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ASYMPTOTICS FOR M-ESTIMATORS DEFINED
BY CONVEX MINIMIZATION

By WoJciEcH NIEMIRO

University of Warsaw

We consider M-estimators defined by minimization of a convex crite-
rion function, not necessarily smooth. Our asymptotic results generalize
some of those concerning the LAD estimators. We establish a Bahadur-type
strong approximation and bounds on the rate of convergence.

1. Introduction. We consider the asymptotic behavior of M-estimators
defined by minimization of a criterion function based on independent and
identically distributed (iid) observations. Throughout this paper the criterion
function is convex. On the other hand, we do not require smoothness, so our
results hold for the least absolute deviations (LAD) estimators. Under the
same basic assumption of convexity, Haberman (1989) provided conditions for
strong consistency and asymptotic normality of M-estimators. We need more
restrictive conditions (Section 2) than Haberman’s, to get stronger conclusions
(Section 3). The assertion of consistency is supplemented by some bounds on
the rate of convergence [cf. a result of Wu (1987) concerning the LAD
regression]. The main result of this paper is a strong approximation of
M-estimators by sums of iid random vectors (Theorem 5). This is a generaliza-
tion of the classical Bahadur (1966) representation of sample quantiles. For
the LAD estimators in linear regression models, a similar result can be found
in Babu (1989). Our result relates the accuracy of the approximation to the
Holder condition in the L%norm for a subgradient of the criterion function
and a similar condition for its average. A weak analog of the approximation,
implicit in Haberman’s paper [Haberman (1989)] and generalizing Ghosh
(1971), is given a simplified proof, based on an idea of Pollard (1988). The
range of applications of our results is briefly discussed in Section 5. We also
give examples, illustrating our conditions.

2. Definitions and assumptions. The notation introduced in this sec-
tion will be used throughout the paper. Let Z be a Z-valued random variable
(where Z is an arbitrary measurable space) and let f(a, z) be a real function
defined for a € R9, z € Z. Assume that for fixed «, f(a, z), considered as a
function of z, is measurable. Consider the function

(2.1) Q(a) =Ef(a,2),
and suppose the goal is to minimize Q(«). Let a, € R? be such that
(2.2) Q(a) = minQ(a).
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If the probability distribution of Z is unknown but an iid sample Z,, ..., Z, is
available, then we can consider the empirical analog of (2.1), namely,

1 n
(23) Q@) = 3 ¥ f(a2),

and minimize @,(«) instead of @(a). Denote by «,, such a point, depending on
the sample, that

(24) Qu(a,) = min@,(a).

We are interested in asymptotic properties of «, as an estimate of «,. We
will make the following standing assumptions:

(i) f(a, z) is convex with respect to a for each fixed z.
(i) Q(a) is well defined, that is, the expectation in (2.1) exists and is finite
for all a.
(ii)) «, satisfying (2.2) exists and is unique.

Under these conditions, @(«) is a convex and finite-valued function on the
whole space R¢. Generalization to the case of a finite function defined on an
open subset of R? is fairly obvious, and hence will be omitted. Note that «,, is
not necessarily uniquely defined by (2.4). Nevertheless, all the results to follow
hold, if we choose «, arbitrarily in the case of ambiguity and set «, = o,
whenever @,(a) has no minimum. We assume that the selected «,, is measur-
able (see the Appendix). In the sequel we will denote by g(«, z) a subgradient
of f(a, z). In other words, let the inequality

(2.5) fa,z) + (B —a) g(a,z) <f(B,2)

hold for all a, 8 € R?, z € Z. Assume that for fixed «, g(«, 2), considered as a
function of z, is measurable (see the Appendix). We will write |a| for the
Euclidean norm, Va'la , of a vector. Denote the gradient of Q(a) by DQ(«) and
let D2Q(«) stand for the second derivative.

Note that condition (ii) can be replaced by the following one:

(i) Elg(a, Z)| < o for all a.

Indeed, if (ii’) holds while (ii) does not, then the modified function f'(«, z) =
f(a, z) — f(0, z) is integrable [see (4.3)], and can be used instead of f(a,z)
without affecting «,. For simplicity, (ii) will be assumed throughout the paper.

The additional conditions needed as hypotheses of the theorems of the next
section are the following:

(iv) E|g(a, Z)|" < » for each « in a neighborhood of « .
(v) Eell8@ 2] < o for each a near a, and some ¢ > 0 (¢ may depend
on «a).
(vi) Q(a) is twice differentiable at «, and D?Q(« ) is positive definite.
(vii) |DQ(a) — D2Q(ar X — a )| = O(la — a I****/®) as a = a,.
(viii) Elg(e, Z) — gla,, Z)> = O(la — a,|'*®)  as a — a,.
(ix) Elg(a, Z2)" = 0(1) as @ > ay.
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The values of r and s in (iv), (vii), (viii) and (ix) will be specified at each
reference to these conditions. Some comments on assumptions (vii) and (viii)
will be given in the next sections. The following notation will be constantly
used; unless otherwise stated, let

n

(2.6) S, =2 g(ax,Z).
i=1

Whenever (vi) holds, let

(2.7) H =D%Q(ay).

