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A LOG-LINEAR MODEL FOR A POISSON PROCESS
CHANGE POINT

By CLIVE R. LoADER
AT &T Bell Laboratories

Many methods have been proposed for modelling nonhomogeneous
Poisson processes, including change point models and log-linear models. In
this paper, we use likelihood ratio tests to choose which of these models are
necessary. Of particular interest is the test for the presence of a change
point, for which standard asymptotic theory is not valid. Large deviation
methods are applied to approximate the significance level, and power
approximations are given. Confidence regions for the change point and
other parameters in the model are also derived. A British coal mining
accident data set is used to illustrate the methodology.

1. Introduction. Suppose we observe a nonhomogeneous Poisson pro-
cess X(¢) on [0,T] with rate A(¢). The standard change point model consid-
ered, for example, by Akman and Raftery (1986a) assumes the rate switches
between constant rates A, and A, at an unknown change point 7. Another
commonly considered class of models is log-polynomial models, where log(A(z))
is assumed to be a polynomial with unknown coefficients.

When presented with a data set, it will rarely be clear in advance which of
these classes of models is most appropriate, and some selection procedures are
needed. Direct hypothesis testing seems inappropriate since the classes of
models are nonnested, and the choice of null hypothesis is arbitrary. An
alternative approach is to consider models in a larger parametric class, which
includes both change point (cp) models and log-linear (11) models. In this paper,
we consider the model
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where a, b, § and  are unknown parameters, we refer to (1) as the llcp model.
The cp model is the special case b = 0 and the Il model is the case § = 0. This
model is a first step at mixing change points with gradually changing rate
functions; at the end of this introduction we say more about possible exten-
sions and the difficulties that arise. For sequences of independent Gaussian
observations, regression models with change points have been studied by Kim
and Siegmund (1989) and our results for analyzing (1) will have some similar-
ity.
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To select a suitable model, we propose a backward selection procedure.
Beginning with the full model, likelihood ratio tests are used to determine
whether b and 8 are necessary. This is a multiple testing problem; adjust-
ments to the individual significance levels are easily obtained using Bonferroni
bounds. Backward selection is preferred to forward selection since the effects
of a log-linear term and a change point may cancel if forward selection is used.

For a Poisson process with rate function A(¢), the likelihood function is

2 L)) = exp(—foT)\(t) dt)i]f[l)\(Ti),

where n = X(T)and T, ..., T, are the event times. See Cox and Lewis (1966)
for a derivation of (2). For the llcp model, (2) becomes

an + 6(n — X(7)) + bXn: T,
i=1

L(r,a,58,b) =exp

a

e
_?(ebf_ 1 +e§(ebT_ ebT ))~

For fixed 7, maximum likelihood estimates of a, & and & are the solutions of

a

e
n= ?(el” — 1+ e’(e’T —e’)),
ea+8
n-X(r)= 5 (ebT — eb7),
n d eb‘r -1 d ebT _ eb‘r
T. =e%— + até
(3) El TCd b b b

Rearranging the first two of these equations gives

éxu)) 3:b4(n—XhD@a_1)

a=1lo < - -
g(el”— 1 X(7)(ebT —e’)

Substituting these into (3) and rearranging leads to
reb X Teb” — 7eb”  n
. +(n-X(1)———7F — =
ebT -1 ( ‘ ( )) ebT _ ebT b

@ IT-Xe)

There is no closed form solution for b, so (4) must be solved numerically. To
establish the existence of b, we note if X(r) = m, then (n — m)r < £7_,T; <
mt + (n — m)T, and the right-hand side of (4) converges to these limits
as b > —o and b — ®». The derivative of (4) with respect to b is
var(Z”_,T|X(7),n) > 0 and hence b is unique. Although (4) appears to take
an indeterminate form as b — 0, the 1/b terms cancel and the equation is
defined at & = 0 by continuity. Similar situations occur throughout this
article.
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The maximum likelihood estimate # of 7 is found by maximizing
L(r,4,5,b). We show in Lemma 2.4 that this maximum occurs at an event
time. The likelihood is only right-continuous at these points, so the maximum
may not be achieved; this can be overcome by considering left-continuous
versions of the likelihood.

We will not discuss in detail the distribution of the estimators. Chernoff and
Rubin (1956) show for a wide class of problems involving estimation of a
discontinuity in a density that the maximum likelihood estimate will have
error of Op(nfl). Similar results can be derived, at least heuristically, for our
case. It follows that estimates of other parameters, in our case a, b and 8, will
have the same asymptotic distributions as if * were known, and the estimates
are asymptotically independent of 7. See Yao (1986) for a rigorous develop-
ment of these details for a similar problem.

