, € © implies I'(n, §) C ©.
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When P,, P, are members of an exponential family {FP,:0 € 8}, the family
between P, and P, is a linear subfamily of {P;: 6§ € ©*}: I'(n,0) = {af +
(1 — a)n: a € [0,1]}. Note that here I'(n, §) c © for all 5, § € © iff © is convex.
So if the parameter space of an exponential family is convex, the family is
exponentially convex.

Furthermore we define for n, § € ® the number C(7, 8) by

(2.10) C(n,0) = inf{max[K({,n), K(£,0)]: ¢ € ©).

This number is strongly related to the Chernoff index; cf. (2.15) and Chernoff
(1952). When restricted to a subfamily ® of ® we define

(2.11) Co(n,0) = inf(max[K (¢, 7),K(§,0)]: § € ©}.

The following lemma indicates that (1.5) cannot hold for each §, € ® when
{Py: 6 € O} is not exponentially convex.

LEMMA 2.4. (i) If 1,0 € O satisfy
(2.12) C(n,0) < Ce(n,0)
then for each estimator {T,} of 6 and each b with C(n,0) < b < Co(n,0)
condition (1.5) fails at least at one of the points 1 and 6.

(ii) If{P,: 0 € O} is exponentially convex then C(m,8) = Cg(n,8) for all
1,0 € 6.

(i) If {P,;: 0 € O} is closed in total variation and {P,: 6 € ©} is not
exponentially convex, then there are 7, 8 € © such that (2.12) holds.

PROOF. (i) Let C(n, ) < b < Cg(n, §) and choose ¢ € ©® such that
max{K({, 1), K(¢, 0)} < b. Since T, takes values in © only we have
P (max{K(T,, n), K(T,, 8)} > b) = 1 for each n, implying

limsup P,(K(T,,n) >b) >0 or limsup P(K(T,,0)>b)>0.

A slight modification of Theorem 2.1 in Bahadur et al. (1980) yields the result.

(i) Without loss of generality assume C(7,6) < oo or, equivalently,
w(dP, dPy > 0) > 0. Noting that « - K(y(a),n) and a — K(y(a), ) are con-
tinuous and monotone, an & exists which minimizes max[ K(y(a), n), K(y(a), 8)]
over a € [0,1]: The probability measure P, ;, is unique. We shall prove that for
each { € ® with K({,n) and K (¢, 6) finite

(2.13) max[K({,n), K(8,0)] = K(8,v(&)) + max[K(v(&),n), K(v(&),0)].

Let { € ® with K({,n) and K(¢,0) finite, then P, < P,,,. Without loss of
generality assume K({, 1) > K(¢, 8). In view of (2.9) we have

K($,m) — K(§,v(&)) — K(v(&),n)
(2.14) = &[K(§,m) — K(8,0) — {K(v(&),n) - K(v(a),6)}]
> a{K(v(&),8) — K(v(&),n)}.
First assume & = 0, then K(v(0), n) > K(y(0), §) and (2.14) implies (2.13). In case
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0 < & <1 we have K(y(&),n) = K(y(&),6) and (2.14) implies (2.13). If a = 1,
then K(y(1),8) = K(y(1), n) and again (2.14) implies (2.13). Having established
(2.13) it follows that the infimum in (2.10) is attained at the unique probability
measure P, ;).

Since exponential convexity implies y(&) € 0, the proof of (ii) is complete.

(iii) Let {P,: 8 € O} be not exponentially convex. Then there exist #*, * € ©
such that I'(n* 0*) — © is nonempty. The set {a: y*(a) € O}, where y* is
associated with I'(n*, 8*), is closed because K(-, -) is continuous on I'(n*, 8%)
and K(¢,, y*(a)) — 0 implies convergence in total variation of P, to P, cf.
Pinsker (1964) page 20. Now let «,, a, be the endpoints of the (a) largest open
(relative to [0, 1]) interval U with {y*(a): «a € U} A ©® = . Define

P.,, whena, >0,

P, = (P, whena, =0and P., €6,
P. when a; = 0and P, ¢ O,

n
and P, similarly for &y, P, and Pj.. Note that y(&) & ©, where v is
associated with I'(7, 8), and that C(n, 8) < o since I'(n*, *) + . Noting that
the infimum in (2.10) is attained at the unique probability measure P,;),
combination of (2.11) and (2.13) yields

