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SOME PROPERTIES OF THE KAPLAN-MEIER ESTIMATOR
FOR INDEPENDENT NONIDENTICALLY DISTRIBUTED
RANDOM VARIABLES

By Ma1 Zuou
University of Kentucky

In this paper we study the Kaplan-Meier estimator in the case where
survival and censoring times are not all i.i.d. We prove several results
which are analogous to those shown by van Zuijlen in the complete data
case.

1. Introduction. The in probability linear bound of the ratio of an
empirical distribution function to the true in the i.i.d. random variables case is
called Daniels’ theorem [Daniels (1945) and Robbins (1954)]. A lot of research
effort has been devoted to this type of theorem since then [see, e.g., Wellner
(1978)]. Similar inequalities are much harder to prove for the case of indepen-
dent but nonidentically distributed random variables [see van Zuijlen (1976,
1978, 1982) and Marcus and Zinn (1984)].

In the situation where the observations are censored, the Kaplan-Meier
estimator takes over the role of an empirical distribution function. Gill (1980)
showed that the analog of Daniels’ theorem is also valid for the Kaplan-Meier
estimator. He also conjectured that a similar lower bound might also be true.
This lower bound was later independently proved by Zhou [(1986), Lemma 2.6]
and Shorack and Wellner [(1986), Inequality 7.6.3]. These same inequalities
(plus an inequality for the cumulative hazard function) in the situation of
independent but nonidentically distributed case are the main results of this
paper, although we do not obtain the best bound. Not even van Zuijlen or
Marcus and Zinn get the best constant they had hoped for.

The need for this kind of inequality arises, for instance, in the analysis of
censored data regression estimators of Koul, Susarla and Van Ryzin (1981),
and of Leurgans (1987), where the data are non-i.i.d. and the Kaplan-Meier
estimator often appears in the denominator of an expression; see Zhou (1988,
1992) for details.

Recently in analyzing the censored regression estimator of Buckley and
James (1979), Lai and Ying (1992) investigated the limiting behavior of a
modified Kaplan—Meier estimator and ‘obtained almost sure rate of various
related processes. While their results are certainly important, their modifica-
tion, among other things, stops the Kaplan-Meier estimator when the risk set
is smaller than Cn!™* with 0 <A < 1/16 and C > 0. On the other hand, we
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allow the risk set to go down all the way to one and the bound is good for any
n, but our result is in probability, weaker than almost sure. It is well known
that almost sure linear bounds do not exist on the interval where the risk set
is allowed to be one. The practical implementation of Lai and Ying’s modifica-
tion needs further guidelines on the choice of A and C. Yang (1990) also
studied the bounds of the ratio of a Kaplan—-Meier estimator to the true. He
obtained mean square as well as probability bounds on the interval from zero
to the (n — k)th order statistic with % fixed.

Suppose we have two sets of nonnegative random variables: y;, y,,...,,
which are i.i.d. with continuous distribution function G(¢) and x,, x,,..., %,
which are independent but nonidentically distributed with continuous distri-
bution functions Fy(2), Fy(t),..., F,(t). We also assume the y,’s are indepen-
dent of the x,’s.

The data that we observe are

(1.1) z; = min(y;, %;), 8 =1I,._,,

Estimation of the distribution G(¢) based on (1.1) is furnished by the
Kaplan—Meier (1958) estimator (and other estimators)

(1 B AN(s)

(1.2) 1-Ge(t)=T1 B (o)

s<t

) fort <T",

here
R+(t) EI[z >t N(t) = ZI[zist,b‘,:l];
AN(s) =N(s) —N(s—) and T"= max{z;}.

Estimation of the cumulative hazard function of the y;’s, —log(1 — G(¢)) =
A(), is furnished by the Nelson-Aalen estimator

A AN(s
(13) Ao - T B

Altshuler’s estimator of 1 — G(¢) is related to the Nelson—-Aalen estimator and
is given by

(1.4) 1 — Gu(t) = e A0,
We further denote 1 — H,(¢) = P(z; >.¢) = [1 — G@®I1 — F()].

fort <T™.

ReMARK 1.1. If both y;’s and «x,’s are nonidentically distributed with
arbitrary distributions, then the question of estimation based on observations
(1.1) is easily seen to be nonidentifiable. Therefore we always suppose one of
the sets of random variables are i.i.d.