3. Main results. Since (i), (ii) and (iii) are standing assumptions, they
will not be repeated in the statements to follow. To ensure the strong consis-
tency, these conditions are sufficient.

THEOREM 1 [Haberman (1989)]. «, — a, with probability 1 as n — .

In fact, Haberman’s conditions were much more general than (i)-(iii) and
allowed for minimization of @(«) with various types of constraints. Neverthe-
less, the above-given statement is sufficient as a starting point of our consider-
ations. If we assume the existence of appropriate moments of the subgradient,
the rate of convergence @, — a, can be bounded by a power of n.

THEOREM 2. Suppose condition (iv) holds for some r > 1. Then, for every
>0,

P(suplak—a*|>s)=o(n1‘r), n — o,
k>n

The proof of this and all the following theorems will be given in the next
section. If we require the moment generating function of |g(a, Z)| be finite,
the rate of convergence is exponential. [Note that in the special case of LAD
estimators, g(a, 2) is actually bounded.]

THEOREM 3. Suppose condition (v) holds. Then for every € > 0, there exists
a > 0 such that

P(la, —a,l >¢e) = O0(e "), n — o,

The following weak representation was established by Haberman (1989) in
the course of the proof of his Theorem 6.1.

THEOREM 4 [Haberman (1989)]. Assume (iv) with r = 2 and (vi). Then

(3.1) (e, = ) = ~H 2 bo(),  nos

in probability.
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Let us recall that S, and H are given by (2.6) and (2.7). Although our
condition (iv) with » = 2 is slightly more restrictive than its counterpart,
condition 10 in Haberman’s paper, a very simple proof of Theorem 4 is
presumably worthwhile and will be given in the next section. Asymptotic
normality of «, clearly follows from the central limit theorem. Under the
assumptions of Theorem 4,

Vn(a, —ay) » N(O,H'VH™Y), pn - x,
in law, where V stands for the covariance matrix
(3.2) V=varg(a;,Z).

The following strong approximation can be regarded as a more precise version
of the preceding theorem.

THEOREM 5. Assume the hypotheses of Theorem 4. Let conditions (vii),
(viii) and (ix) be fulfilled for some 0 <s <1 and r > [8 + d(1 + s)]/(1 — s).
Then with probability 1,

-1 Sn
\/17(0(” - a*) = _H -‘/7

+0(n=@*/4(log n)"*(loglog n) " **7*),  n-.

(3.3)

Comparing our approximation with the classical result of Bahadur (1966),
we can see the order of convergence ensured by the latter corresponds to
conditions (vii) and (viii) fulfilled for s = 0. This is the case when ‘‘univariate
LAD-type” functions f(«,z) are used and the distribution of Z fulfills some
regularity conditions. The usual univariate linear regression models also fall
into this category, resulting in rates of convergence roughly O(n~'/%) as in
Babu (1989), Koenker and Portnoy (1987). If either g(a, z) is differentiable in
a or we consider a multivariate case with f(a, z) = |a — z| (Euclidean norm),
then, as we will show in Section 5, s can approach 1. Consequently, the
remainder term can be of order close to O(n~1/2), matching Carroll (1978).
Note that we can expect s, the exponent in (vii) and (viii), to be at most 1 if
f(a, 2) is smooth in @ and the distribution of Z is sufficiently regular. Let us
defer further discussion on this to the.next section, where some examples will
illustrate conditions (vii) and (viii). Note that r, the exponent in (ix), should
satisfy an inequality of technical character, which involves d, the dimension of
the space. To conclude, let us make the following conjecture, which is plausible
in view of Kiefer (1967). If (vii) and (viii) hold and g(e, z) is bounded, then the
remainder term in (3.3) can be expected to be O(n~1*9/%(loglog n)@*/%),

Let us now turn to the slightly more general case of minimization with
linear constraints. Suppose L is a p X d matrix of full rank p and ¢ € R? is
such that

x) La, =c.
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Denote by «, such a point that
(3.4) Lo, =c, Q. () = Lmin Q. ().
a=c

Assuming (%), consider the following representation'

(3:5) Vn(a, —a,) =(B-H" I)T-i-r
where
(3.6) B=H 'L"(LH'L™) 'LH .

Under the hypotheses of Theorem 4, we have r, = o(1) in probability. If the
hypotheses of Theorem 5 are fulfilled, then

r, = O(n‘(“s)/“(log n)"?*(loglog n)(1+3)/4)

almost surely. These facts can be shown by standard computation. It is enough
to apply the preceding theorems to the affine subspace La = ¢, suitably
parameterized. The following representations can also be derived.

THEOREM 6. Assume (%) is true. Let «;, be given by (3.4), and write

1
(3.7) n(a, - a,) H(a; - a,) = —S\BS, +r,,
(3.8) nQu(a;) - nQ(a,) = —STBS + 7,
(3.9) nQ(a,) — nQ(a,) = —S,;FBSn +r.
(a) Under the assumptions of Theorem 4, the remainder terms r,, ri, and r}’
are o(1) in probability.
(b) Under the assumptions of Theorem 5, the remainder terms r},, ), and r}/

are almost surely

O(n=1**/4(log n)"/*(loglog n)®**"*).