More importantly, consider the problem of testing &#,: b = 0 against the
llcp alternative. If || is large, then # will be close to r under both the null and
alternative models, and under ##;, the log-likelihood ratio will be distributed
approximately as x?/2. This approximation may not be very good if & is small;
however, we do not study this test further here.

For testing -#|: 6 = 0 against the llcp alternative, standard asymptotics are
not applicable. Under the null hypothesis, 7 is meaningless and # does not
satisfy regularity conditions required for standard asymptotic theory. If + = ¢
is known under the llcp alternative, the log-likelihood ratio statistic is

bX(t)(eb” - 1
(o) - X(t)log( e )

b n — boT _
() +(n—X(t))log(b( arf((ité)T‘)(_eeét) 1))

(b—b)z

where b, is the maximum likelihood estimate of b under #, and satisfies

1 TeboT 1
R
ni-1 e®” -1 b,

When 7 is unknown, the likelihood ratio test will be based on the maximum of
I(#). To prevent a few events near an endpoint causing a spuriously large
likelihood, we modify the test slightly by considering the maximum over a
subinterval [7y, 7;] with 0 < 7, < 1-1 < T. The significance level is evaluated
conditionally on X(T') and ©7_,T;, which by sufficiency removes dependence
on a and b. The significance level is then

2

C
(6)  a=a(e,n,y) =P{{ sup U(t) > = X(T) =n, 8, =ny|,

TeSt<T




1394 C. R. LOADER

where S, = L7?_,T; and P§* denotes a measure for which § = 0, conditioned
on X(¢) = n. We derive an approximation to the right-hand side of (6) in
Section 2.

The problem of testing homogeneity against the cp alternative is very
similar. In this case, the likelihood ratio process is

I(t) = X(t)l TX() X(t))l T(n - X(1)
= ~+ — —_—
() = X(Dlog| =, = | + (n = X(¢))log| — 75— -
and the'signiﬁcance level of the test is
. i’
(7 a=a(c,n) = P(‘)"){ sup [(¢) > 5}
Te<t<T;

Exact methods have been applied to this problem by Worsley (1986). However,
for computational reasons, approximations may be preferable when n is large.
Approximations to the power of the likelihood ratio test are derived in
Section 3. Two approaches will be used; they differ in both accuracy and
amount of computation required. One question of interest is how much power
is lost by fitting the llep model when b = 0 and the cp model could be used.
Numerical examples are used to show this power loss is fairly substantial.

In Section 4, we derive confidence regions for the change point and joint
confidence regions for the change point and other parameters. We follow the
likelihood ratio method of Siegmund (1988), which gives rise to more boundary
crossing problems. Again, several methods may be used to approximate these
probabilities.

The methods are illustrated using British coal mining data in Section 5.
This data set was published by Maguire, Pearson and Wynn (1952) and
extended and corrected by Jarrett (1979). This version lists 191 accidents
between 15 March 1851 and 22 March 1962.

There are several possible generalizations of (1), including higher-order
log-polynomial terms, multiple change points and allowing the slope to change.
Models with higher-order terms could in principle be analyzed by methods
similar to those in this article, although sensitivity to differences between
models will be further reduced. Formal analysis of multiple change point
models leads to random field problems which we will not discuss here. An
informal sequential procedure is to split the data into two sections when a
change point is found and to analyze each section separately for further
changes.

An alternative Bayesian approach to model selection for a nonhomogeneous
Poisson process has been studied by Akman and Raftery (1986b) and applied to
change point models in Raftery and Akman (1986). This approach has the
advantage of allowing direct comparison of nonnested models and does not
require any complicated distribution theory. The disadvantage is that posterior
distributions may be difficult to compute, generally requiring multidimen-
sional numerical integration.
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2. Significance level calculations. To approximate the significance
level (6), we derive boundaries p, and g, such that the conditional likelihood
ratio test is rejected if the process X(¢) exits the interval (p,, q,). The signifi-
cance level can then be rewritten in terms of boundary crossing probabilities
for X(¢), which are approximated by large deviation methods in Theorem 2.1.

LEmMA 2.1.  Let by = by(y) be defined by
TeboT 1
ebOT -1 - b_O .

Let 7 = ¢/Vn and define p, and q, to be the values of p obtained by simultane-
ously solving

y=

te® TebT — tebt 1
(8) y=P a1 tA-Pm T g
n* pb(e™" — 1)
g ~Plog| p )
® (1= p)b(e"” — 1)
+(1 —p)log( bo(e?T — &) + (b= bg)y,

for p and b, subject to p, < (e®' — 1) /(e®T — 1) < q,. If £*_,T, = ny, then
2
c
(10) I(t) < 5 < X(¢) < ng,.