Co(n,8) > inf{K(¢,v(&)): { € O} + C(n,8) > C(n,0),

because K(,, v(&)) = 0 with {, € ® implies that P; converges in total varia-
tion to P, and hence that y(&) € ©, which is a contradiction. This completes

the proof of the lemma. O

REMARK 2.2. When {P;: 6 € ©} is not exponentially convex, closed in total
variation, and connected, usually there exist 7,0 € © with C(n, 8) arbitrarily
small, thereby refuting (1.5) for arbitrarily small values of b.

REMARK 2.3. Consider a curved exponential family with statistical curvature
unequal to zero. Although it may be possible to obtain an IR-optimal estimator
for each ¢ > 0 at a fixed 6, or for a fixed ¢, > 0 at each 6 € O (cf. Examples 3.6
and 3.7 in Kester, 1985, pages 41, 42), IR-optimal estimators for a class of &¢’s and
#’s usually do not exist, due to the fact that a curved exponential family is not
exponentially convex unless the curve is a straight line in the natural parameter

space.
REMARK 2.4. Let 1,8 € @ besuch that C(n, 0) < oo, i.e., p(dP, dP; > 0) > 0.

The function "¢ as defined in (2.9) is convex and continuous on [0,1]. Moreover
we haveforall0 <a <1

d dP,
v (a) =E,<.,)10g( dp) K(v(a),n) — K(v(),0).
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Inspection of the proof of Lemma 2.4 (ii) now yields

(2.15) C(n,6) = —y"%(&) = — inf y"%(a) = —log inf [ dPs dP)™*dp.
O<a<1 O<a<l1

ExampLE 2.1. (i) Let {P;: 6 € O} be the class of all probability measures
having a positive and continuous Lebesgue density on R and let g map 6 onto
the median of P;. Note that {P;: § € ©} is exponentially convex. Bahadur et al.
(1980) proved that the sample median is IR-optimal for all § € ® and ¢ > 0.

(ii) Let {Py: 0 € ®) and g as in (i), but with the restriction that P; is
symmetric about g(6). This class is not exponentially convex. Indeed, Example
2.2 in Kester (1985, pages 27-30) shows that IR-optimal estimators do not exist
in this example as already presumed in Bahadur et al. (1980); this parallels the
known fact (cf. Pfanzagl (1976)) that the sample median is not optimal wrt the
asymptotic variance in this class.

3. Shift families. In this section let {P;: § € R} be a shift family of
probability measures on R with Lebesgue densities

(3.1) po(x) =p(x —0), x,0 R,

and let g(0) = 0.

Only in some exceptional cases shift families are exponentially convex. We may
therefore expect that usually Bahadur’s bound is not attained. On the other hand
translation equivariance is a natural restriction for location estimators in shift
families. In the following lemma an upper bound for the inaccuracy rate of
equivariant estimators is derived. This result generalizes previous work of Sievers
(1978). Note that for equivariant estimators the inaccuracy rate is independent of
0; it is denoted by e(e, {T,}).

LeMMa 3.1. If T, is equivariant then e(e, {T,}) < C(—¢, ¢); cf. (2.10).
REMARK 3.1. By (2.15) we have
(3.2) C(~¢,¢) = ~log inf fp«(x —&)p'~(x + ¢) dx,
O<a<1

which is the expression for the bound in Sievers (1978). The bound C(—¢, &) will
be called Sievers’ bound.

PROOF OF LEMMA 3.1. Let ¢ € O satisfy K({, —¢) < o0 and K({, €) < o0;
then P, < P; hence P, has a Lebesgue density. The equivariance of {7,} now
implies P,(7T,, = 0) = 0 since the Lebesgue measure of the same event is zero.

