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ASYMPTOTICS FOR LEAST SQUARES CROSS-VALIDATION
BANDWIDTHS IN NONSMOOTH CASES

By BERT vaN Es

University of Amsterdam

We consider the problem of bandwidth selection for kernel density
estimators. Let H, denote the bandwidth computed by the least squares
. cross-validation method. Furthermore, let H;* and h* denote the minimiz-
ers of the integrated squared error and the mean integrated squared error,
respectively. The main theorem establishes asymptotic normality of
H, - HY and H, — h*, for three classes of densities with comparable
smoothness properties. Apart from densities satisfying the standard
smoothness conditions, we also consider densities with a finite number of
jumps or kinks. We confirm the n~!/! rate of convergence to 0 of the
relative distances (H,, — H¥)/H and (H, — h*)/h* derived by Hall and
Marron in the smooth case. Unexpectedly, in turns out that these relative
rates of convergence are faster in the nonsmooth cases.

1. Introduction and results. Let X,,..., X, be a random sample from
a distribution on the real line with an unknown density f. We consider the
problem of selecting a bandwidth A for a kernel estimator

(L) o) = o £ K[

of the density f. Here the bandwidth A is a parameter which determines the
amount of smoothness of the estimator. For small A we get a very rough
estimate and for large A a smooth estimate. The kernel K is supposed to be a
probability density function. The major problem in bandwidth selection is the
fact that bandwidths which are asymptotically optimal in some sense tend to
depend on the unknown density f. For rough densities a relatively small
bandwidth is required and for smooth densities a relatively large one.

In recent years several automatic or data-driven bandwidth selection meth-
ods have been introduced. These methods compute, a hopefully good, band-
width from the sample itself. Thus the resulting bandwidth is random. The
methods we shall discuss here are based on the cross-validation principle. In
particular, we shall discuss the least squares cross-validation method intro-
duced by Rudemo (1982) and Bowman (1984). They proposed to compute the
bandwidth H, which minimizes an unbiased estimate, LS,(k), of the mean
integrated squared error MISE (k) = E ISE,(h), minus a quantity not de-
pending on the bandwidth A. Here the integrated squared error ISE, is
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defined by

(1.2) ISE(h) = [ (fu(x) = £())" d,

and the least squares cross-validation criterion function LS, (/) by
a8 I - [ d -2 T X,
where f,,., i =1,...,n, are the “leave one out estimators,”
R 17 . oy BN L O

It is readily shown that
(1.5) ELS,(h) =EISE,(h) — /m f3(x) dx,

so the value of A which minimizes LS,(%) indeed also minimizes an unbiased
estimate of the mean integrated squared error of f,,.

Stone (1984) has shown that, up to first order, asymptotically the least
squares cross-validation bandwidths perform just as well as the best possible
deterministic ones, under the sole assumption that f be bounded. Later Hall
and Marron (1987a, b), under the assumption that f is sufficiently smooth,
established a disappointingly slow rate of convergence to 0 of H, — H* and
H, — h*, where H,' is the minimizer of the integrated squared error (1.2) and
h* is the minimizer of its expected value, the mean integrated squared error.
Our main result, stated below, establishes the asymptotic normality of both
H, - H and H, — h* for densities f classified into three groups with
different smoothness properties. Thus we extend the results of Hall and
Marron (1987a) to classes of nonsmooth densities. Doing so we shall encounter
a remarkable paradox which shall be further discussed after we have stated
our main theorem.

To introduce the three classes of densities mentioned above we first impose
the following conditions.

ConpiTioN F. The density f has a bounded support. The first and second
derivatives of f, denoted by f’ and f”, exist at every point of the real line
except at a finite set of points which we denote by D. In these points we give f”
and f” arbitrary values. The functions f, f’ and f” have finite left and right
limits at the points in D. The function f has finite left and right first and
second derivatives at the points in D. The second derivative f” is continuous
on the complement of D.
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Now, writing 6(d) = f(d+) — f(d—) and 6V(d) = f'(d +) — f'(d -), we
introduce the quantities

A9 = ¥ 5O(d)? and AV = Y §D(d)>.
deD deD

We consider densities satisfying Condition F and one of the following three
conditions:

(1.6) A9 >0,
(1.7) AP =0 and -AV >0,
(1.8) A® = AD = 0,

Roughly speaking, under (1.6) we allow the densities to have a finite number of
jumps, while under (1.7) we at the most allow kinks. Condition (1.8) corre-
sponds to the usual classical smoothness conditions.

Since it is generally recognized that the choice of the kernel is of less
importance for the performance of a kernel estimator than the choice of
bandwidth, we feel free to impose the following conditions on the kernel. Note
that in this paper we do not consider higher-order kernels.

ConpiTiON K. The kernel function K is a symmetric, differentiable proba-
bility density function with support [—1, 1].