If p, and q, exist, then they are unique. If p, does not exist, set p, = 0, and if q,
does not exist, set q, = 1, and (10) still holds.

Proor. Let f(¢ p,b) denote the right-hand side of (9) and choose b =
b(t, p) to satisfy (8). If p = X(¢)/n, then, by (4) and (5), I(¢) = nf(¢, p, b(¢t, p));
hence I(¢) = ¢2/2 only at solutions of (8) and (9).

In Lemma 2.4 we show for fixed ¢ and varying p, f(¢, p, b(¢, p)) is decreas-
ing, 0 or increasing when p is less than, equal to or greater than (e® —
1)/(e®T — 1), respectively. This implies uniqueness of p, and g, and implies
that (10) holds. If p, does not exist, then f(¢, p, b(t, p)) < n2/2 for all p <
(ebof — 1) /(e®T — 1), so we can take p, = 0. The case where g, does not exist
is similar. O

Using Lemma 2.1, we can write

P(()")( sup [(t)=3c?S, = ny)

To<t<T;

(11) =~ P(()”)( inf (X(t) —np,) <0|S, = ny)
ToSt<T

+P3")( sup (X(t) —ng,)=0

To<t<T;

Sn=ny).
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The approximation in (11) is in neglecting the probability of crossing both
boundaries, which is generally small. The key to approximating these probabil-
ities is the following lemmas. Lemma 2.2 is a special case of Lemma B.2 in
Loader (1992) and Lemma 2.3 is Theorem 3.1 in Loader (1992).

LEmMA 2.2. Fix 7, pandy. Let Z, () = X(r) — X(r — t/n) and Z, ,(¢) =
X(r + t/n) — X(7). Conditionally on X(r) = [np] and L} T, =ny, Z, ()
and Z, ,(t) converge in law to a pair of independent Poisson processes with
rates u(t, p) and A(t, p), where

1 N plA)ei”

/J’(T’p) = ;exp(d+b7)'= el”— ].’

AT, p) = lexp(d +6+br) = —(L)belﬁ.
n ebT _ ebT

LeEmMMA 2.3. Suppose {X(¢); 0 < t < T} is a point process on a measurable
space (Q, F), and P™ is a sequence of probability measures. Let a(t) be a
differentiable boundary, such that under P, conditionally on X(1) = na(1),
the local increments X(r) — X(r — t/n) can be approximated by a Poisson
process with rate u(r,a(r)) < (7). Let t, be the solution of na(t) = k. Then

memggﬁ(xu)—nau»<<q
o w(te, a(ty))
= ) (1 — _.W

k=kg

= nf:l(a’(t) — u(t,a()))g,(t) dt(1 + o(1)),

)P‘")(X(tk) — k)(1 + o(1))

where g,(t) is a suitable continuous approximation to P"(X(t,) = k).

THEOREM 2.1. For fixed t, let

1
(12) #(8,b) =log(g(eb‘— 1 +e5(ebT—eb‘))).
Let "(8, b) be the second-derivative matrix and (0, b) be the second deriva-
tive with respect to b when &6 = 0. Then

Pé’”( inf (X(t) —np,)<0(S, = ny)

To<t<T;

Vne /2 5(0,b,)
= b — t, ——'_;_—A_—_
Vo Lf” “(pﬂ)lwmm)

The probability of crossing q, is approximated by time reversal; u(t,p,) is
replaced by A(¢, q,).

dt(1 + o(1)).
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Theorem 2.1 is a direct application of Lemma 2.3. The large deviation
approximation to the conditional distribution of X(¢) is derived in the Ap-
pendix; setting 6 = 0 in (24) gives

exp(—c®/2) | (0, b,)
(//”(8\7 8)
as n — o, where & and b are all calculated under the assumption 7 = ¢ and
X(t) = np,.

Lemma 2.4 derives an expression for p, and proves two results concerning
derivatives of the likelihood that have béen claimed earlier.

PiM(X(t) = np|S, = ny) = (1+0(1))

2mn

Lemma 2.4. (1) 7 is either an event time or truncation point.
(ii) Uniqueness of p, and q,, as claimed in Lemma 2.1.

