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THE STRONG LAW UNDER RANDOM CENSORSHIP

By W. StutE! aAnD J.-L. WanG?2

University of Giessen and University of California, Davis

Let X;, X,,... be a sequence of i.i.d. random variables with d.f. F. We
observe Z; = mln(X,, Y)) and §; = 1 x, .y, Where Y3, Y,,... is a sequence
of iid. censoring random varlables Denote by F, the Kaplan-Meier
estimator of F. We show that for any F-1ntegrable function ¢, [¢ dF
converges almost surely and in the mean. The result may be applied to

yield consistency of many estimators under random censorship.

1. Introduction and main results. Let X, X,,... be a sequence of

independent random variables with common distribution function (d.f) F.
Assume that ¢ is a Borel-measurable function on the real line such that
/lo| dF < . Denote by F, the empirical d.f. of X;,..., X,,. The strong law of
large numbers (SLLN) applied to ¢(X;),... then yields with probability 1
(w.p.1)

(1.1) lim [o(x)F,(dx) = [o(x) F(dx).

Within a statistical framework (1.1) is crucial for proving consistency of the
estimators of various parameters of interest. Here is a list of possible applica-
tions:

1.
2.

3.

If o = 1, b then (1.1) yields F,(¢) —» F(¢) w.p.1.

If ¢(x) = x*, then (1.1) gives the consistency of the kZth moment estima-
tors.

If p(x) = exp(itx), we obtain pointwise convergence of the empirical charac-
teristic function.

CIf o(x) = (x — D)1, and F(¢) < 1, then [cf. ()], w.p.1

f(x>t)(x —t)F,(dx) 5 f(x>z)(x —t)F(dx)
- F,(t) 1-F(t) ’

the so-called mean residual life function (at time ).

. If the parameter of interest 6 is that value of ¢ for which

Je(x,t)F(dx) =0,
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1592 W. STUTE AND J.-L. WANG

then, under regularity assumptions on ¢, (1.1) guarantees that the solution
6, of

[e(x,t)F,(dx) =0

converges to 6 with probability 1.

In this paper we extend (1.1) to the random censorship model. This model
covers an important situation in survival analysis. To be precise, assume that
X,, X,,... is a sequence of nonnegative lifetimes with d.f. F. The condition
that the X’s are nonnegative is only for convenience and in no way limits the
conclusion of our main result. Along with the X-sequence, let Y;,Y,,... be a
sequence of independent censoring random variables with d.f. G also being
independent of the X'’s. We only observe the censored lifetimes Z; =
min(X;, Y;) together with 8, = 1.y _y,, indicating the cause of death. It is our
goal to estimate certain characterlstlcs of F based on (Z,,8,),1 <i <n. For
notational convenience, assume that all random variables are defined on a
probability space (Q, &7, P).

It is well known that the nonparametric maximum likelihood estimate of F
is given by the Kaplan—Meier product-limit estimator (PLE) defined by

. n 8li:n) Lz, <
1.2 1-F(t) = 1 - ——~— .
(1.2) (0 = TT{1- 2]
Here Z,., < -+ <Z,., are the ordered Z-values, where ties within lifetimes

or within censoring times are ordered arbitrarily and ties among lifetimes and
censoring times are treated as if the former precedes the latter. §;. ,; is the
concomitant of the ith-order statistic, that is, 8, ,; =29, if Z; , = Z;. Note
that (1.2) is self-adjusted for tied observations and it is equivalent to another
frequently adopted form, namely,

k d 1(211)53)
(1.3) 1-F(¢t) = ]‘[(1——‘) .
i=1 n;
Here Z,, < :-+ < Z,, denote the % distinct lifetimes among {Z,,..., Z,}, d,

is the number of deaths at Z, and n,=1X"_ 1l(z,2 7,y is the number of
individuals still at risk at time Z;,. For convenience of exposition, in this
article we adopt the form (1.2) rather than (1.3).

As before, let ¢ be F-integrable and put

= [e(x)F(dx), n=1.