Before we can state our main theorem we have to give some definitions.

DeriNiTION 1.1. For G a bounded symmetric measurable function with
bounded support, the functions 5%, 5§, 5¢ and b§ are defined by

bC(x, h) = %fwwG(x—;—i)f(u) du — f(x)f_ZG(u) du,

/t (¢t —u)"G(u)du, fort<o,

br(t) = w
~[ (¢t -uw)"G(w)du, fort=0,
t

for m =0, 1 or 2.

The functions introduced in Definition 1.1 play an important role in kernel
estimation theory in nonsmooth cases. For G equal to the kernel K of a kernel
estimator, the function 5 is equal to the bias of the estimator, that is, we
have b%(x, h) = Ef, ,(x) — f(x). The following constants appear in the asymp-
totic variances in Theorem 1.3.



1650 B. vaNn ES

DEFINITION 1.2.

1
= [ K*u)du,
) /71 (u)
a = A9 [ bE(0)* at,
-1

(YK, N2
a, = 3N >/71b1 (t)* dt,
@y = (f_llu2K(u) du) fif”(x)de,
o¥(G) = jiGZ(u) du /:of2(x) dx,
oH(G) = = [58(1)" d L 3@ (f(d =) +f(d+)),
1 €D
o3() = 2 [b0(0)°de T s (f(d ) + f(d +)),
2 deD
Lag( = 2 2
o§(g) = Za—g( | wG(u) du) ( [ 1) (=) de
(e a) ).

We shall need these constants for G equal to special functions L and M
given by

(1.9) L(x)=K(x) +xK'(x) and M(x)= —K*L(x) + L(x),

with * denoting convolution. Note that L and M are symmetric about 0 and
that their integrals vanish.

Our main theorem establishes the asymptotic normality of H, - Hf and
H, — k7, for the three classes of densities specified by assumptions (1.6), 1.7
and (1.8) above.

THEOREM 1.3.  Assume that Conditions F and K are satisfied. Under (1.6),
(1.7) and (1.8) we have, respectively,

n®*(H, — H¥) -, N(0, a5%%}/?(20%(L) + o(L))),
n®8(H, — H¥) -, N(O, ia55/4a§3/4(202(L) + 0'22(L))),

n¥Y(H, - H*) -, N(O, %a57/5a§3/5(202(L) + 032(L))).
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The same results hold for H, — h*, provided we replace o*(L) by o*(M) and
o2(L), 0 (L) and d2(L) by a(2M), 0Z(2M) and oi(2M).

Notice that the third part of the theorem, which deals with densities
satisfying the classical smoothness conditions, corresponds to Theorem 2.1 in
Hall and Marron (1987a).

COROLLARY 1.4. Assume that Conditions F and K are satisfied. Under
(1.6), (1.7) and (1.8) we have, respectively,

(H, - Hy)/H; = 0,(n" '),
(H, - Hy)/Hf = 0,(n"'%),
(H, - Hy)/H} = 0,(n”'/1).

The same results hold for the relative distances (H, — h%)/h’,.

Now let us compare these rates of convergence with the minimax results in
Hall and Marron (1991). Assuming that the second derivative of f exists, they
show that the rate of convergence of the relative of a bandwidth selector with
respect to H* can never be faster than n~!/!0. Hall, Marron and Park (1989)
show that the deterministic bandwidth A%, the minimizer of the mean inte-
grated squared error, can be estimated at a faster rate, but only when even
more smoothness is assumed.

Clearly, with less smoothness, the relative rates of convergence of the
cross-validation bandwidths given by the corollary get better, which is a rather
uncommon phenomenon in functional estimation. It should be noted, however,
that, in spite of the better properties of the selected bandwidth in the less
smooth cases, the resulting density estimate will have a larger error compared
to estimates of smooth densities (see Remark 1.6).

REMARK 1.5. By the same techniques as employed in the proof of Theorem
1.3, together with the Cramér-Wold device, joint asymptotic normality of
(H, — H¥, H, — h%) can be derived. In the smooth case this corresponds to
Remark 2.3 in Hall and Marron (1987a).

REMARK 1.6. The performance of kernel estimators of nonsmooth densities
has been studied by Van Eeden (1985), Cline and Hart (1991), Swanepoel
(1987) and van Es (1991a, b). It turns out that the existence of jumps or kinks
of the density f causes the bias of a kernel estimator to be of different order
compared to the well-known order A* in the smooth case. This leads to the
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following expansion of the mean squared error. We have
MISE, (h,) = ’;ulz_nf_lle(“) du + o(%)
hnA(O)f_llb({‘(t)z dt +o(h,), under (1.6),
hiA(U/_llb{‘(tfdt +o(h%), under (1.7),

%h‘ft(f_lluzK(u) 4u)2f_°°mf”(x)2 dx + o(h4),
under (1.8).