_@ _ /\(t7pt) - ,L,L(t, pt)
dt  log(A(t, p,)) — log(u(t, p,))"

(i)

Proor. Let f(¢, p, b) be as in Lemma 2.1. Differentiation shows
af (1 —p)be* pbr?
8_15: ebT — pbt _ebt_l’
of p(e" =)
op - p)(e — 1)

af 1 pte® (1 — p)(Te®T — teb?)
— B + y.

= log

ki

b b et -1 e’ — e
When b = b(¢, p) satisfies (8), these derivatives are A(¢, p) — u(¢, p),
log(u(¢, p)/A(¢, p)) and 0, respectively.
Between event times, X(¢) is constant. Letting p = X(¢)/n,
1di(t) odf 9df ab(¢, p)

n o dt ot ab ot
If A, p) = u(t, p), then X(¢) = n(eb — 1)/(eZ’T —1) and b = b,. Therefore,
di(t)/dt = 0 = I(¢) = 0 and hence [(¢) cannot have local maxima between

event times. This gives (i).
When ¢ is fixed and b = b(¢, p) we have

=A(t, p) — r(t, p).

d

d—£ = log( (2, p)) — log(A(2, p)),

which is 0 only when p =p, = (e?’ — 1)/(e?” — 1). Hence, for fixed ¢,
f(t, p,b(t, p)) is decreasing for p < p, and increasing for p > p,, which im-
plies (ii).
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TABLE 1
Significance level approximations for testing the ll model against the llcp alternative, with
n=100and 7o=1-7,=0.1

c
y Method 2.0 2.5 3.0 3.5 4.0

0.5 Simulation 0.6728 0.3225 0.1054 0.0271 0.0040
Approximation 1.0677 0.4254 0.1272 0.0289 0.0050

0.6 Simulation 0.6808 0.3264 0.1105 0.0253 0.0046
- Approximation 1.0723 0.4280 0.1284 0.0295 0.0051

0.7 Simulation 0.6903 0.3350 0.1107 0.0254 0.0044
Approximation 1.0979 0.4399 0.1281 0.0283 0.0048
Simulation s.e. 0.005 0.005 0.003 0.002 0.0007

Setting p = p, gives

o Hp bt p)) _of of dp,

dt at  op dt’

which leads to (iii). O

Table 1 gives approximations to the significance level, for T = 1, n = 100,
to =0.1,¢, = 0.9 and y = 0.5. Since no exact method is available, we compare
with the results of a simulation. When ¢ is small the approximation does not
perform particularly well. However, for larger values of ¢, which are of interest
for significance testing, the approximating is more accurate.

The poor performance for small ¢ is in part due to the probability of
crossing both boundaries. For y = 0.5, the simulation gave probabilities of
0.3413, 0.0855, 0.0174, 0.0015 and 0.0002 of crossing both boundaries. This
accounts for most of the error of the approximation.

The method described in this section can be easily modified to approximate
(7). Numerical examples and second-order corrections for this case may be
found in Loader (1992).

3. Power calculations. Let Py be a measure under which the llcp
model holds, conditioned on X(T') = n. The power of the likelihood ratio test
is

(13) B(7,8) = PI3(R, U RylS, = ny),

T

where

o

o
Do [N
~———

To<t<T 2 T<I<T

R1={ sup l(t)z—}, R2={ sup [(t) = —
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By sufficiency, (13) does not depend on a or b. Conditioning on X(7),

B(7,8) = X PI(R; UR,X(r) =j, S, =ny)P(X(1) =jIS, = ny)
j=0

(14) = PR(U) = e[S, = ny)

J1
+ Y PR, UR|X(7) = j, 8, = ny) P&(X(7) = jIS,=ny),
J=Jo
where j, = [np,] and j; = | nqg,|. We can write
P(I(7) = 5?8, = ny) = P"Y(X(7) < np, or X(7) > nq,|S, = ny).

For 6 > 0, the dominant term will be that arising from X(7) < np_. These tail
probabilities can be approximated by summing the approximation (24) or using
the central limit theorem.

We approximate the terms

P")(Ry U R,|X(7) =J, S, = ny)

by two methods. The first method uses a local linearization around the change
point, and is similar to the method used by James, James and Siegmund
(1987) for normally distributed random variables. The second is a large
deviation method, applying the results of Lemma 2.3.

Both these methods have strengths and weaknesses. The first method is
based on the observation that asymptotically only values of j for which I(7) is
close to the boundary will contribute to the sum and the major contribution to
these probabilities will come from paths for which [(¢) crosses the boundary
close to 7. However, this approximation is less accurate than the large devia-
tion for boundaries and sample sizes of interest. However, large deviation
approximation requires much more computation.

Suppose 6 > 0 so the local expansion will be around (7, p_); the case § < 0
involves a similar expansion around (7, g,). The main result is contained in the
following lemma.