Since F, is a step function, it can be easily seen from (1.2) that

Z W,.o(Z;.,
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where for 1 <i <n,

Sj:n]

W.=

124

6[i:n] il n_J
n—i+ljg|n—j+1

We are concerned with the strong law of large numbers (SLLN) for S,. In
particular, we will show that S, converges almost surely and in the mean to a
constant S and then identify S. Needless to say, S turns out to be [¢(x)F(dx)
when no censoring is present.

So far, the convergence of S, has mainly been studied for indicators
¢ = 1_, ;- The special structure of such a ¢ was crucial, via integration by
parts, in the analysis so that the ordinary SLLN and Glivenko-Cantelli
convergence of the empirical d.f. of the Z’s and the empirical subdistribution
function of {Z; < ¢, §; = 1} could then be employed. See, for example, Shorack
and Wellner (1986) and Wang (1987). Application of known laws of the iterated
logarithm for empirical processes also yielded rates for the convergence of
F,(¢) uniformly over certain (compact) intervals; cf. Foldes and Rejts (1981)
and Csorgé and Horvath (1983). Gu and Lai (1990) derived (under regularity
conditions) a functional law of the iterated logarithm for the Kaplan-Meier
empirical process ¢ — n'/?[ F (t) — F(¢)]. This result may also be obtained on a
compact interval using the almost sure representation of Lo and Singh (1986).
¢’s which are of bounded variation and vanish off a suitable compact set are
readily dealt with upon integration by parts. For more general ¢, to the best of
our knowledge, we are only aware of Susarla and van Ryzin (1980). They
considered the mean lifetime, that is, ¢(x) = x. Their method of proof is again
based on an integration by parts argument. Since ¢ is not of bounded
variation, a truncation was needed and rather stringent conditions on the tails
were introduced which are very often difficult to check.

Compared with the aforementioned papers, our methodology solely rests on
the martingale properties of S, as a process in n. This is different from the
usual martingale approach in survival analysis [cf. Aalen (1978) and Gill
(1980)], where for n fixed, martingale theory was applied to the Kaplan—-Meier
process as a process in ¢. Here no reduction to any empirical process is made.
As a consequence, no restriction on ¢ (up to F-integrability) is required. Both
almost sure convergence and convergence in the mean are shown.

In survival analysis, X is the lifetime of a patient due to a particular cause
of interest and Y is usually the withdrawal time of the patient from the
follow-up study or the time of death due to other causes in a competing risk
model. Therefore, for most practical purposes, one can assume that

(1.4) F and G do not have jumps in common.

Notice that (1.4) does not exclude the possibility that either F or G are
discontinuous.
Now, let H denote the d.f. of the Z’s. By the independence of X; and Y,

(1.5) (1-H)=(1-F)(1-G).
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Set
Ty = inf{x: H(x) = 1}.
Write F{a} = F(a) — F(a — ). Finally, let A be the set of all atoms of H.

THEOREM 1.1. Under (1.4), with probability 1 and in the mean,

(16) lim [o(x)F,(dx) = [ #()F(dx) + T o(a;)Flay).

XEA, x<ty a,€A

The right-hand side of (1.6) may be written as

(1.7) f( @) F(dx) + 1, me(7ar) Flry)

x<Tg

(where the second summand should be equal to 0 if Tg = ).

REMARK 1. If no censoring is present, F, = F, and F = H, so that (1.6),
resp. (1.7), leads to (1.1).

REMARK 2. Notice that (1.7) reduces to Jix <rp®(x)F(dx) unless 7 & A
and F{r,} > 0, that is, when

(1.8) F{rg} >0 but 1-G(7y-)=0.
Otherwise (1.7) becomes |, ., ¢(x) F(dx).

REMARK 3. From (1.7) we may also infer conditions under which S, is a
consistent estimator for [¢ dF:

(1.9) lim [o(x)F,(dx) = [o(x)F(dx).