An immediate consequence of the Cochran theorem is the following. Assum-
ing V, defined by (3.2), to be nonsingular, we have (1/2)STBS, — x%(p) in
law, if and only if BVB = B. If (x) is regarded as a statistical null hypothesis,
statistics (a, — @,)"A(a, — a,) (where A is some suitably chosen matrix) or
Q,(a,) — Q,(a,) can be used to test this hypothesis. To explain the meaning of
the quantity @(«,) — Q(«a;,), let us consider the case when «, = a,, corre-
sponding to L equal to the identity matrix. Suppose f(«, Z) can be regarded
as loss, depending on the random quantity Z and on « chosen by the
statistician. Then the value of Q(«,) — Q(a,) can be interpreted as the
amount we lose, in terms of risk, when using the sample-based estimate «,,
instead of the ‘“best theoretical solution” «,
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4. Proofs. Let us begin with the following remarks. From now on assume
that

(4.1) ay =0, Q(a,)=0.

This involves no loss of generality, for we can replace f(«a, z) by f(a — a,, z) —
Q(a ). At each point of differentiability of @(«),

(4.2) DQ(a) = Eg(a, Z).
Indeed, let ¢ > 0, e € RY. The inequality

1 1
—o(fla—ee,Z) —f(a,2)) <e'g(a,Z) < —(f(a +ee,2Z) = f(a, 2))

is a straightforward consequence of the definition of subgradient (2.5). Taking
expectations and letting ¢ — 0, we get (4.2). For easier reference, let us write
two other inequalities, which follow directly from (2.5):

(4.3) o"g(0,2) < f(a, Z) - (0, 2) < a"g(a, 2),
(44) 0<f(a,Z) - f(0,2) - a"¢(0,Z) < a"(g(a, Z) - £(0,Z)).

For the estimators under consideration, the proofs of the asymptotic theorems
usually involve two types of auxiliary results. The lemmas either ensure a
sufficient rate of convergence in the laws of large numbers or exploit convexity.
We will need the following three well-known facts.

Lemma 1 [Brillinger (1962) and Wagner (1969)]. If X, X,,... are iid
random variables with E|X,|" <o forr>1, 8, =X, +--- +X,, u = EX,,
then for each & > 0,

S
o >e|l =o(n'""), n — o,

P( sup

k>n

For the proof, see Petrov (1975), Theorem 28, Chapter 9.

LeEMMA 2. Assume X,, X,, ... are iid random variables such that Ee!' %+ <
© for some t > 0. Let S, =X, + -+ +X,, u =EX, . Then for each ¢ >0
there exists a > 0 such that

(|2

—
n
For the proof, see, for example, Durrett (1991), Lemma 9.4, Chapter 1.
In the following lemma, let us temporarily write w for a generic element of
probability space and drop it later.

> s) =0(e "), n-oowo

LemmA 3. Let h (a,w), n = 1,2,..., be random functions on R?, convex
in a for each w. Let h(a, ) be a random function such that for each fixed a,

(4.5) h,(a) = h(a)
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(a) with probability 1; (b) in probability. Then for each M > 0,

(4.6) sup |k, (a) —h(a)| >0
lal <M

(a) with probability 1; (b) in probability, respectively.

This is also a well-known lemma. Part (a) was used by Haberman (1989) to
prove his consistency results. We will use part (b) in our proof of Theorem 4,
following an idea of Pollard (1988). Usually h(«a) is assumed to be nonrandom.
The following argument shows it is not necessary.

Proor. Recall the fact that pointwise convergence of convex functions on a
dense subset C of R? implies uniform convergence on compacts [Rockafellar
(1970), Theorem 10.8]. Let C be countable. To prove part (a), observe that
with probability 1, convergence (4.5) takes place for all « € C. To prove part
(b), consider an arbitrary subsequence of functions A ,(a). For any fixed
a € C, we can select a sub-subsequence, along which (4.5) holds almost surely.
Now it is enough to apply the Cantor diagonal method and part (a) to complete
the proof of part (b). O

The following lemma has the advantage of providing an explicit bound. It
will be used in the proofs of Theorems 2 and 3. Here and subsequently we will
make use of the notion of &-triangulation. Assume A c R? and & > 0. A set
B c R? will be called a §-triangulation of A, if every « € A is equal to a
convex combination ¥ A;B; of points B, € B such that |B; — a| < 6.

LEmMMA 4. Let A C A, be convex sets in R¢ such that la — B| > 28, when-
ever « € A and B & A,. Assume B is a $-triangulation of A,, function h
satisfies the Lipschitz condition, |h(a) — h(B)| < Lla — Bl for a, B € A,, and
function h'(a) is convex on A,. If

sup |h(B) — K(B)| <e,

BeB
then

sup |h(a) — F'(a)| < 58L + 3e.
acA

Proor. Consider an « € A, and write it as a convex combination ¥ A;8;
with B, € B and |B, — a| <§. Since A'(B,) < h(B,) + & < h(a) + 6L + ¢, we
have

(4.7) K(a) < ¥ \KH(B,) <h(a) + 8L +&.
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On the other hand, to each a € A there corresponds 8 € B such that
le — Bl < 6 and thus a + 2(B8 — a) = y € A,. From (4.7) it follows that

H(a) = 20(B) — (y) > 2(h(B) — &) — (h(y) + L + )
> 2(h(a) —8L — &) — (h(a) + 38L + ¢)
= h(a) — 5L — 3e. ]

We are now in a position to prove Theorems 2 and 3.