LEMmaA 3.1.
P{(R; UR,|X(7) =np, +x, S, =ny) —e % — (1 - e *")h(8,,5,x) =0
as n - © with x = O(1), where 8, = log(A(7, p.)/u(r, p.) and

8] i sl \’
(15) h(6’2)=(1_6'|6T]T) go(ewa) P(|3|IJJ>Z)
(16) ~v(8)e?,
where

e Pl(ePl — 15| — 1)
e Pl—1+ [5]
In (15), U; is the sum of j independent %[0, 1] random variables.

v(8) =
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ProoF. Suppose X(r) = np, + x and S, = ny. Using the derivatives calcu-
lated in Lemma 2.4 we have I(¢) = ¢2/2 — 5,x + o(1) and

1(7+ %) =1(7) —50(X(T+ %) —X(T)) + (M7, p,) = u(r, )t +0,(1).

Letting Z,(#) and Z,(¢) be homogeneous Poisson processes with rates u(r, p.)
and A(7, p,), respectively, and applying Lemma 2.2,

PM(R,|X(7) = np, + x, S, = ny) — P(sup(&ozl(t) —yt) > 80x) -0,
' t>0

P (Ry|X(7) = np, +x, S, = ny) — P(‘SUP(_50Z2(t) +oyt) 2 5ox) ~ 0,
t>0

where y = A(7, p,) — u(7, p,). Standard results for linear boundary crossing
probabilities for Poisson processes [cf. Pyke (1959) or Loader (1992)] show

P(sup((SOZl(t) —yt) > 80x) — h(5y,85%),
t>0
P(sup(—&OZZ(t) + yt) > 80x) = e %%,
t>0

Using the local independence in Lemma 2.2 completes the result. A complete
Justification of the local approximation requires a truncation argument similar
that used to prove Lemma 2.1 in Loader (1992). O

An approximation to the conditional distribution of X(r) is derived in the
appendix. From (24) (see the Appendix), we get

P(X(r) = np, + x|S, = ny)
POX(r) = np.JS, = 1)
as n — » with x = O(1). Using (14) gives
Pf(,na){Rl URy; X(7)>np,|S,= ny}
v (8, b5)

= mb_)l exp(—nly(t))

—e@o=dx _,

x Y e‘so*s)xt(e_‘s""l + (1 — e %) h(§,, 80%;))(1 + o(1))
i=1

as n — o, where i — 1 <x; <i and np_ + x, is an integer. Using the approxi-
mation (16) gives

L e (e 0% + (1~ e ) (5, 5y,))
i=1

—8x, e~(8+80)x1

= (1+v(8,)) T, T 1/(80)h-1 TRl
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The large deviation approach uses Lemma 2.3 to obtain more accurate
approximations to the rejection probabilities in Lemma 3.1. Let PY'™ denote
conditioning on X(7) = and X(T) = n. Then

PT(j""( inf (X(t) —np,)<0[S, = ny)
To<t<T
(17) np
y ma(tr) ;
= Z (1—,—)P7(J’”)Xt =k|S, = ny),
ol p(tk) ( ( k) | )

where u,(2) is the local left rate at ¢ conditioned on X(¢) = np, and X(7) = j,
and .

Pfj’”)( sup (X(¢) —ng,) 20|S, = ny)
(18) To= ;T A
_ 2(86) | piin B N
= ]Ekl(l T o) )Pf (X(t) = kIS, = ny),

where A,(¢) is the local right rate when X(¢) = ng, and X(r) = j. To obtain
expressions for u,(t) for A,(t), we add a second change point at ¢. When
p =j/n, the mle b, of b is the solution of

i te? — reb” TebT — tebt 1
y=p_m—7 t(p —p)m +(1 _pt)ebT“_ebz 3
and the local rates are

p,bye’ (P — q,)bye’
po(t) = gh— 10 Mat) = obar _ gbat

The conditional probabilities PY"(X(¢) = kIS, = ny) can be approximated
using Lemma 2.2 when ¢ is close to 7 and results similar to (24) otherwise.
The summations (17) and (18) can be approximated by integrals; however,
some care must be taken to avoid singularities.

Adding (17) and (18) approximates PV "(R,|S, = ny); we approximate
PY™(R,|S, = ny) by time reversal. The power approximation is completed by
substituting into (14) and using (24) to approximate PUX(X(7) = jIS, = ny).