Let {n;} be a subsequence such that lim, _, ,n; 'logPy(|T,, | > &) = —e(e, {T,}).
If limsup;,P(T, > 0) > 0, there exists a subsequence {m} of {n } such that
lim P.(T,, > 0) > 0 and hence by equivariance and Theorem 2.1 in Bahadur et
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al. (1980)
— e(&,{T,}) = lim m; '1ogPy(|T,, | > &) > liminf m; 'log Py(T,, > ¢)

Il

(3.3) liminf m; 'logP_(T,, > 0) > —K(¢, —¢)

v

—max{K({, —¢), K(§,¢€)}.
If lim sup,P(T,,, > 0) = 0, then lim P(7,, < 0) =1 > 0 and hence
— e(e,{T,}) = lim m; 'logPy(|T,, | > €) > liminf m; ' log Py(T,, < —e¢)

(3.4) = liminf m; 'log P(T,, <0) > —K(¢, )
> —max{K({, —¢), K(, ¢)}.

Since ¢ € O is arbitrarily chosen, combination of (3.3) and (3.4) yields the result.
O

In contrast to Sievers’ claim (1978, page 611) Bahadur’s bound can be less than
Sievers’ bound as is shown by the following example.

EXAMPLE 3.1. Let p(x) = e™*1}y (%), then {F;: § € R} defined by (3.1) is
the exponential shift family. Bahadur’s bound b(¢) = ¢ and this bound is at-
tained by min{X;: 1 < i < n}; Sievers’ bound C(—¢, ¢) = 2¢ and this bound is
attained by min{X;: 1 < i < n} — ¢, which estimator is not consistent. Examples
to the same effect have been given by Kester (1985, page 62) and Fu (1985).

Our next aim is to derive the inaccuracy rate for a wide class of M-estimators
and to investigate at which of these estimators Sievers’ bound is attained. An
M-estimator is defined here as a suitable zero or change of sign of

M) = X 0(X - 0)

where ¢ is a function into the extended real line which attains positive as well as
negative values, but not both — co and + co. We consider two classes of functions
Y requiring either

(3.5) ¥ is nondecreasing

or
(3.6) ¥ is bounded, continuous, and such that A, has at least one zero
: for each n[P,].

The condition on A, holds when xy/(x) is nonnegative for |x| large enough. When
¥ satisfies (3.5) the M-estimator {7} = {T{¥} is defined by

(3.7) T, = sup{¢: A ,(¢) > 0}.
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When y satisfies (3.6), {T},} is defined by
(3.8 T - t* whent*-M,<M,—t",
8) "\t whentt—M,>M,—t,

where

t*=inf{t: t > M, A, (t) =0},

t~ =sup{t: t < M,,\,(t) =0},
and where M, = X, ., is the sample median. Note that definitions (3.7) and
(3.8) render {T,,} translation equivariant.

The inaccuracy rates of these estimators involve the log-moment generating
functions of ¢(X) under P, and P_,; we define

po(7) = log [e™*) dPy(x)
and the quantity e (e) by
e = min{ — inf ,— inf .
oe) = min{  inf p_ (), inf p(r))
In the following two theorems the inaccuracy rate of M-estimators is determined.

THEOREM 3.2. Let ¢ satisfy (3.5) and let {T,} be defined by (3.7). If
P(y(X,) <0)>0orP(y(X,)=0)=0 then

(3.9) e(e, {T,}) = e.p(e)-

Since this result is very similar to Theorem 2 in Rubin and Rukhin (1983), the
proof of Theorem 3.2, which is essentially an application of Chernoff’s theorem, is
omitted.

THEOREM 3.3. Assume that p is positive in a neighbourhood of 0 and that
Py((— 0,0)) = L. If ¢ satisfies (3.6) and is moreover continuously differentiable

with bounded derivative such that |y'(x) — '(y)| < c|x — y| for some ¢ < o and
all x, y € R, and such that ['(x)p(x)dx > 0, then for each 0 < & < g,

e(e, {T,}) = eyle),
where {T,} is deﬁned by (3.8).

REMARK 3.2. Rubin and Rukhin (1983) remark that for the MLE of the
Cauchy shift family (3.9) does not hold. Noting that this MLE is obtained as the
M-estimator with {(x) = 2x(1 + x2)~!, Theorem 3.3 implies however that (3.9)
does hold in this case when ¢ is sufficiently small. Together with Theorem 3.4 (cf.
Example 3.2) this also provides an answer to the open problem mentioned in Fu
(1985, Remark 2).