For this, define 7, and 74 similarly to 7. Then 75 = min(r, 75). Of course,
when 75 > 7, (1.9) cannot hold in general (unless, e.g., ¢ is 0 on [rg, e D. If
T = Ty, however, (1.9) holds if and only if (1.8) is excluded. In particular, (1.9)
holds for continuous F provided that 7, = 7.

Note also that convergence in the mean implies that ES, tends to (1.7).
Interestingly enough, we shall prove that for ¢ > 0, {S,}, ., is a reverse-time
supermartingale, to the effect that ES, converges from below. From a statisti-
cal point of view, this means that in general S, is biased-downwards. For
n = 1, for example, we get

ES, = [¢(X)1x <y, dP,

which may be strictly less than (1.7). For uncensored data, all ES, are the
same, namely [¢ dF, that is, all S, are unbiased [which, of course, is trivial,
since S, coincides with the sample mean of ¢(X)), ..., ¢(X,)].
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Examples of nonnegative ¢’s include indicators 1._, ,; and, provided the
data are nonnegative, moments and the mean residual life function. As the
ordinary SLLN, Theorem 1.1 has many applications in estimation theory. For
example, it may be employed to extend consistency of the M- and L-estimators
to the random censorship model.

Over the last 20 years, there has also been much effort to show that (1.1)
holds uniformly for a class %= {¢} of ¢’s. Most of these papers use the
concept of a Vapnik—Chervonenkis class. Such a class fulfills certain combina-
torial entropy conditions which enable one to bound the sup over ¢ € % by
the sup over some finitely many ¢,, ..., ¢,; , where an upper bound for &, is
obtained from the entropy condition. Then a standard exponential bound for
sums of i.i.d. random variables is applied to bound the tails of sup,|/¢ dF, —
f@ dF|. A nice and readable introduction to that approach is contained in
Pollard’s (1984) book. In Stute (1976) an alternative concept for uniform
convergence was considered, which is only based on the SLLN rather than
exponential bounds. Also here, when the data are at risk of being censored, no
Bernstein-type exponential bound is available so far. Theorem 1.1 may then be
applied, in connection with Stute (1976), to get uniform convergence in (1.6).
As a particular example, we may take for % the family of all indicators
@, = 1 _y 4 t < 7y. Equation (1.7) then becomes

F(¢), if t < 7p,

F(t) - F('TH—) + l(THEA)F{TH}’ lf t > TH-

We therefore get the following corollary.

COROLLARY 1.2. Under (1.4), we have

sup |FAn(t) - F(t)l — 0 with probability 1.

t<ty

COROLLARY 1.3. Under (1.4), ﬁn is uniformly consistent for F on (—o, 7]
if and only if either F{ry} = 0 or F{ry} > 0 but G(ry4-) < 1.

For the last statement, cf. (1.8). Corollary 1.3 is the a.s. version of Corollary
1 in Wang (1987) and therefore provides a positive answer to his question
when there are no common jumps between the life and censoring distributions.

COROLLARY 1.4. Under (1.4) and [lx|F(dx) < », we have (in obvious nota-
tion) the following results on the mean residual life function:

lim Ez (X — £1X > ¢)

(1.10) Er(Lix<.y(X — )X >¢), when (1.8) holds,
- Er(Lx<y( X — 8)IX > t), otherwise,

w.p.1 and in the mean.
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The P-a.s. convergence in (1.10) is uniform on any compact interval [0, T']
for which H(T') < 1.

The SLLN, in nature, is an asymptotic result. We only mention here that in
the proof section the interested reader may find lots of details about the finite
sample behavior of S,,, both for n fixed or as n varies over time. Lemma 2.4,
for example, gives an exact formula for the expectation of S,. This formula
gives an impression of what in the mean is really estimated by S, for finite n.
Its limit is presented in (2.5). For nonnegative ¢, the convergence is monotone.
The joint probabilistic behavior of finitely many S,’s is described by the
aforementioned martingale structure.