These expansions in turn yield the following asymptotically optimal band-
widths A%:

(ap/a;)*n=1/2,  under (1.6),
(1.10) RE = (ag/ay)*n"174  under (1.7),
(ap/a5)"°n=1/5, under (1.8).

Furthermore, the minimizer of the integrated squared error, H}, is almost
surely asymptotically equivalent to the minimizer of the mean integrated
squared error. So, for the densities we consider here, H* is almost surely
asymptotically equivalent to the optimal bandwidth, a fact which we shall need
in the next section.

Plugging in these bandwidths in the expansion of the mean integrated
squared error yields the orders n~ /2, n=3/% and n~*/5, under (1.6), (1.7) and
(1.8), respectively. An important feature is that these orders decrease as the
smoothness of f increases. So, although the optimal bandwidths can be
estimated better in the nonsmooth cases, the error of a kernel estimator with
such an estimated bandwidth will be larger.

ReEMARK 1.7. The phenomenon of a faster relative rate of convergence for
less smooth densities also occurs in the case of likelihood cross-validation. It is
shown in van Es (1991a, b) that under (1.7) and (1.8) the relative rates with
respect to the minimizer of a suitably weighted integrated squared error are of
order 0,(n~'/%) and O,(n~'/'7), respectively, just as in Corollary 1.4. Under
(1.6), when the density f has jumps, the likelihood cross-validation bandwidth
does no longer asymptotically minimize the integrated squared error, nor the
mean integrated squared error.

2. Proofs. To prove Theorem 1.3, we follow the arguments of Hall and
Marron (1987a), adjusted for the possible nonsmoothness of the density f. We
shall give the proof in outline and focus on the points where the essential
differences occur with the smooth case. Let D{"’(h) and D{(h) denote the
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first and second derivative of the least squares cross-validation criterion
function LS, with respect to the bandwidth 4. By the mean value theorem we
have

(2.1)  D{(H,) - D{P(HY) = —-D{P(HY) = DP(H,)(H, - HY)

for some random variable H, between H, and H*. Introducing a similar
random variable H,, the distance H, — h* can be treated analogously. We get

D (H,)

2.2 H —-HfY= — ———
and ’
DD p*
H, - h* = ——'i-(:"l.
n n D,(,z)(H,,)

The two main ingredients of the proof are almost sure expansions of the
denominators in (2.2) and asymptotic normality of the numerators. Theorem
1.3 follows from the next two lemmas.

LEMMA 2.1. Assume that Conditions F and K are satisfied. Under (1.6),
(1.7) and (1.8) we have, respectively,

Dr(l2)(I:In) ~ 2ay%a; /?n/?  almost surely,

D®(H,) ~ 4af/*a3/*n=/* almost surely,

D2( H,) ~ 5a}/%a3/°n=%/% almost surely.
The same results hold for D®(H,).

LEMMA 2.2. Assume that Conditions F and K are satisfied. Under (1.6),
(1.7) and (1.8) we have, respectively,

nY*DIO(HF) >4 N(0,4(ao/a;) "*/*(20%(L) + o¥(L))),
n¥DD(HYE) - N(0,4(ay/ay) 4 (20%(L) + 02(L))),
n”/CDO(HF) =4 N(0,4(ay/ay) " **(20%(L) + o2(L))).

The same results hold for DV(h*), provided we replace o*(L) by o*(M) and
o2(L), cX(L) and o(L) by 02(2M), 03(2M) and oi(2M).

The almost sure rates presented in Lemma 2.1 can be obtained by plugging
in the optimal bandwidths (1.11) in the second derivative of the mean inte-
grated squared error expansions in Remark 1.6. Since a rigorous proof only
contains standard arguments, it is omitted. We proceed with the proof of
Lemma 2.2.
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Proor oF LEMMA 2.2. Note that, using

dle le xK,x le
dh h (E)"—? (E)_ﬁ (E)__P (ﬁ)

the derivative of LS, (k) can be written as

DO(R) = —n—fﬁgfj y me(u;Xi)K(u_Xj)du

i=1j=1"—% h

(2.3)

T f 1)h22 L(‘Xii:Xj)'

1#]

The fact that H minimizes ISE, (%) implies that at the point A = H the
derivative of ISE (k) is equal to 0. A straightforward computation shows that,
for h = H), we have

U e e

i=1;=1"—%

(2.4)

_ %f I L(x _hXi)f(x)dx.

i=1" 7%
Using (2.4) to rewrite (2.3), we get D\(H¥) = U (H}), where U,(h) is equal
to

s S e B e e

1#]

(2.5)

Next we rewrite (2.3) in the more convenient form D"(h) = V,(h) + V,(h),
where V,(h) and V,(h) are statistics of the type

(Xi ; Xj) + iilgn(Xi)'

(2.6) T.(h) =L G

1#]
For V,(h) the function G is equal to 2n"2h~2M and g, = 0, while for V (k)
the function G equals 2n"%(n — 1) 'A"2L and g, is equal to the constant
—2n"2h~%*KL. The statistic U,(h) is also of the type (2.6).