Proor oF THEOREM 2. Let us fix «.and consider the sequence of iid
random variables defined by

(4.8) X, =f(e,Z,) - f(0,2,).
Recall (4.1) and take into account the fact that

1 n
EX,=Q(e), o L X, =)~ Q).

To check that E|X,|” < «, combine (iv) with (4.3). From Lemma 1, we conclude
that for each & > 0 the inequality

(4.9) |Qu(@) = Qx(0) — Q(a)| <

can fail for some & > n with probability o(n!~") only.

Since Q(a) is a convex function, it is continuous. Moreover, it satisfies the
Lipschitz condition with some constant L in a neighborhood of 0. Fix § > 0.
Condition (iii) implies the existence of ¢ > 0 such that Q(«) > 2¢ for |a| = 5.
Let us choose ¢’ and & such that 58'L + 3¢’ < £. Consider a finite §'-triangu-
lation of the ball |a| < 8 + 28’. Now it is enough to apply Lemma 4 to see that

(4.10) sup [Qu(a) — @4(0) ~ Q(a)| <&

lal <8
holds, whenever (4.9) is true for all o belonging to the triangulation. If (4.10)
holds, the minimum «, of the convex function @,(«) — @,(0) must exist and
lie inside the ball, |«a,| < 8. Since the triangulation is finite, this happens with
probability 1 — o(n' 7). O

Proor or THEOREM 3. The argument is essentially the same as in the
preceding proof. Under assumption (v), the random variables X, defined by
(4.8) satisfy Eefl*»l < o, Using Lemma 2, we conclude that (4.9) and thus
(4.10) hold with probability 1 — O(e™%*). O

ProOF OF THEOREM 4. Let us fix « and consider random variables X,
defined by

T

X, - f(%,zi) - 1(0,2) - “=4(0,2).
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Recall (2.6) and (4.2) to note that

(41

BX, - Q). éxm - Q[ =] - n9,(0) - a%

Since X,,..., X,, are iild, we have var L7X,; < L7EX2,. To show that the
sum of variances tends to 0, we argue as follows. The inequality

(4.11) nE(f(n"?a,Z) = £(0,2) - n"1/%"g(0, Z))"

<E(a"(g(n "%, Z) - g(0, Z)))2

follows from (4.4). The random variables o®(g(n~'%a, Z) — g(0, Z)) tend
monotonically to a nonnegative random variable. If D@Q(«) is continuous at 0,
then (4.2) implies that their limit has expectation 0, so it is equal to 0 almost
surely. In view of assumption (iv) with r = 2, the Lebesgue dominated conver-
gence theorem allows us to conclude that the right-hand side of (4.11) tends to
0. Thus, nEX2, — 0 and, in view of the Chebyshev inequality, we have

(4.12) nQn(%) 1@, (0) - aT-jn; - nQ(—‘/%) -0

in probability for each fixed @. Under (vi), the Taylor expansion implies that

( e 1 gy
5 = .
nQ Tn ) g Ha;
we can therefore replace n@(n~'/2a) by a™Ha/2 in (4.12). The uniform
convergence on each compact follows from Lemma 3. Thus, for every £ > 0
and M > 0, the inequality

(4.13) sup

« S, 1
—) - nQ,(0) —a"——= — —a"Ha| < ¢
lal <M

nQn( ‘/; ‘/; 2

holds with probability at least 1 — £/2 for large n. Since under (iv) with r = 2
the standardized sums n~/2S, are bounded in probability, we can select M
such that

Sn
Vn

with probability exceeding 1 — ¢/2, too.

Let K = 2(inf,_, e"He)~'/?. The quadratic function n~'/%a"S, + a"Ha /2
has its minimum value equal to —STH" 'S, /(2n) at —n~2H"'S,. When-
ever (4.13) and (4.14) hold, the convex function nQ (n~'%a) — n@,(0) as-
sumes at —n~/2H™1S, a value less than its values on the sphere |a +

(4.14) IH'I

<M-1,

n~Y2H-1S | = K¢'/2. The minimum point of this function is n'/%x,, so
except for an event of probability ¢, we have
S,
Vna, + H! < Kye . |

Vn
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Proor or THEOREM 6(a). Note that the preceding proof allows us to obtain
the representation

(4.15) nQ,(a,) — nQ,0) = — 2—1£S,TH 1S + o(1)

in probability. Indeed, the inequality [nQ,(«,) — nQ,(0) — STH™'S, /(2n)| < ¢

!

follows immediately from (4.13). Consider the remainder terms r,, r’, r’ and

n’ n’ n

rY in (3.5), (3.7), (3.8), and (3.9). A standard reparameterization shows that
Theorem 4 implies directly r, = o(1). To show that r, = o(1), it is enough to
combine (3.1) with (3.5). Similarly, r/ = 0o(1) is implied by representation
(4.15) and its counterpart for «,,. To show that r = O(r)), use the fact that

Q(a) = a"Ha /2 + o(|a|?) under condition (vi). O
To prove Theorem 5, we will need two more lemmas.