The bias problem has been the objective of some research in the past. Gill’s
(1980) formula (3.2.16) yields a negative bias for F(¢), and Mauro (1985)
treats a general ¢. Note that in his Theorem 3.1 the expectation of [¢ dF is
compared with [¢ dF' and not with S, as it should be. Chen, Hollander and
Langberg (1982) proposed a modification F;* of F which coincides with F
left of the largest Z but jumpstolat Z,.,, 1rrespect1ve of whether §,,,. ,;is 1
or 0. Wellner (1985) provides a comparative study from which he is led to
prefer F,. His Table 2 exhibits the negative bias of F, while F* is always
biased upwards.

Our final remark is toward several comments one can find in the more
applied work on survival analysis. Because of the technical difficulties encoun-
tered when investigating ﬁn on the whole real line via the cumulative hazard
function, it is argued that pn needs to be investigated only on intervals [0, T']
with T < 7;. We have never found such a recommendation for completely
observable data. For estimation of the mean lifetime, such a restriction would
lead to a serious bias, even asymptotically. Also, from a practical point of view,
since 7y is unknown, a cautious choice of (a small) T would lead to a
considerable loss of information. In contrast, in Theorem 1.1, the F " -integral
is computed over the whole real line.

2. Proof of Theorem 1.1. To prove (1.6), it suffices to consider nonnega-
tive ¢’s. Otherwise, decompose ¢ into its positive and negative part. Also, in
the lemmas to follow, we shall first restrict ourselves to continuous H'’s. It will
be shown later that under (1.4) the general case may be traced back to the
uniform distribution on [0, 1] upon using a simple quantile transformation.
Now, under a continuous H, the Z’s are pairwise distinct. Recall that

Z W,e(Z;.,

where for 1 <i <n,

Sj:n)

(2.1) W, =

mn

8[i:n] i1 n_j
n—i+li3|n—j+1

Here and in what follows, an empty product is taken to be 1. Note that W,, is
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the jump size of F, at Z,. ,, since under continuity there is no more than one
death at that time.

The essence of our argument is to show that (for ¢ > 0) {S,},., is a
reverse-time supermartingale with respect to an appropriate decreasing se-
quence of o-fields {%,}, .. It is well known that if no censoring is present,
{S,}, .1 (= sample means) forms a reverse-time martingale, so that the classi-
cal SLLN is an easy consequence of a proper martingale convergence theorem,;
cf. Neveu (1975), page 116. For censored variables the martingale property is
lost in general. In view of the supermartingale property, however, we shall be
able to use Proposition 5-3-11 in Neveu (1975). Application of the
Hewitt—Savage zero—one law will show that the limit S is a constant. Finally,
it remains to identify S.

Now, for each n > 1, put

'9;; = O'(Zi:n, S[i:n]’]‘ < l < n, Zn+1,8n+1,...).

It is easy to see that S, is adapted to %, and that %, |. Set %, = N ,.1%,.
The following lemma presents two fundamental distributional facts concerning
order statistics, concomitants and ranks.

LemMma 2.1. Let (C;,D,), 1 <i < n, be independent random vectors from
some bivariate distribution with conditional distribution

m(ylx) = P(D; < ylC; = x).
Let C,., < -+ < C,,, denote the ordered values of the C’s, and let D;.,,; be
the ith concomitant paired with C;,,. Then
(@) Conditionally on C,.,, < -+ < C,.,, the concomitants are independent
with
I]:D(D[i:n] Slei:n = x) = m(ylx)

(b) If the C’s have a continuous d. f., then the vector (C;.,, D;. ,)1<i<n 18
independent of the vector of C-ranks.

When (C;, D;) has a joint bivariate density, part (a) is contained in Yang
(1977). Here the more general version is needed, since when we apply Lemma
2.1, D; will be equal to the zero—one variable §; (and C; = Z,).