Similar methods may be used to derive power approximations for the test of
#y: b =28 =0 against the cp alternative. Alternatively, recursive formulae
may be used for exact computations; see Worsley (1986). In Figure 1, we show
the approximations to P"(R, UR, X(r)>np.) for T=1, r =05 and
n = 100, using ¢ = 3.0372 and 7, = 1 — 7, = 0.1. The large deviation approxi-
mation performs very well. The local approximation slightly underestimates
the power, but since precise power calculations are rarely important this is
probably accurate enough for most purposes.

One question of interest is how much power is lost if we test the 11 model
against the llcp alternative when the cp model is correct. In Figure 2, we
compare the power of the two tests for n = 100 and 7 = 0.3. We also include
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0.20

Exact

Power
1

0.0

0.0 0.5 1.0 1.5

Fic. 1. Comparing approximations to P}y’g’(R1 U Ry, X(7)> np,) using the cp model, with
7= 0.5.

the power of the two-sample test that would be appropriate for testing Hy:
0 = 0 if 7 were known. The power for the log-linear model is calculated for
several values of y. We take ¢ = 3.0372 when testing for the cp model and
¢ = 3.3301, 3.3252 and 3.3301 for y = 0.4, 0.5 and 0.6, respectively, for the
llcp model. These values of ¢ are chosen to obtain a significance level of about
0.05, as indicated by the first-order large deviation approximations. This
nominal significance level is represented by the horizontal line in Figure 2.
Searching for the unknown change point results in only a small power loss.
The test for the llcp model is substantially less powerful than the test for the

e
,,;"‘:////
«© | -
IS -
©
g S |
g
a < —-——- Known1t
i —— Const Par.
------ y=04
o ———-y=05
© ——— y=06
o
d 1 T T T T T
0.0 0.5 1.0 1.5 2.0

)

F1G. 2. Power comparisons for n = 100 and = = 0.3.
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cp model. The power of the llcp test shows some dependence on y; the slightly
lower power when y = 0.6 is due to the small number of observations that
would be expected around 7 in this case. This power loss implies that model
selection may be difficult when only a small number of events are observed.

4. Confidence regions. In this section we derive confidence regions for
7, (1, 6) and (1, 6, b). The confidence regions are based on the likelihood ratio
method of Siegmund (1988) and take the form

Il={7:l(7)2 sup l(t)—cl},

To<t<T |

12={(7-,3):l(1-|6)2 sup l(t)—cz},

Te<E<T)

13={(7,8,b):l(¢|8,b)2 sup l(t)—c3},

To<t<T;

where ¢, ¢, and ¢, are chosen to obtain the required coverage probability and
1(718) and I(7]3, b) are log-likelihood ratio statistics for -#;: 6 = 0 against the
llcp alternative with & and (8, b) specified, respectively.

We approximate the coverage probabilities using local expansions in lemmas
4.1-4.3. Large deviation approximations may also be used, but these become
computationally expensive when finding joint confidence regions.

The methods in this section may also be used to find confidence regions for
7 and (7,8) under the cp model; in particular, Lemmas 4.1 and 4.2 are
unchanged. Worsley (1986) uses recursive methods to perform the computa-
tions exactly.

Let P{™™ denote a measure under which the llcp model holds, conditioned
on X(7r) =m and X(¢) = n. For I; to have (1 — @)100% coverage requires
choosing ¢; = ¢(r,m,n,y) such that P™™"(reIlS,=ny)=1-a By
sufficiency, the conditioning removes dependency on the unknown parameters
a, 6 and b.

LEMMA 4.1. Let m,n — « with m/n convergent and 7 and y fixed. Then
Pmm(r e 1|8, = ny) — e + (1= e )h(5,¢,)
~(1+v(8))e™ asc, > .
Proor. We note v € I, < I(7) = sup,, ., ., [(t) — c;. Therefore,

1-a=P™"(relS, =ny)

=Pm sup I(t) <I(7) + ¢ Sn=ny).

To<t<T)

The result then follows from Lemma 3.1 with p_ replaced by p = m/n. O
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The coverage probability of I, is evaluated conditionally on n and S,,
giving
l—a-= P,r("la)(('T, 8) € L,lS, = ny)
(19)
=P™| sup I(t) <I(7l8) + ¢,

To<tI<T;

Sn=ny).

LEMMA 4.2. Let n —» © with 7, 6 and y fixed. Then
P{")((7,8) € I|S, = ny)

20) > focz(1 o€ D) (1 h(8, ¢y — 2)) ; =% dz
(21) ~1- Ee—%(m +0(8)) + ¢ 1(1 - v(5))).
Proor. Conditioning on X(7), we can rewrite (19) as
1w T P s (10~ 1(7)
22 <y (Un) - 1708, = )

XP")(X(1) = ml|S, = ny).