The next proposition establishes asymptotic normality of such statistics.
The proof is a direct consequence of Theorem 2.2 in Jammalamadaka and
Janson (1986). For the details of the proof, see van Es [(1991a), Appendix C].
Alternative approaches are provided by Hall (1984), de Jong (1987, 1990) and
Nolan and Pollard (1987, 1988).

ProposITION 2.3. Let f be a bounded almost everywhere continuous density
and let the functions G and g, also be bounded. Furthermore, assume that G
is symmetric and integrable. Let the statistic T,(h) be defined by (2.6) and let
(h,) be a sequence of positive bandwidths converging to 0, such that nh, — .
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Let the function g be defined by

@D g@=2n-Df &[] i) dy + g,
and suppose that this function satisfies

(2.8) Wlln/g sup |gx(x) — Egi(Xy)| -0,

(2.9) % var(g¥(X,)) » a?,  0<a?<om.
Then

1
—75(T,(hy) = ET,(h,)) =5 N(0,20%(G) + a?),
with
o2(G) = fj;G2(v) dv /_ZfZ(x) dx.

Recall that we have D\V(HY¥) = U, (H}), with U (h) as in (2.5). In Remark
1.6 we have seen that H) is almost surely asymptotically equivalent to the
deterministic asymptotic minimizer of the mean integrated squared error, that
is, H¥ ~ h*, with h* as in (1.10). In order to derive the asymptotic distribu-
tion of U,(h%), we rescale U, in a form suitable for Proposition 2.3. Consider
the statistic T,,(h) = n(n — Dh?U,(h)/2. Now T, (h) is of the form (2.6) with
G equal to L and the function g}, defined in (2.7), equal to

g0 = (=0 [ L[Z5) ) dy = (n - pmoice )

We first derive the asymptotic distribution of T,(A*) under (1.6). Recall
that in that case h* ~ (ay/a;)"/?n~ 2 Condition (2.8) of Proposition 2.3 is
readily verified. To compute the constant a? in (2.9), under (1.6), write,
with A = A%,

* 2 2,90 L 2 2 (L 2
(2.10) Eg}(X,)" =(n-1)"h*Eb"(X,,h)" ~ (nh) f b%(x,h)" f(x) dx.
Now let D be equal to the set of singular points of f in Condition F. Using

Lemma 2.2 in van Es (1991b), the integral in (2.10) can be expanded as
follows:

[ bh k) Py ds ~ BB dE T 6O(d)(£(d-) + £(d4)).
— deD

Since the squared expectation of g*(X;) turns out to be negligible, we see that
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under (1.6) we have

e var(g¥(X,)) - ﬁflbg‘(t)2 dt
(2.11) " *170
x L 89(d)*(f(d-) +(d+)),
deD
so the asymptotic variance a2 in (2.9) is equal to the right-hand side of (2.11),

which we shall denote by o2(L). Proposition 2.3 now gives

1
WTn(ht) g N(O,‘20'2(L) + 0'12(L))

For U (h*), using h* ~ (a,/a,)"/*n"1/2, we now get
(2.12)  nVAU,(RY) —5 N(0,4(ao/ay) **(20%(L) + 0c?(L))).

The asymptotic distribution of U,(Ah*) under (1.7) can be derived similarly.
Under (1.8) standard arguments for the smooth case can be used. Both cases
are not treated in detail here.

To prove the statements concerning DP(H*) in Lemma 2.2, it remains to
show that A* can be replaced by H,*, without disturbing the asymptotics. For
the smooth case, that is, under (1.8), this is shown in Hall and Marron (1987a).
By the same techniques it can also be shown to be true under assumptions
(1.6) and (1.7).

Following the same steps in the derivation above, one can prove asymptotic
normality of D{P(h*). First, consider the statistic n®h%V (h)/2, which is of
the form (2.6), with G equal to M and g,, equal to 0. Applying Proposition 2.3
in this case, we have

g5 (x) = 2(n — 1)hbM(x, h) = (n — 1)hb*M(x, h),

so we get the same asymptotics for n?h2V (h)/2 as for n®h2U,(h)/2 above,
provided we replace o%(L) by 0% (M) and 0(L), 03(L) and o2(L) by o£(2M),
07(2M) and oZ(2M). The proof is completed by noting the fact that the
contribution of V,(A*) to the variation of D{P(h*) is asymptotically negli-
gible. O
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