Proor. Denote with H the d.f. of C;. According to Rosenblatt (1952), we
have the representation

(Ci, D) = (H-Y(U), m Y (VIH X(U)))),
where (U, V)), 1 <i < n, are independent and uniformly distributed on the
unit square. Accordingly,

D[i:n] = m_l(‘/[i:n]lH_l(l]i:n))’

where V,; | is the ith concomitant among the V’s. Observe that the vector of
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V-concomitants is independent of the U-order statistics, and that V; ,, 1 <i
< n, are independent and uniformly distributed on [0, 1]. Furthermore, the
Vector of C-ranks is independent of the C-order statistics. Altogether this
easily yields (a) and (b). O

The next lemma plays a crucial role in this article.

LemMma 2.2. For continuous H,
IE( S | n+ 1)

Opjin+1)

1 - n—j
= Sn+1 - n + 1¢(Zn+1 n+1)6[n+1 n+1](1 S[n n+1]) ]._.[ [n ] +1

In particular, for every nonnegative ¢ we have
lE( S | n+ 1) = Sn +1
that is, {S,, .}, 1 is a reverse-time supermartingale.

Proor. Write
n+1

/QD dﬁn b E ¢(Zi:n+1)FAn{Zi:n+1}‘
i=1
To prove the lemma, it suffices to show that
[ {ZI. n+1}| +1] i,n+1 forlSisn
and

[ {Zn+1 n+1}| +1]

1 - —j Sjin+1
= Wn+1,n+1 - ma[n+1:n+1](1 - [n n+l]) ].—.[ [n J +1

Now,
[E[F;n{zlzn+1}|9;z+l] = [E[Fn{zlzn}l(Z"+1>Z1:,,+1)|'9;L+1]

8[1:n+1] —
n+1
where the last equality follows from

1,n+1>

)

[E[l(z,,+1>zh,,+l)|'9z;z+1] P[Rank of Z,,,, > 1|%,,,] = T

by Lemma 2.1(b), and
Otn+11=0n; ON{Z,,1>2Z; .1}
Similarly, on {Z,, ., = Z,. ., .}, we obtain

Opjin) = Ojinvyy M J <k
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and
8ijin1 = Opvrinsy i J =k

Therefore, if 2 < i < n,

[ 420N Fo 1] = Bd Zini M s, 5 20 Fo ]

+ Z 'E[ A Zin+1t iz, =2, ,,+1)|9;z+1]

i—1 n—j Spjin+1]
8
n+1{[‘"+1]n[n J+1]

(2.2)
i—Zl 8[; 1] k-1 n—j djin+ il—_ll n—j+1 Blj:in+1]
+ _—
-1+ 2;3 n—j+1 jk+iln—J+2
W a1 ) i—1 n—-kE+2 Otk:n+1]
= -1+ 2 + EE——— .
] {(n Erym kzl'”k[ —k+1]
Here

1 (n—j)(n —j +2) | L<p
= , <k<n.
j=1 (n—j+ 1)

Putting m,,, = 0, it is easily seen that (2.2) also holds for i = n + 1. If the
expression in { - - - } is denoted @;, one finds

Q,=n+1
andfor1 <i<n—1,
(n—i)(n —i+2)]"
(n—i+1)

n—i+2 Oiin+1)
n—i+1 )

The term in brackets vanishes for each choice of 5, so that

Q1— Q= 7Ti|:(n —i+ 1)[

—(n—i+2)+

Q,=n+1 forl<i<n.
Sipce
Qn+1 - Qn = Wn{zaln:"+1] - 2} == n(l - 8[n:n+1])’

the proof is complete. O
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From Lemma 2.2 we obtain the following lemma.

LEMMA 2.3. Assume that H is continuous and ¢ > 0. Then:

(@) S =lim,_,ES, exists (possibly infinite).
(i) S, = S P-almost surely.
(i) If S < =, then {S,}, . is uniformly integrable and E|S, — S| - 0.