LEmMmA 5. Consider a triangular array, the nth row of which consists
of uid random vector X,,,..., X Let EX,;=p,, EIX, ><v? S, =

X+ - +X,,. Assume that E|X,,|" <b < » for somer > 2 and alogn <
logv, <clognfor 1/r — 1/2) <a < c¢ < . Then there exist constants K and

D, depending only on r, a, b and ¢, such that

P(|S, — nu,| > Kn'/?v,(log n)l/z) <Dn'~"%y "(log n)""?.

Proor. Without loss of generality, we can assume that X, ; are one-dimen-
sional random variables. The idea is to truncate the X,/’s and apply an
exponential inequality to sums of iid bounded variables. Define X, =
X,i1yx | <m,» where 1 stands for the indicator function, constants m, will be
specified later. Let EX,; =,, S, =X, + -+ +X,,. Using the inequality
e <1+y+y? valid for |y| <1, we obtain in a standard way the bound
Eexp((X,;, — &,)n" Y2v;Y) <1+ t2/n < exp(t?/n) provided that 0 < ¢ <
n'?v, /(2m ). Thus, if ¢ is within this range,

S, —nw, 1/2 1/2 2
P|—=—— > K(logn) sexp(—tK(logn) +t¢ )
Vnu,

for each K > 0. This is therefore trye for ¢t = K(log n)l/f/2 =n2y,/2m,),
with the right-hand side of the inequality becoming n~%"/%. We conclude that

(4.16) P(|S, - ni,|> Kn'?v,(log n)"/?) < 20K/,

if the truncation thresholds are set to

Vnu,

4.17 m,= ————.
(4.17) " K(logn)"?

On the other hand, P(S,, # S,) < nP(X,,| > m,) < bnm;", so with m, given
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by (4.17) we have
(4.18) P(S,#8,) <bK'n'~"/%y;"(logn)"".

It remains to note that |nu, — nk,| < nEIX,;[1;x ., < bnm! ", so under
(4.17) we have

(4.19) lnw, — ni,| < bK"~1n¥2-7/2yl =" (log n)r/271/2.

Using the assumption log v, < clog n, we can select K such that the right-
hand side of (4.16) is less than that of (4.18) for large n. The inequality
alogn <loguv, with (1/r — 1/2) < a ensures that

n®2-r/2ypl=r(log n)r/z_l/2 <n'?y,.

Combining (4.16), (4.18) and (4.19) with these remarks, we arrive at the
desired conclusion. O

LEMMA 6. Let A C A, be convex subsets of R? such that |a — B| > 28,
whenever a € Aand B & A,. Assume B is a d-triangulation of A,. Let k be an
R-valued function satisfying the Lipschitz condition |k(a) — k(B)| < Lla — B|
for a, B € A, and let k'(a) be a subgradient of some convex function on A,. If

sup [k(B) — k' (B)| <&,
BeB

then
sup |k(a) — k' (a)| < 48L + 2.
a€A

Proor. Assume k'(a) is a subgradient of the convex function h(a). Let
e € RY |e| = 1. For each a € A, the point « + 8e can be written as a convex
combination ¥ A,;8; with 8, € B and |8, — a — de| < §. In consequence, |B; —-
al < 28. We have

h(a+8e) < ¥ Ah(B;) < X A(h(a) + (B =~ ) K (B,)),
simply from the definition of a subgradient. Thus,
5"k (a) < h(a +de) — h(a) < ¥ A(B; —a) k'(B;)
< Y 0B — @) k(a) + 1B, — al|k(B;) — k(a)|
+18, = al [K'(B;) = k(B)) ]
< 8eTk(a) + (28)°L + 25¢. O

Proor oF THEOREM 5. Let us write

G(a) = DQ(a)
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for the gradient of @(a) and consider the function
1 n
Gn(a) = Z g(aazi)’
iz
which is a subgradient of @,(a). For a fixed «, define random vectors X,; by
X ( * .z ) 0,2
ni = 8 ‘/; y H g ( ’ i)'

Note that

a LN [4%
EX, = G|——]|, X, =nG,|—|-8,,
n (\/17) L K= n (WT)

where S, = ¥ g(0, Z,), as usual. For simplicity, let us write

1, = (loglog n)"?.
In view of (viii), we have E|X ,|* = O((n~1721 )t *¢), uniformly for |a| < MI,,.
Therefore, we can apply Lemma 5 with v2? equal to a constant multiple of
n~(*9/2]1%s In consequence, a constant K, can be chosen so that

a S o
sup P \/;Gn(——)——n—\/rTG(—))
el <38, n |V Vn
(log n)"*(loglog n)™****
(4.20) > K, R A+5)/4

= O(nlfr(1~s)/4(10g n)r/z(loglog n)*r(1+3)/4)

= O(n' "= %(log n)""?).
Moreover, n'/2G(n~1/2a) can be replaced in (4.20) by Hea, because condition
(vii) allows us to obtain

sup
lal <ML,

Ha - \EG(%)} = O(n—(1+s)/4(10g10g n)(3+s)/4)
n

for each M > 0. From now on let us write
e, =n~1+*/%(log n)"*(loglog n)"* *¥/*,
We now consider a §,-triangulation of the ball |a| < Ml, + 1, setting
8, =n"1"/4(log n)"?

