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THE ORDER-RESTRICTED RC MODEL FOR ORDERED
CONTINGENCY TABLES: ESTIMATION AND
TESTING FOR FIT

By YA’Acov RiTov AND Zvi GILULA

Hebrew University of Jerusalem

The RC model has been proposed as a model for ordered contingency
- tables. It involves parametric scores that are assigned to the rows and
columns of the table so that these scores reflect the ordinality of the row
and column categories. Efficient estimation of these parameters subject to
order constraints remained an open problem mainly due to severe difficul-
ties in computing these estimates and difficulties in deriving an appropriate
asymptotic goodness-of-fit test. A nonstandard yet very simple algorithm is
derived which produces the desired order-restricted maximum likelihood
estimates with probability converging to 1. Testing the order-restricted RC
model for fit is also discussed.

1. Introduction. Goodman (1979, 1981, 1985, 1986) introduced and dis-
cussed a family of association models suitable for ordered two-way contingency
tables. Some of these models—the column-effect model (the C model), the
row-effect model (the R model) and the row-—column-effect model (the RC
model)—involve parametric scores assigned to the rows and the columns of
the table. These scores should reflect the order of the underlying categories. In
the above-mentioned references an unrestricted maximum likelihood estima-
tion procedure for the scores is presented together with a testing procedure for
testing equality of scores (to be used when score estimates ‘‘violate” a pre-
sumed order). Agresti, Chuang and Kezouh (1987) justifiably claim that in
many cases the order for the parametric scores should be predetermined since
a researcher frequently has in mind—before observing any data—some notion
about the direction of the association. A positive direction should be expressed
by row and column scores that are both monotone increasing or monotone
decreasing. A negative direction should be expressed by monotone scores that
vary in opposite direction in the rows and in the columns. Agresti, Chuang and
Kezouh (1987) developed a maximum likelihood estimation and a testing
procedure for the ordered C model and for the ordered R model. As for the
ordered RC model, they [and also Goodman (1985)] mentioned some estimation
difficulties mainly due to the fact that the RC model is not a log-linear model.
Consequently, the estimation problem under the ordered RC model was left
open. Agresti, Chuang and Kezouh (1987) recognized that ‘“‘the discovery of
sufficient conditions for the solution of the ordinary or order-restricted row
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and column effects model, plus the development of an algorithm for fitting
these models, are important problems. .. .”

In this paper solutions to these problems are provided. We derive estimates
for the parametric scores of the RC model subject to order restrictions. These
estimates are shown, by some lemmas proven below, to be the maximum
likelihood estimates for the ordered RC model with probability converging to 1.
The problem of estimating the parameters of the ordered RC model requires a
nonstandard solution because the underlying parameters functionally depend
upon each other. It is argued that the common method of amalgamating
(unrestricted) estimates does not always produce the right estimates. To solve
this problem, particular functions of the parameters are defined. Amalgama-
tion of these functions is shown to produce the desired maximum likelihood
estimates with probability converging to 1, and it is easy to tell at each stage of
this procedure whether the solutions to the likelihood equations have been
obtained or not. The standard maximum likelihood estimation procedure for
our problem will usually require a long and tedious series of collapsed tables
obtained from the original table even for tables with moderate number of cells.
Our procedure, apart from being rapidly convergent, is quite parsimonious and
only a single collapsing operation will usually be needed to obtain the optimal
estimates. We also discuss the issue of testing the order-restricted RC model
for fit.

2. Preliminaries and notation. Let X and Y be two categorical ran-
dom variables with ranges consisting of the integers 1 to I and 1 to J,
respectively. Let

P,=Pr(X=1i,Y=)), l<i<Il,1<j<d,
P, =Pr(X=1i), l1<ix<lI,
P =Pr(Y =j), l1<j<
The RC model states
(2.1) P;j = a;B; exp(du;v;), l<i<I,1<j<d,
where
(2.2) YP.ubt=YPpb=b-1, b=1,2.
i J

Condition (2.2) was suggested by Goodman (1981) for purposes of identifia-
bility and comparison with canonical correlation models.

For the order-restricted case we assume in addition to (2.1) and (2.2) the
following:

My = pg < ©00 S up, My < pp,
Vi<V < o Sy, v, <vy,
(2.3)
¢ >0,

P;;>0 foralliand ;.
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Although we consider here only the positive association case, the results below
are easily extendable to the negative association case as well.

We use the following notation for all i and j: P, ; is the empirical distribu-
tion (given in an observed contingency table with sample size n); P,; is the
unrestricted maximum likelihood estimates for P;; in (2.1); & = (i, ..., ;) is
the vector of unrestricted maximum likelihood estimates for row scores;
? = (b,,...,P;) is the vector of unrestricted maximum likelihood estimates for
column scores; u* and v* are the vectors of order-restricted maximum likeli-

hood estimates for row and column scores, respectively. Let
E(v) = Z PijVj/Pi-,

J
(2.4) Fi(p) = Zl P;u;/P.;,

Ei(”) = Z lsijvj/pi-
J

FJ(#) = Z Pij#i/P-j~

Using the above notation, it is easily verified [see also Goodman (1981)] that
the solution of the likelihood equations for the unrestricted RC model satisfies

b=5, 1<ic<lI,
P;=P, l1<j<d,
i,jﬂiAj= Z zjﬁzAj’

(2.5) i,J i,J
Y. P o, =) Pb, 1<ix<lI,

J J
szjﬁ‘z=2 ljﬁ‘l’ 1<-]<J

13 13

These equations will be used later.