PrOOF OF THEOREM 3.3. Let ¢, = [{/pdx > 0. Since the Lipschitz condition
on ¢/ is “inherited” by n~'N, we have writing § = j¢ ¢,

(3.10) n N, (0) < —ie,=>n"'N,(t) <0 on(-38§,9).
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Let 0 <e< 38. If |T,| >¢ A (—€)>0, A (¢) <O, and N, (¢) <0 on (—4,9)
then |M,| > }6; hence we obtain

Po(IT,| > &) < Py(A,(—¢) < 0or A, (e) >0) + Py(|1M,| > 18)
(8:11) +Py(n7IX,(0) = —1c,).
By Chernoff’s theorem and translation equivariance we have
(3.12) - nlif; n~'logPy(A,(—¢) < Oor A, (e) 2 0) = e,(e).

Writing p, = Py((}6, ©)), p_ = Py((— o, — $8)) it is readily seen (cf. Example
6.1 in Bahadur (1971)) that

— lim n'llog[PO(|M,,| > 1§) = min{—élog[‘tip+(1 -],
(3.13) n=o

—4log[4p_(1-p_)]} >o.
The derivative of

T logfe"‘”"‘cl/z’pdx
at 7 = 0 equals jc, > 0, and hence

— inf log [e™¥' ~%/?pdx = ¢, > 0.

7<0
By Chernoff’s theorem it follows that
(3.14) — lim n7ogPy(n~N,(0) = —ic,) = ¢, > 0.
n-—oo

Since ¢ is bounded and continuous, py(7) is continuous in § and 7 by dominated
convergence. Moreover, by strict convexity of p, we have py(7) > 0 for each r > 0
or py(r) >0 for each < 0. Without loss of generality assume the latter;
by pointwise convergence of p, to p, and convexity of p, it follows that
inf, _op(7) — 0 as ¢ — 0, implying

(3.15) e e) >0 ase—0.

Combination of (3.11), (3.12), (3.13), (3.14), and (3.15) yields that there exists
g, > 0 such that foreach 0 < & < g

— limsup n™'log Py(|T,| > &) > e (e).

n— oo
On the other hand
Po(I Tl > &) = Po(|T,| = ) = Py(A,(—2) < 0or A, (e) = 0)
—Py(n'X,(0) 2 —j¢,)
and hence there exists ¢, < ¢, such that for each 0 < ¢ < ¢,

— liminfn"'log Py(|T,| > ¢) < e (¢).D
n-— oo
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REMARK 3.3. The only property of the sample median M, we need in the
above proof is (3.13). Therefore if we define {T,,} by (3.8) using another pre-
liminary estimator {M,} which satisfies

— lim n 'logP,(|M,| > 8) > 0
for each & > 0, Theorem 3.3 holds for {T,}.

Having established an expression for the inaccuracy rate of M-estimators
(Theorems 3.2 and 3.3) and an upper bound for the inaccuracy rate of equivariant
estimators (Lemma 3.1) the question arises naturally which, if any, of the
M-estimators attains Sievers’ bound. In vew of (3.2) Sievers’ bound C(—g¢, €) can
be written as '

. p(x —¢)
—log inf [exp|alog — |p(x + €) dx.
0<a<1 p(x + &)
Define
(3 16) 1[/(x)=lo M
) ¢ gp(x +e)

We assume that either ¢, < o0 ae. or Y, > —oo0 ae. If Yy, > —oco a.e. then
inf, _,p(7) = inf,_,,p_(7) and hence e (&) = C(—¢, ¢). If Y, < oo a.e. then
inf__,o_(7)=inf,_, . p(7) and hence e (e) = C(—¢, ¢). Therefore as a rule
the M-estimator based on y, given by (3.16) 1s inaccuracy rate optimal within the
class of equivariant estimators. For instance, when ¢ is nondecreasing and either
> —o0 a.e. or < oo a.e., indeed {T(¥"} attains Sievers’ bound; cf. Sievers (1978),
Theorem 2.1 and Fu (1985). Note that in general the optimal M-estimator will
depend on e.