It is well known that A(¢) — A(¢) is a local martingale on [0, 7T"] with
respect to the filtration %, defined below [see Gill (1980) or Aalen (1978)]:
& = o{z,1 8,1, ;k=1,2,...,n}

s [zkss]; [z < s8]
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with predictable variation process
t d A( S )

(1.5) (A - A>(t)—jR )

Section 2 contains two basic inequalities with the proofs. Section 3 contains
some (more or less) easy corollaries of the theorems in Section 2.

2. Main theorems. In this section, we first look at the in-probability
bound of A(z) — A(?). Theorem 2.1 states that even if A(¢) is unbounded as
t = o, sup, .= |A(#) — A(¢)| remains bounded in probability for any n. We
begin with a lemma.

LEmMmA 2.1. If t,(e) is a real number defined as

t(e) dA(s) 1)\%3
2.0 J; sz—muﬂ=k)’ e>0,

then we have

(2.2) il [1 - H(t.(¢))] < ¥

Proor. Notice that, since 1 — H; = (1 — F,X1 — G) and dA(s) =dG/1 —
G, we have, by integration by parts,

t,(e) dA(S) t,(e) 1 1
[ L1 - H(s)] [0 Z[l'Fi]d(l—G)
1 1

t(e) £ () 1 1
“IA-FI1-G|, _Lnl—G4zu—EJ
1 1
T I[1-H(t ()] Tl - H(0)]

_[t,,(E) 1 d 1
o 1-G \Z[1-F]

_ 1 1 tue) 1 d 1
'zh—mmum'ﬁ'ﬁ 1—G(zn—my

Plugging this into equation (2.1), we get

£[1- Hli(tn(s))] ) % A - G d( 2[11—F,~] ) " (;)2/3 = (;)2/3.

]
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TueoreM 2.1. If A(¢) and A(t) are, respectively, the cumulative hazard
function of G(t) and its Nelson-Aalen estimator defined in (1.3), we have, for
0<e<1/2,

(2.3) sup |A(t) — A(t)| > ) < Ce?/3,

t<T™

where the constant C can be taken to be 358.

ProOF. Since A(t A T™) — A(¢t A T")is an F,-martingale with predictable
variation process

tAT" dA(S)

A-a ny = (AT EA0)
A-ment = [T gy
we have, by using Lenglart’s (1977) inequality,
o T dA(S)
(24) P|sup |[A(t) - A(t)|>=| <ne2+ P - nl, m>0
t<Tn o R7(s)

Taking n = (1/¢)*/3 gives

ol 35 ()

The process (1/n)R*(s) is an empirical process of n independent but non-
identically distributed random variables. The inequality of van Zuijlen (1978)
gives

25 P (1 - Hy(1)] ) 2

ST Rt 3A(1 — (1/A))*’

Thus, we have, for A > 1,

(24) <&e¥3®+ 272 ([T" AdA(s) N (1 )4/3).

3A(1 - (1/A))* Y1 - Hy(s)]
Taking A = (1/£)%/3 gives

e a2 T e dAGs) (1)

Now let us focus on the probability term of the above bound. It is easy to see
that the mean of the random variable inside the probability is infinite even
when n = 1, so we have to work on its probability distribution function.

It is easy to see that

r»  dA(s) 1\%3 .
(2.7) f )] >( ) )=P(T > t,(¢)),
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where t,(¢) is so defined that

1) dA(s) 3 12/3
simmer - )

Since T" = max{z,}, we have

(2.7) = P(max(z) > t,(e)) < T P(z > t,(c))

€

2.8
(28) = ¥ [1- Hyt,(e))] <,

where the last inequality follows from L(;,mma 2.1. Combining this bound of
the probability term with (2.6), we have

272
For the range 0 < ¢ < 1/2, it is again bounded by

272
(2.6)_<_£2/3+£2/3 +£2/3=82/3(2+———————).

3(1 - 63"

2772
3(1- (3)"°)

REMARK 2.1. A better constant can be obtained if we restrict £ to a smaller
interval and use van Zuijlen (1982). It can be reduced to a little larger than 3.

e%/3 (2 + ) < £%/3(358). O

Theorem 2.1 deals with the cumulative hazard function A(¢) or —log(1 — G).
In order to apply it to the Kaplan-Meier estimator Gg(¢), we need the
following lemma.

LEMMA 2.2. Let G(t), G(t) be the Kaplan—Meier and Altshuler’s estima-
tor of the distribution G based on censored data as in (1.2) and (1.4). We have,
Vit if 1-Gg@) >0, then

4

[Gx() = Cut)| < [1 = Gx(0)] 5

Proor. See Cuzick (1985) for a similar inequality and proof. This exact
inequality was first stated without proof in Gu [(1987), Lemma 2.2]. O

Using Lemma 2.2, we can get some bounds of 1 — GK from Theorem 2.1.