Proor. From Lemma 2.2, ES, is nondecreasing in n, whence (i). By
Proposition 5-3-11 in Neveu (1975), {S,}, . ; converges P-almost surely (P-a.s.)
to some %, -measurable random variable S,. Moreover, S, = lim, _,, KS,|%)
P-a.s. The Hewitt—Savage zero—one law implies that %, is trivial. Hence

S,= lmE(S,|% )= limES, =S8S.

n—oow n—o

Part (iii) is also contained in Neveu (1975). O

We will proceed to identify the constant S. First, set
m(t) =P(6=11Z =t),
the conditional probability that a death is observed given that Z = ¢. Denote,
for n > 1,
oy, Lom(Zig) |
t) = 1+ ——=27
and
&.(1) = Ep,(2),  go(t) =1.
LemmA 2.4. We have, for each n > 1,
ES, = E[e(Z)m(Z)g,-(2)].

Proor. Let R;, denote the rank of Z; among Z,,...,Z,. We have, by
Lemma 2.1,

ﬂESn=iE{i o( ln)

Syjin

i .
—-J
[znl_.[[ |Z ’Z

n—j+1

l:ins: - n:n

L=1n—t+1

n ) N n) i—1 ( n)
-of £ 2B <zln>n( )]
2 oo(Z;, n)m(Zz n) ' l—m( :n)
=|E{z=21 Jl:[ n—j )}
{E{ § o(Z)m(Z) w(z)m(z) 0 (1+ l—m(Z)) ‘Z<Zf’}
i=1 Jj=1 Rjn

=[

n 1 - Z (Z<Zl)
o(Z)m(Z) TT {1+ ———ﬁ(——l) ]
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On {Z;<Z,} we have R, ,=R;, ;, the rank of Z; computed among
Z,,...,Z,. Condition on Z, to get the result. O
We are now going to study the process ¢,(¢), t fixed, as n increases. Set
an = O'{Zlcn’ N "Zn:n’Zn+1’ . }
Clearly, ¢,(t) is adapted to &, with &, |. Put & = N, .,%.

Lemma 2.5. For continuous H, {¢,(t), £,}, ., is a (nonnegative) reverse-
time supermartingale.

Proor. We have, by Lemma 2.1,

Lz;.<n

n+1

n—j+1

E[en() 1] = ‘E[ﬁ

n+1

kgllE[lfzn+1=Zk:n+1)l_-[( T )l‘%1+1]

(2.3)

) Lz 1<t
1 n+1 k—l(1 N 1— m(Zj:n+1)) (Zj.n11<8)

n+1k§1j=1 n—j+1

n+l 1-m(Z. Lzjni1<t
x T1 1+—(, ”"“)) .
j=k+1 n—j+2

To show the lemma, we proceed by induction on n. For n = 1, the last
equation yields

E[¢1(t)|fz] = %[1 +(1- m(Z2'.2))1(22:2<t) 1+ (- m(ZI:Z))l(ZMO}]
1 2
=14+ E Z (1 - m(Zi:Z))l(Zi:2<t)
i=1

< (1 A GO )) — m(Z1:2)

2 1(21:2<t))(1 + (1 - m(Z2:2))1(22:2<t))

= ‘P2(t)-
Next assume that the assertion holds for n. Write
n+2

A-TI

j=2

1+

Lom(Zine) |
n—-j+3 .




1602 W. STUTE AND J.-L. WANG

Replacing n by n + 1 in (2.3), we get

k=2Jj=1 Jj=k+1

1 n+2 k-1 L n+2 L
E[¢n+1(t)|'%z+2] = n_+'2“{A + Z I ()l n () (A..)}

1 1-—m(Z . l(zl:n+2<tl
= A+ 1 + ( 1.n+2)
n+2 n+1
- 1 j+1:n+2 <t
X " 1(1 + 1- m(?j+1:n+2)) @ )
k=1J=1 n—j+1
(2.4) i
n+1 1 — m(Zj+1:n+2) {Zj+1:n+2<t}
x IT (1+ —
j=k+1 n—j+ 2
A n+1

+
T n+2 n+2

1= m(Zy ) | @nr
+
n+1

’

X;ﬁl . 1—m(Ziy1.049) LZi i 1inr2<t)
i=1 n—1+2

where the last inequality follows from the induction hypothesis applied to
Z; 1. p+o rather than Z; ;. Now, (2.4) equals