We can select such a triangulation, which consists of O(n??*%/4) points. From
(4.20) it follows that the inequality [n'/?G,(n"'%a) — n~'/2S, — Ha| < K¢,
holds simultaneously for all & belonging to the triangulation with probability
1 — O(nda+9)/4+1-r0=9/4(log )"/2), Lemma 6 allows us to extend this in-
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equality to all points « in the ball. Letting K; = K,(2|H| + 1), we obtain

ol ] 5

_ O(nd(l +5)/4+ 1—r(1—s)/4(log n ) r/2)‘

P( sup >K15n)

lal <M1,

If »>[8+d(1 + s)]/(1 - s), then the Borel-Cantelli lemma can be applied
and consequently, we have with probability 1,

(4.21 \/—G( “ ) S Ha| <K
. su n — | — 7= —Ha| < K,
: oA e v By 1

for n large enough.

Note that M can be chosen so that [n"Y2H"'S,| < Ml, — 1 almost surely
for large n. This is a simple consequence of the law of the iterated logarithm.
To conclude the proof, it is enough to consider radial directional derivatives of
the convex function n@, (n~'/%a) — nQ,(0) on the sphere | — n " '/2H"1S,| =
Ke,, setting K = 2K,/inf,_, e"He. Since under (4.21) we have
eTn'?G (-n"12H 'S, + Kenes > eTHeKe, — K&, > 0, these derivatives
are positive, whenever (4.21) is true. Thus,

S,
Vna, +H*IT <Ke,,
n

with probability 1 for large n. O

Proor oF THEOREM 6(b). The almost sure representation

n@Q,(a,) — nQ,(0)

4.22 1
( ) - —%S,’}‘Hilsn + O(nv(1+s)/4(10gn)l/z(loglogn)(3+s)/4)

could have been derived together with (3.3) in the course of the proof of
Theorem 5. We prefer, however, to argue as follows. We adopt the same
notation as in the preceding proof. Take into account the fact that
n'/2G,(n~'2a) is a subgradient of nQ, (n~'/%a). Consider the convex function
of a real variable ¢, defined by q,(¢) = n@Q, (tn~*%a) — n@,(0) and its sub-
derivative g,(¢) = n'/%2"G, (tn"'/%a). In view of Rockafellar (1970), Theorem
24.2, we can use (4.21) to see that ¢,(1) = [4g,(¢t) dt is

[la"(n"1%S, + tHa + O(¢,)) dt = n~"/2%a"S, + a"Ha/2 + O(L,¢,),
0

uniformly for |a| < Ml,, with probability 1. Thus, we have proved that

(4.23) sup |nQ,(n V%) — nQ,(0) — n %S, — «"Ha/2| = O(l,¢,)
lal <ML,
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almost surely. The rest of the proof is similar to that of part (a). Representa-
tion (4.22) is a straightforward consequence of (4.23). The fact that r’ =
O(l,¢,) follows from (4.22). To show that r, = O(l,,¢,), use the law of the
iterated logarithm. Finally, r”’ = O(r,) + O(n~!2) in view of (vi). O

5. Examples. The asymptotic theory contributed to in this paper can be
applied to several well-known estimators of location, maximum likelihood and
linear regression with random design. For examples, see Haberman (1989),
Rao (1988) and Bloomfield and Steiger (1983). Let us briefly discuss just one
point. Many procedures based on the minimization of some convex criteria also
appear in discriminant analysis. Although such techniques are widely used [see
Devijver and Kittler (1982) and Hand (1981)], implications of general asymp-
totic results in this field remain virtually unnoticed. In particular, this remark
applies to the case of nonsmooth criteria of the LAD type [Niemiro (1989)].
This topic certainly deserves more attention but it goes beyond the scope of
this paper.

The following examples are intended only to shed some light on conditions
(vii) and (viii). Although a, appearing in (vii) and (viii) is the point given by
(2.2), this fact plays no role in the considerations to follow. Therefore, we will
be concerned with analogous conditions for an arbitrarily fixed point «,.

ExampLE 1. Univariate case, L’-estimates of location. Let «, z € R and set
f(e,z) =la -zl - I,
where 1 < ¢ < 2. Of course,
g(a,2) =tla — 2" " sign(a - 2).
Assume that E|Z|'"! < «, which is equivalent to either of the conditions (ii)
and (ii’) in the case under consideration. Assume that the distribution of Z has

a density p(z). We can justify the equality DQ(«) = DE f(a, Z) = Eg(a, Z) in
a standard way [Schwartz (1967), Theorem 115].

ProposITION 1(a). Suppose the density p(z) is differentiable, its derivative
Dp(2) satisfies the Holder condition,

(5.1) |Dp(z) — Dp(x)| < Llz — x|,
with ¢ < 1 and [ |Dp(2)ldz < «. Then for each a, and a - a,

(5.2)  |DQ(a) — DQ(ap) — D2Q(ay)(a — a)| = O(|la — a,|'"?).
If ay = a,, defined by (2.2), then (5.2) is equivalent to (vii) with s = 2q — 1.