For a nonmonotone y, we cannot apply Theorem 3.3 directly, since in general
¢, will depend on ¢ = v ; so for a fixed &*, say, ¢, = ¢,(¢{.«) may be smaller than
e*. Nevertheless the next theorem states that if p is sufficiently smooth (3.9)
holds for ¢ = ¢, when ¢ is small enough, with the important implication that
Sievers’ bound is attainable in these situations. Even for the Cauchy shift family
an inaccuracy rate optimal M-estimator is obtained by this result; cf. Example
3.2.

THEOREM 3.4. Let p>0 on R with (°  pdx=1i. If p is three times
differentiable such that p'(x) > 0 (< 0) for each small (large) enough x, such
that the first three derivatives of log p are bounded and such that

f (log p)'pdx <0,
then
(3.17) e(e, {Tn‘"‘*)}) =ey(e) = C(—¢,¢)

when ¢ is small enough.
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PROOF. For ¢ — 0 the function y, strongly depends on &. Therefore we define
the “standardized” , = (2¢)”',; then obviously T\’ = T¥). It is easily
checked that y_ satisfies (3.6). Further we have

e;(e) =ey(e) =C(—¢,e) >0 ase—0.
Noting that

lim ﬁ;pdx = —[(log p)’'pdx = ¢, > 0
e—0
and

liminf — inf log [e™¥~</Ppdx

e—0 7<0

— inf lim log [e™¥~/2p dx

7<0 -0

v

— inf log er(f(logp)”fcl/mpdx >0,

7<0
we can follow for ¢/, the same line of argument as in the proof of Theorem 3.3,
using the mean value theorem to bound ¢,, ¥/, and ¢”. We omit further details.
O

ExaMPLE 3.2. Consider the Cauchy density p(x) = 7~ (1 + x%) . We have

- 1+ (x+¢)
Y (x) = og———1+(x_8)2.

The conditions of Theorem 3.4 hold, hence {T,{*-)} attains Sievers’ bound when &
is sufficiently small.

It is seen in the proof of Lemma 2.4(ii) that C(—e¢, ¢) =
max{K(y(&), —¢), K(y(a), ¢)}. It can be shown that in regular cases e(¢{T,}) =
C(—¢, ¢) implies that the influence curve at P, ; of the estimator {7} is a.e.
proportional to ¥, given by (3.16), and hence {T,{¥} is the essentially unique
M-estimator which attains Sievers’ bound; cf. Theorem 4.7 in Kester (1985), page
76. However, possibly also an L-estimator attains Sievers’ bound. The next
example shows that this occurs in the double exponential family, where a
trimmed mean: attains Sievers’ bound.

ExaMPLE 3.3. Let p(x) = je ™. Sievers’ bound C(—¢, &) = ¢ — log(1 + ¢) is
attained by the M-estimator {T){¥"} with y, given by
—2¢ when x < —¢,
Y(x) = {2x when |x| < &,
2¢ when x > ¢;
cf. Sievers (1978). The probability measure P, ;, is given by

dPy(&)(x) _ {;(1 + e)_lexp{ —|x| + ¢} when |x| > ¢,
dx

1+e) ! when |x| < e.
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& Oof the (1 + ¢)” -trimmed mean L, say, is a..
proportional to the influence curve of {T{*?}. So this L-estimator is a candidate
for being optimal. By symmetry the inaccuracy rate of {L,} equals

— lim n"YogP,(L, > ¢).

n— oo

The influence curve at P,

In view of Theorem 6.3 and formula (6.13) of Groeneboom et al. (1979) this can be
expressed as (writing « = (1 +¢)7')
2aloga + (1 — 2a)log(l — 2a)

(3.18) +inf{supf(a,b,t); — 00 <a<b<oo,b>e}
=0
with
f(la,b,t)=(1 - 2a)[ts - logfbe‘xp(x) dx]
(3.19) @

—a[log F(a) + log(1 — F(b))],
where F denotes the distribution function of P,. We shall show that f(0,2¢,1)
attains the sup and inf in (3.18). Consider
f(a, b,1) — £(0,26,1) = (1 - 2a)[—logfbéex"x’dx + 1og/2‘;dx]
a 0