A n+1 1= m(Zy.p,g) | @na<ont2 1-m(Z;,,.,) ) @
+ 1+ ( 1: +2) l__[ 1+ ( J: +2)
n+2 n+2 n+1

j=2 n—j+3

1—-—m(Z n 1Z1ni2<n
=A(1+ ( 1: +2))

= t
n+2 ¢n+2( )’

as desired. O

Again, the martingale convergence theorem guarantees that ¢,(¢) converges
almost surely for each fixed ¢. We now determine its limit.

LEmma 2.6. For any t such that H(t) < 1,

. ' ¢ 1—m(x)
lim ¢,,(¢) = exp{f_me(dx)} P-a.s.

Proor.

Let H, be the empirical d.f. of Z,,...,Z,. Then ¢,(¢) can be
written as

i=1

eu(2) = exp{ i In(1 + xi)},
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where
1-m(Z;)
YT WY 1-nH(Z) Lz, <o
and 0 < x; < 1. Using the fact that

-x%2/2<In(l+x) —x <0 foranyx >0,

we obtain

Z < YIn(l+x)- Yx<
- i=1 i=1

1-m(z) \°
1 {Z; <t}

<n 2 Y (1-H,()+ n_l)_2 =n N1 -H,(t) + n_l)_2 -0,
i=1

with probability 1, if H(¢) < 1. Hence

Y In(1+x)—- Y x|—0 Pas.
-1 ie
Next, consider
v = 1-m(Z;) m(x)
— -1
i§1xi—n igl— (Z)+n‘1 (z <ty = f L1-H(x)+n H,(dx).

By Glivenko—Cantelli, H, — H uniformly with probability 1. Furthermore,
the SLLN yields

f_wl sz; [H,(dx) — H(dx)] >0 P-as.

Since H(t) < 1, we therefore easily obtain [cf., e.g., Shorack and Wellner
(1986), pages 304]

n : 1 —m(x)
i§1xi - f_mT—_HZx_)H(dx) P-a.s.,

as required. O

We are now in the position to determine S, the limit of ES,,.

. LEMMA 2.7. Suppose that H is continuous. Then

. t 1- m(x)
(25) lmES, =S = Je(tym(2) exp{f_mmH(dx)}H(dt).
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ProoF. Assume ¢ >0 w.lo.g. Again, by Proposition 5-3-11 in Neveu
(1975) and the Hewitt—Savage zero—one law,
— m(x)

gn(t) = ‘E¢n(t) = ‘E[QDn(t)Ij] Texp{f T_HZ_) (dx)}

The assertion now follows from Lemma 2.4 and the monotone convergence
theorem. O

To prove Theorem 1.1 for a continuous H, it remains to handle the
right-hand side of (2.5). For this note that G is continuous on (—, t] provided
that H(¢) < 1. In fact, for each a < ¢ we have by continuity of H,

0=P(Z=a)2P(Y<X,Y=0a)=Pla<X)P(Y=a).
Assuming that P(Y = a) > 0, we get P(a < X) = 0 and therefore
H(a) =P(Z<a)2P(X<a)=1,
a contradiction. For H(¢) < 1 we therefore get by the definition of m and
independence of X and Y that

¢ 1—m(x) _ m(Z) _ Ly<x)
f—wl—H( ) H() f{z<t}1—H(Z) fz«)l—H(Z) @
1

- j{m)——l &) dP = —In(1 - G(t)).

Thus the right-hand side of (2.5) becomes

[e(Z)m(2)/(1 - G(2)) dP = [o( X)_(X—G?X—)} .

=) .. o(x)F(dx).

Clearly, this equals the right-hand side of (1.6), if H is continuous.