The sum in (22) can be restricted to values of m such that {(7) — I(7|8) < c,.
The conditional likelihood is given by

i’a(eijoT - 1) )

bo(eb — 1 + e?(ebT - eb))

I(7l5) = X(r)log(

bse?(eb” — 1) )

+(7L - X(T))l()g( ISO(ei)oT —~ 14+ ea(ei’BT - eI;'ST))

+(83 - bo) Z Ti’
i=1

where 135 is the maximum likelihood estimator of b under the restricted
alternative and is the solution of

03 1 Z” T et + e‘s(TebT — e’ 1
( ) ni=1 i_eb7_1+e6(ebT_ebr b

Let
ei’” -1

eB«S"' -1+ eS(efxaT _ elA)(;T) :

Xog =
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If X(r) = nx,, then b =54, 5=5 and I(r) — I(78) = 0. A proof similar to
Lemma 2.4 shows (I(7) — I(7]8))/n is a convex function of X(7)/n minimized
at x,, and hence the range of X(r) such that I(7) — I(7|8) < ¢, will be an
interval [m, m,], where

my=nx,— O0(n) and m,=nx, + O(Vn).

When X(7) is restricted to this range, 5 — 8 = O(n~'/2). Applying Lemma 4.1
and compactness arguments shows

pT(m,n){ sup [(t) <I(716) + ¢

To<t<T .
—(1 — e 2 )(1 = h(8,cy — 2)) >0

uniformly over m, < m < m, as n - », where z = I(7) — I(7]5). By standard
likelihood theory, 2(I(r) — I(r|8)) converges in law to a 2 random variable,
which leads to (20). Substituting (16) and expanding the integral around
z = ¢, leads to (21); this is a continuous time version of equation (26) of
Siegmund (1988). O

S, = ny}

LEMMA 4.3. Let n — o with 7, 6 and b fixed. Then

P ((7,8,b) €ly) — /:3(1 —e @ D)(1 — h(8,c5 — 2))e *dz

~ . —C
=1—cze

1
L w(8) = (1~ y(a))).

Proor. This involves conditioning on X(7) and L}_,T; and following the

13

proof of Lemma 4.2. The conditional likelihood ratio is given by

ez‘zOT _
1(715,b) =X(T)log( . o 2 )

bo(eb-r -1+ eB(ebT _ ebr )

be‘s(ei’oT -1)
30(ebr -1+ ea(ebT _ eb-r))

+(n—X(7-))log( )+(b—z30)2 T,

i=1
and 2(I(r) — I(7]8, b)) has asymptotically a chi-square distribution with two
degrees of freedom, which leads to the result. O

5. Example: British coal mining data. We apply the methods of the
preceding sections to British coal mining accident data as published by Jarrett
(1979). This version lists 191 accidents resulting in 10 or more deaths between
15 March 1851 and 22 March 1962. The cumulative accident count-is shown in
Figure 3.

Several analyses of this data set appear in the literature. Cox and Lewis
(1966) fit a log-quadratic model to the data original data. Change point models
are fitted in Akman and Raftery (1986a) and Raftery and Akman (1986).
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FiG. 8. British coal mining accident data.

We plot I(#) using the cp model in Figure 4 and using the llcp model in
Figure 5. Since endpoints for the observation interval are not precisely defined,
we take the first and last observations to be the endpoints and do not count
these events.

With both models, {(¢) is maximized at ¢ = 1890 - 19. The values of four
test statistics are summarized in Table 2, in the 1851-1962 column. For
testing #,: 8 = 0 against the llcp alternative, the maximum of 6.27 has an
attained significance level of 0.027 (using 10% truncation). Hence we conclude
the change point is necessary. For testing &#;: b = 0 against the llcp alterna-
tive, the log-likelihood ratio is 0.36, which is not significant. This suggests the

(=3
o ©
©
ot
O
[} o ]
o N
£
)
X
-
g 2
-

o ~

1860 1880 1900 1920 1940 1960
Time

Fic. 4. I(t) for the cp model.
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Fic. 5. [I(t) for the llcp model. The dotted line defines an approximate 95% confidence region
for 7.

cp model provides a much better fit than the llcp model; similar conclusions
have been reached by Raftery and Akman (1986) using Bayesian methods.
However, the cp model does not appear to be a perfect fit. In Figure 5, the
likelihood ratio process also has a second peak around 1930, raising the
possibility of a second change. To analyze this more thoroughly, we consider
the subset of 67 accidents from 10 March 1890 to 22 March 1962. The results
of applying various tests are shown in Table 2. Due to the smaller number of
events, truncation has been increased to 30%. The first two tests, testing
homogeneity against the cp and 1l alternatives, respectively, are both not
significant. However, the final two tests with the llcp alternative are both
significant. The point estimates suggest a gradual decrease in the accident rate
(b = —0.042), and a sudden increase (§ = 1.76) at 4 = 1930.16. This example
shows the advantage of backward selection over forward selection: The for-
ward selection method would conclude the data is homogeneous, while the
backward selection shows evidence of both a change point and log-linear term.