Proor. For simplicity, assume that a, = 0 and a > 0. Let
H=—t[ | sign(2)Dp(2) d.

The fact that H = D2Q(0) will be established together with (5.2). Let us
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partition the range of integration as follows:

DQ(a) - DQ(0) — Ha = [°°m):|z|"1 sign(2)(p(2) — p(z + a) + aDp(2)) dz

=/_‘:+/_11+/1°°=1_1+10+11.

From (5.1) it follows that |p(z) — p(z + a) + aDp(2)| < La%; thus,
I, = 0(a'"9), a—0.
In I, we integrate by parts. More explicitly, write

o z+ao oo
I = —fl tzt‘lj; Dp(x) dxdz + '[1 taz' " 'Dp(z) dz

= 0(a?) + t/lm(az“l - /z x"ldx)Dp(z) dz.

zZ—a

If z>1 and « is small, then 0 < az'™! — [Z x'"1dx < a®(t — 1)z — @) 2
and thus

I, = O(a?).
Of course, I_; = O(a?®), too. Summing up, |[DQ(a) — DQ(0) — He| =
O(a'*9). O

ProrosITION 1(b). Suppose the density p(z) is bounded. Then for each a,
and a = a,, we have

E(g(a,Z) - g(ay, 2))"

(5.3) O(la — ap[* "), if1<t<3/2,
’ = {0l — aol’logla — ay| "), ift=3/2,
O(|a — ao|?), if3/2 <t<2.

Let a, be equal to a,, given by (2.2). From (5.3) it follows that (viii) holds
with the exponent s depending on t in the following way. If 1 <t < 3/2, then
s=2(—-1). If t = 3/2, then (viii) holds with each s < 1. If t > 3/2, then
s=1. '
Proor. Assume again that ay = 0 and a > 0. Write
E(g(a,Z) - 8(0,2))°

= /m t*(la — 2" ' sign(a — 2) — |z

=[_—:a+ff:a+fzz=[_l+10+ll.

|t—1

sign( —z))2p(z) dz
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If |z| < 2a, then (g(a, 2) — g(0, 2))? < 25a% 72, so
I,=0(e*"), a-0.

On the other hand, for z > 2a we have (g(a,z) — g(0,2))% = (z'"! -
(z—-a) D2 <(alt — 1z - a) 22 so

I, = O(aszz%“‘p(z) dz).
Consequently, if 1 <¢<3/2, then I, = O(a®™ V). If t=3/2, then I, =
O(a®loga ). If t > 3/2, then I, = O(a?). The same is true for I_,. O

In fact, (5.3) holds uniformly for all «,, as @ — ay| = 0. Consider the case
1 <t < 3/2. It is interesting to notice that (5.3) is nothing but a special case
of the well-known Kolmogorov condition. A sharpened version of Kolmogorov’s
result [Walsh (1984), Corollary 1.2] shows that (5.3) implies |g(a, Z) —
glag, 2)) = O(a — ayl' "' logla — ayl~!) almost surely, for 1 <¢ < 3/2. On
the other hand, we know that tla — aolt_1 is the exact modulus of continuity
of g(a, z) in our case.

ExampLE 2. The spatial median of Haldane. Let @,z € R? and set
f(e,2) =la -zl - |2,

where |z| = (272)}/2, as usual. If the probability distribution of Z is not
concentrated on any straight line, then @(a) = E f(a, Z) has a unique mini-
mum «,. This is, by definition, the spatial median [Haldane (1948) and
Milasevic and Ducharme (1987)]. Clearly,

a-—z

g(e.2) = - —

, a F z.
— 2|

Setting additionally g(«, a) = 0, we define a subgradient. Assume the distribu-
tion of Z has a density p(z). Similarly, as in Example 1, it is trivial that
DQ(a) = Eg(a, Z).

PROPOSITION 2. Assume the density p(z) is bounded. For each a, and
a - ag,

IDQ(a) — DQ(ag) — D*Q(ag)(a — ay)
(5.4) _fo(le- ao|*logla — ag| 1), ifd =2,
| 0(la - ), ifd > 3,
Elg(a,Z) - g(ag, 2)[*
(5.5) {o(|a—a01210g|a—ao|“), ifd =2,

- O(|a — a,l*), ifd > 3.
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Let ay = a,. We can see that (vii) and (viii) hold with s <1 for d = 2 and
with s =1 for d > 3.