NoTe. Because of Lemma 2.2 and Lemma 2.1, S also admits the following
expansion:

* 1
S = [ESI + Z n + 1‘E ¢(Zn+1:n+1)m(zn+l:n+1)(1 - m(Zn:n+1))
n=1

2]

n—j+1
= [e(2)m(2)H(dz)
+ ;1 j j ¢(zn+1)m(zn+l)(1 _m(zn))

n—1

X [T (n—j+1-m(z))H(dz)... H(dz,,1)-
j=1
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We are now going to consider the general case covered by Theorem 1.1. To this
end, we have to construct a sequence {U}}; . ; of uniform [0, 1]-random variables
such that Z, = H"%(U,) with a specified dependence structure for the pair
(U, 8,). Recall A, the set of (simple) atoms of H.'

LeEmMA 2.8. Assume that Z has d.f. H and 8 is paired with Z as before.
Let V be independent of Z and uniform —[0,1)]. Define

H(Z), ifZ & A,

U=\H(a-)+ [H(a) - H(a )]V, ifZ=aforacA.

Then we have:
() Z = H"YU) with probability 1,
(i) U is uniform -[0,1],
(iii) m(u) =P8 =1U=u) =m(H Y(u)) for 0 <u <1,

where as before
m(z) =P(6 =1|1Z =z).

ProoF. Straightforward. O

Suppose now that the underlying probability space ({, &7, P) is rich enough
to carry a sequence V,V,, ... of independent uniform —[0,1] random vari-
ables being also independent of the X’s and Y’s. Define each U, as above, so
that Z, = H-%(U,). Since F and G do not have common jumps, we have (after
a moment of thought)

S, = ¥ Wino(H'(Us.,)).
i=1

In other words, the general case may be traced back to the uniform case, if we
replace ¢ by ¢ o H™! and m by 7. From what we have proved so far, we thus
get P-almost surely and in the mean that

— m(x)

: 1
@6)  lms, - [loo B0 exp| [

dx} dt.
x

After all, to prove Theorem 1.1, it remains to identify the right-hand side of
(2.6). For this, introduce the so-called cumulative hazard function for G:

y G(dx)
= —_— R.

The continuous part of A is defined by
Ac(y) = A(y) - Z A{ai},

a;<y;a;€EA,
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with Ala;} = A(a;) — A(a; — ). Here A, denotes the set of G-atoms. As a
matter of fact, 1 — G may be easily represented in terms of A :

1-G(a,)
2.7 1-G(y) = e A» - R.
(2.7) (y)=e aisyl:[aieAl =6 ) €

Observe that each H-atom is either an F- or a G-atom. Conversely, each F- or
G-atom less than 74 is an H-atom. Since F and G do not have jumps in
common,

(28) m(a)=1 fora€A—-A, and m(a)=0 foracANA,.
Since m = m o H™!, it follows that the integral in (2.6) equals
-1 1-m(x
fltpo H'(t)m(t) exp{[H‘H 1= m(x) dx} dt.
0 0 1-x

Fix 0 < ¢t < 1 with m(¢) > 0. By (2.8), the x-integral then becomes

1-H(a,; 1
_ 3 L D + v g
0, <H ¥ty a,eana, L~ H(a; =) Jz<nw, zeal - H(Z)
1-G(a,)
= — l _—
= "T-G(a, )

a;<H t);a,€ANA,
+ 1-G(Y)) ‘dP.
{Y<H 42), Y€€A)( ( ))

If H~'(¢) is an H-atom, then necessarily a; < H X(t) < . If H(¢) is not an
H-atom, we obtain H™(¢) < 75;. Conclude that the last sum equals

]. - G ai
- Z ln# +f
1-G(a;-) Jiy<a 0, vea)

a,<H Xt);a;€A,

(1-G(Y)) dP.

By (2.7), the right-hand side of (2.6) therefore turns out to be

[Joe H @0m®[L - GEHT )] dt = [o(D)1ix oy ll - G2 P

= [e(X)Lx cyl - G(X)] ™ dP,
which is the same as (1.6). This completes the proof of Theorem 1.1. O

Acknowledgments. The comments of a referee and Associate Editor led
to an improvement in the presentation of Lemma 2.2.
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