TABLE 2
Log-likelihood ratio statistics for various tests with the coal mining data

1851-1962 1890-1962
Null Alternative 1Ir T Slir T
b=56=0 b=0 36.24 1890.19 1.25 1940.43
b=56=0 §=0 30.33 — 0.58 —
b=0 llep 0.36 — 5.09 —
=0 llep 6.27 1890.19 5.76 1930.15
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Fic. 6. 95% confidence region for T using the cp model.

Confidence regions for 7, computed using the local expansion, are shown for
the cp model in Figure 6 and for the llcp model in Figure 5; the confidence
region consists of those times for which [(¢) is above the dotted line. Since
there is evidence of a second change, the peaks around 1930 should be ignored
when constructing a confidence region for the change around 1890. The
regions around 1890 included in the confidence region have total length 8.08
years using the cp model and 11.31 years using the llcp model.

Approximate 95% joint confidence regions for (7, ) are shown in Figure 7,
computed using the cp model (solid lines) and llcp model (dotted lines). The
llcp model results in a substantially larger confidence region. In particular,

0
() -1
Q
) -
o
o i
(\"' L L T T
1885 1890 1895

time

F1Gc. 7. 95% confidence regions for (r,8). The region outlined by the solid lines is computed under
the cp model, and the region outlined by the dotted lines is computed under the licp model.
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Fic. 8. 90% confidence region for (r,8, b). The top panel is a contour plot of the upper bounds for
b, as a function of (r,8). The bottom panel is a contour plot of the lower bounds.

.

larger (closer to 0) values of § are included in the region, since some of the
observed decrease in the accident rate is now modeled by the log-linear term.

An approximate 90% confidence region for (7, 8, b) is shown in Figure 8. For
each value of 8 and 7, there may be a range of values of b in the confidence
region. The solid lines in Figure 8 represent the boundary of this region. Inside
this region, we compute for each 7 and & the upper and lower extrema of the
range of b such that (7, 8, b) lie in the confidence region. The dotted lines then
represent contour plots of the upper limits for b (top panel) and lower limits
for b (bottom panel).
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APPENDIX

Conditional distribution of X(7). In this Appendix we derive a large
deviation approximation to the conditional distribution of X(7) given X(T')
and L 7_,T;. The approach we take is based on saddle point approximations to
the distribution of sums of random variables. These methods have received
considerable attention recently and we only give the important details for our
application. A useful reference for further reading is Field and Ronchetti
(1990); Sections 5.4 and 5.5 are particularly relevant to our application. The
main advantage of the saddle point approach over the central limit theorem
approach is greater accuracy, especially for estimating small tail probabilities.

Conditionally on X(T') = n, T,,..., T, are distributed as the order statistics
of a sample of size n from a distribution

fo,5(x) = exp(bx +8I(x > 1) — ‘p(a,b))I[O,T](x),
where (38, b) is defined by (12). We can write
PO (n - X(7) = n(1 - p), 8, = ny)
P13 o(8, = ny) ’

P")(X(7) = np|S, = ny) =

the quantities on the right-hand side being densities in S,. Let b; be the mle
of b when § is known and #4(5, b) the second derivative of ¢ with respect to
b. Using standard saddle point approximations gives

P (X(7) =np, S, = ny)
- 1 exp[by +8(1 — p) — ¥(8,b)]
27m|l////(3’ B) 12 exp[éy +8(1-p) - nu(é, 5)]

n

and

P (S, = ny)

= g o, by TP By = n(0(2,8) =4 (2, 80)),

where b; is defined by (23) and (8, b) denotes the second derivative of ¢

with & fixed. This leads to
V598, bs)

): \/21Tn

v'(8,5)]

(24)  PI(X(7) — nplS, = ny exp(—nl;(7)),

where

() = (b= by)y + (6 —8)(1 — p) — (w(8,b) — w(5,b,)).

Note that nls(r) is the log-likelihood ratio statistic for testing the specified
value of & against the llcp alternative when 7 is known.
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