PrOOF. Assume «, = 0 for simplicity. We will prove (5.4) first. Consider
the following matrix-valued function:

_(a=2)(a—2)"

a—z| la — 2|2

h(a2) = ;

y Z # a,

where I is the identity matrix. Let A(a, a) be 0. Let H = EA(0, Z). This is a
correct definition, because |z| ! is integrable in a neighborhood of 0 for d > 2.
We will simultaneously show that H = D2Q(0) and verify (5.4). Let us write

IDQ(a) ~ DQ(0) - Hal < [ lg(a,2) ~ 5(0,2) — h(0, 2)alp(2) dz

= + =1, +1,.

lz] < el |z > |l

To deal with the case |z| < «, note that

z z—a
lg(a,2) —£(0,2)] =|E RP—
(5.6) z—a |lz—al — |2 a x|
lz—al I 2| = el
Using (5.6) combined with |k(0, 2)a| < 2|al/|z|, we obtain
dz
I, = O(IaI p(z)—) = 0(lal?).
l2| < lal |2
On the other hand, an elementary computation shows that
|g(a,2) — g(0,2) — h(0,2)al
z z-a a z2a
BEREC R
z—a —2(2%)° + 2%lal® + lzl%a(lz — al — l2]) + |22l
e~ all2f? o~ al + I
az"a
2P
lel® ol
< |z? + W

We use this inequality for |z| > |al, replacing the right-hand side by 6|a|?/|z|?,
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to get

dz
11 = O(|a|2[2|>|alp(z)—7) .

Consequently, if d = 2, then I, = O(la|? logla| ™). If d > 3, then I, = 0(lal®).
We have verified (5.4).

To show (5.5), we again use (5.6) and the obvious fact that |g(a,z) —
g(0, 2)| < 2. Thus,

Elg(a,Z) -g(0,2)[ = I + I,

where I behaves like I, considered earlier, while

1(;:0([

lz] < el

p(2) dz) = O(lal?). O

APPENDIX

Throughout the paper we have assumed that the vectors a, and g(a, z) are
selected, subject to (2.4) and (2.5), in such a way that «, is a measurable
function of the sample, Z,,...,Z , and g(a, 2) is measurable in 2z, for any
fixed @. [In general, the above mentioned formulas do not define «, and
8(a, 2) uniquely.] In this Appendix we show that such measurable selectlons
exist, if f(-,z) is convex for every z [condition (i})] and f(«, - ) is measurable
for every a. To prove this, let us use the following result.

SELECTION THEOREM [Castaing and Valadier (1977)]. Let I be a multifunc-
tion from a measurable space Z to closed nonempty subsets of R°. If for each
compact set K in R, {z: T'(z) N K # @)} is measurable, then T admits a
measurable selection.

For the proof, see Theorem 3.6 and Proposition 3.11 in Section 3.2 of
Castaing and Valadier (1977). Note that I assigns a subset I'(z) of R? to each
z; a function o: Z - R? is said to be a selection of I' if o(2) € I'(z) for
every 2.

CoroLLARY 1. Let Z be a measurable space and q: R? X Z — R. Assume
q(-, 2) is continuous for every z, q(a, * ) is measurable for every a. Then there
is a measurable function a: Z - R? U {=} such that q(a(2), z) = inf, q(a, 2),
whenever the inf is in the range of q(-, z), otherwise a(z) = «.

ProoF. To begin with, note that inf, . , q(a, - ): Z - R U {—x} is measur-
able for any subset A of R%. Indeed, the inf, . 4 can be replaced by inf_ _,
where C is a countable dense subset of A, because g(-, z) is continuous.

Let I'(2) = {B: q(B,2) = inf, q(a, 2)}. We have I'(z) # @ if and only if
inf, q(a, 2) = inf o) <n 9(a, 2) for some n, because the right-hand-side infimum
is certalnly in the range of ¢(-, z). Thus, Z = {z: I'(2) # O} is measurable. Set
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a(z) = « for z & Z, and consider I" on Z,. Since I'(z) is always a closed subset
of R?, it is enough to check that for each compact K, {z: ['(z2) N K # &} is
equal to {z: inf, ¢(e, 2) = inf_ _ x ¢(a, 2)} and, consequently, it is a measurable
set. The existence of a measurable selection a: Z, - R¢ of I follows from the
Selection Theorem. O

We can use Corollary 1 with Z replaced by Z" and ¢(a, - ) = @ (a), to get a
random vector «, = a(Z,,...,Z,) satisfying (2.4). Note, in passing, that
Haberman (1989) assumed Z (in our notation) to be a separable complete
metric space and used the result of Brown and Purves (1973) to ensure the
existence of a measurable selection of extremum. Our argument seems to be
simpler.

COROLLARY 2. Let Z be a measurable space and f: R? X Z —» R. Assume
f(-,2) is convex for every z, f(a, ) is measurable for every a. Then there is
g: R X Z > R? such that g(-, 2) is a subgradient of f(-,z) for every z and
g(a, - ) is measurable for every a.

Proor. Fix a. A vector y € R? is a subgradient of f(-,2) at « if and only
if h(y,2) >0, where h(y,2) = inf;_, [ f(B,2) — fla,2) = (B — a)"y]. For
every z, h(-, z) is a concave and finite-valued function; hence it is continuous.
For every vy, h(y, - ) is measurable, because the infimum can be taken over 8
in a countable dense set, similarly as in the preceding proof.

Denote by I'(z) the subderivative (i.e., the set of all subgradients) of f(-, z)
at a. It is a well-known fact that T'(z) is a nonempty closed set. It remains to
note that for each compact K, {z: I'(z) N K # O} is measurable, for it is equal
to {z: sup . x h(y, 2) > 0}, and to apply the Selection Theorem. O
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