THEOREM 2.2. For 6 > e2,
1-G(2)
1 - Gg(t)

p 1
sup —
t<Tn O
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For A > 4,
1-G(¢t)

1 2/3 1 2/3
—— > | <C|——— <Cl——=]| ,
1 - Gg(2) ) (A—log5) (A—2)

where C is the same constant as in Theorem 2.1.

log

P( sup

t<T™

Proor. For ¢t < T™, it is easy to see that, by Lemma 2.2 above,

1-G 1-G1-G, 1-G [1-Gx+Gx-G,

1-G, 1-G,1-G, 1-.6, 1- Gy
1-G G - G 1-G 4
(2.9) Sy ok Sl gty §
1-G
<5 —.
]‘_GA
On the other hand, we notice that
] PO log —— log 8
sup —| > 6 < suplog ~— > log
t - A t l_GA
and
1-G o \
log = =A(t)—A(t)=—log(l—GA)—(—logl—G).
]‘_GA
Therefore,

P( 1-¢ 5) P( log —— 2 5 5)
sup — > = sup log ~— > log
t<T™ 1- GA t<T™ 1- GA

= P( sup A(t) — A(¢2) > log 3)

t<T™

by Theorem 2.1. Thus

1 \2/3
SP( sup|1A\(t)—A(t)|>log8)SC(—) )
P( sup 1-G(¢)

t<T" log &
1 \2/3
—5——>58]| < C( ) .
t<tr 1 — Gg(t) log &
To prove the second inequality, we first notice that 1 — Gx(t) < 1 — G,(¢)
[Cuzick (1985)] which, together with (2.9), implies

) 1-G
(0} A

<|lo; _A
‘gl—GA

+ log5.
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Now the second inequality can be proved by using the above inequality and
Theorem 2.1. O

3. Applications. Although the x,’s in ( 1.1) are not identically distributed,
we can still form its Kaplan-Meier estimator Fy(¢) by

AN(s)
(1 O )

where N°(s) = X1, ., 5 _q

(3.1) t-Fm= 11

This estimator is strongly consistent in the'sense that lim , |[F () — F.(¢)| - 0
a.s. where F, = (1/n)L F,. However, the ratio of 1 — Fy() to 1 — F(¢) is no
longer a martingale. So we cannot use the martingale approach.

THEOREM 3.1. For A > e2, we have, ¥ ¢ > 0,

1-Fe(t) . (1/4)exp(1 — (1/X%))
Pl TR ) = T- (1/x)exp(1 - (1/2)
(3.2)
1 2/3
+C ) s
log A

where C is the same constant as in Theorem 2.1.

Proor. One useful fact here is

(1= )1 = 6] = 12000 21— Ay - -0

Thus, it is easy to see from (1 - F)(1 - G) =1 — H 2 (1/n)Z[1 — H/(#)] that
1-Fe(t) 1-H1-G(¢)

3.3 = = = A fort < T".
(39) 1-F(t) 1-H 1-G,
Thus,
1 - Fe(t 1-HA
P| sup ——_K—(—) > 5t | < P| sup —=|> A
t<rn| 1 — F,(t) t<t11 —H
1-G
+ P| sup —| > 5A].
t<T™ — Ug

By Theorem 2.2 and van Zuijlen’s inequality, we can bound the above by

(1/4%)exp(1 — (1/X)) + L)m
1 - (1/X)exp(1 — (1/X)) log A




NON-LI.D. KAPLAN-MEIER ESTIMATOR 2273

REMARK 3.1. The slow rate (1/log A)?/3 is presumably caused by the log
transformation we used. It pops up exponentially fast near zero.

Gill (1980) showed that [1 — GK(t)]/[l — G(t)] is a martingale. Using this
fact and Doob’s inequality, it is not hard to show that

(3.4) P L= Gelt) M <2 as1
. sup ———— > A| < —, > 1.
t<rr 1 — G(2) A
CoROLLARY 3.1. For A > 1,
1-F(¢) 1 1-H
Pl sup ———=>A?| < — + P| sup > A
t<T" Fx(t) A t<tn 1 — H

(3.5)
1 272

+ .
A 3A(1 - (1/0))*

IA

Proor. The proof follows easily from (3.3), (8.4), van Zuijlen (1978) and
Bonferroni’s inequality. O
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