—aflog F(a) — log + log(1 — F(b)) — log te *].
Multiplying by (1 + ¢)/e = (1 — 2a) ' we obtain, when a < 0 and b > ¢,

2a

2

1/(1-—e?%
= —log| — +b
2¢ 2

1 1
loge — log — — log +b|— —[a— b+ 2¢]
2 2¢

l—%[a—b]—l

1
4—[e2"— 2a —1] >0,
€

where the inequality log x < x — 1 was used. When a > 0 we find in a similar
way that

\

f(a,b,1) = f(0,2¢,1).
It follows that
inf sup f(a, b, t) > (0,2¢,1)

a,b t>0
and it suffices to remark that f(0,2¢,1) > f(0,2¢,t) by symmetry and convexity
of

£ [Fetm M gy,
0

It remains to evaluate f(0,2¢,1). Together with the other part of (3.18) this
indeed equals ¢ — log(1 + €). So the (1 + &)~ '-trimmed mean attains Sievers’

bound.
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4. Tail-behaviour of location estimators. The asymptotic behaviour as
e — oo of

—logPy(|T,| > ¢)
—logPy(1X,| > &)

(4.1) B(e, T,) =

is proposed by Jureckova (1979,1981) as a basis for comparison of translation
equivariant estimators 7, in location families { py(x) = p(x — 8): x, 6 € R}. For
symmetric p and translation equivariant estimators T}, satisfying

min{X;:1<i<n}>0=T,(X,...,X,) >0,
max{X;:1<i<n} <0=TJ(X,...,X,) <0,
it holds that
(4.2) 1 < liminf B(e, T,) < limsup B(e, T,) < n;

cf. Jureékova (1979, 1981). Moreover, if
—log P((e, 0
(4.3) lim ——¢ (&%) _ 1

£— 00 bs”

for some b > 0, r > 1, then the sample mean attains the upper bound in (4.2),
ie.,
(4.4) lim B(e, X,) = n;

£—>00
cf. Jureckova (1979). In this section we connect the results of Juredkova and the
inaccuracy rates as treated in the previous section.

First consider just as above a fixed sample size n. Suppose that ¢ (x) =
log{ p(x — ¢)/p(x + €)} is nondecreasing; then 7%~ minimizes Py(|T,| > &) over
the class of translation equivariant estimators; cf. Huber (1968). We prove that
under a similar condition as (4.3) the optimal estimator T,(¥" converges pointwise
to X, as e — oo.

THEOREM 4.1. If p is log concave and satisfies

(4.5) — log p(x) = blx|"(1 + f(x))

withb >0, r>1, f(x) > 0 as |x| = « and for each x

(4.6) f(x—e)=f(x+e)+o0(e7') ase— o,

then
lim T,%(x,,...,x,) =n"') x; foreach (x,,...,x,)€R"
£— 00 i=1

The proof hinges on the following lemma.

LeEmMA 4.2. Under the conditions (4.5) and (4.6)
Y (x) =2bre" x(1 + 0(1)) ase - .
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Proor. Fix x € R. As ¢ —» oo we obtain
Y(x)=—ble—x) (1+f(x+e)+o(e!)) +b(e+x)(1+f(x+e))
=b{(e+x) —(e—x)"}(1+0(1) +o0(e" ") =2brxe" (1 + 0(1)).
O

Proor oF THEOREM 4.1. Fix 6 > 0 and (x,,..., x,) € R”. By Lemma 4.2 we
have, writing X = n™'%7_ x,

»_i%(xi —X—8)=2brg! Z": (x;,—x—8)(1+ o(1))

i=1
= —2bre" 'nd(1 + o(1)) <0
and similarly X7 ¢ (x; — X + 8) > 0 when ¢ is sufficiently large, implying
I T (xy,...,x,) — X| <8. O

Next consider the double exponential distribution. For each 0 < ¢ < oo the
1(1 + &) '-trimmed mean minimizes among translation equivariant estimators
the inaccuracy rate —liminf, , n~'logPy(|7T,| > €);cf. Example 3.3. This esti-
mator converges to the sample mean if ¢ = o0 and to the sample median if
¢ — 0, thus providing a bridge between gross error optimality and strictly local
optimality.
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