3. Main results. A well-known idea in maximizing the likelihood under
order restrictions is to first apply the unrestricted maximum likelihood proce-
dure [e.g., Goodman (1981) for our context]. If the resulting estimates follow
(2.3), then we are done. Otherwise some inequalities between adjacent u’s and
some inequalities between adjacent »’s must be turned into equalities and the
unrestricted estimation procedure then reapplied. The problem is the lack of a
parsimonious search strategy that will tell how many equalities should be
imposed and where. The common practice is to base the search on the actual
estimates. Here, for example, if a violation of the order occurs with i, > i, .,
and with &, > fi,.,, e # k, one would be tempted to impose u;, = n,,, and
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i, = M,,; This algorithm, known also as ‘“pooling adjacent violators” [e.g.,
Barlow, Bartholomew, Bremmer and Brunk (1972), page 13], is quite common
in ordered inference under normal theory but is problematic here. The main
problem lies in the fact that (unlike the common case in standard theory) the
w’s and v’s are functions of each other as is evident from the (unrestricted)
likelihood-solution equations (2.5) for model (2.1). This means that imposing
an equality between a pair of adjacent u’s in order to correct for order
violation may result in a (new) violation of order between some »’s and
between some u’s that followed the desired order prior to the amalgamation
process. This problem leads to severe doubt as to whether pooling adjacent
violators on the score parameters is useful [see also Neusch (1966) for similar
arguments]. As is proven next, all the above-mentioned problems can be
overcome if amalgamation is done on the quantities E (v) and F-’j( u) defined in
(2.4) instead of the u’s and the »’s directly.

For expository purposes in the next lemma, we abbreviate some notation in
(2.4) as follows:

E,=E(v), E=E(), F=Fu), F=Fu.

LemMA 1. The random variables Vn (E; — E,) and Vn(F, = F)), 1 <i <1,
1 <j < dJ, are asymptotically jointly normal with zero mean and covariance
matrix having entries

n Cov[Ei, E‘k] _ [ Var(v]i)/P;., i = k,
0 i+ k,

. . V. i) /P. ., j=m,
nCov[Fj,Fm] = { ax(uls) /P J
0 JFm,
n COV[F}, Ei] = (Pij/Pi-P-j)(Vj - Ei)("i - Fj)’

where Var(v|i) = L ;P,;(v; — E;)*/P;. and Var(ulj) = Z,P,(u;, — F)?/P.,.

Jou

Proor. Using straightforward algebraic manipulations and a Taylor ex-
pansion yields

E;=Y Pu/P =% Pjv;/Pi. + z Pii"j(l/ﬁi' - 1/P;)
J J J

J

=E; + Z (Pij_Pij)Vj/Pi- _(Zpijvj/Pi-Pi-)Z (Pij_Pij)
J J

=E + Y (B; - P,)v/P. - ( T P,.jyj/Pﬁ) ¥ (B, — Pj) +o,(n7%)
J J J

= Ei + Z (pij _Pij)(yj - El)/PL + op(n_l/z).
J
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Normality follows from the normality of P, ;- As for the covariance, note
that for i # k& we have

n Cov(E;, B,) =nY ¥ Cov(B,, B,;)(v; - E,)(v, — E)/P;. Py + o(1)
J e

== Z L PPy(v; - E)(v. — E;) /P, P,.] + 0(1)

e J
For i = % the above terms become simply
nVar(E;) = ¥ P,;(v, - E;)*/P% + o(1)
J

= Var(v|i) /P;. + o(1).

Finally, by similar arguments we obtain

nCov|E,F]= YT n Cov(P,,, B,;)(v,, — E)(n, — F;) P P + o(1)

tm?
m,e

(Py/P, P)(3; = B - F))
- Z PimPej(Vm - Ei)(l"'e - F})/P,PJ + 0(1)

=(Pij/Pi-P-j)(le_Ei)(Mi_F})+O(1). O

COROLLARY. If ;= p;,, and v; = v, for some i and j, then

n Cov{[ E;(v) — E;_y()], [ F;(v) — F;_y(n)]} - 0.

LEmMMA 2. Let C, » 0 and suppose that i and v are consistent vector
estimates for parameter vectors u and v, respectively, such that

1<i

P{ max [17, ~ wil] + méx [17, - 5[] > C,} > 0.

Thenfor 2<i<I1,2<j<d,
(i) P{[E,(v) - E_(»)][E(?) - Ei_y(%)] <0} 0,
(i) P{[Fw) - F_(w][F(®) - F_(m)] <0} >0,

where E(7) and F'j(ﬁ) are defined as E,(v) and I:'j(p,) in (2.4) with v and &
replacing v and u, respectively.
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Proor. To facilitate the proof, two distinct cases are considered. Suppose
that u; > u;_,. This implies E; > E;_,. We have

-0, k=i,i—1.

(3.1) |Ek(V) - Ek(‘_’)l = Z ij(”j - ‘7j) Z‘/ ij
Jj Jj

By Lemma 1 we have
E,(v) - E,_y(v) > E{(v) - E;_y(v) >0,
and by (3.1) )
E((7) - E,_(¥) > E{(v) - E;_4(v),

which implies (i) above.
Suppose now that u; = u,_, for some i. Let P;; = P,;/P,. The equality

et Py =
;= p;_, implies P;; — P;, , = 0 and hence P;, — P;;, , = 0,(yn) and

(32) {Ei(®) - Eiu(9)) - {E(») = Biox(v)) = Z (B = By (3 - )

= 0,(C,n"1).
From Lemma 1 we obtain
(3.3) P{E\(v) - E;_y(v)| < (C,/n)"*} > 0.
Now by (3.2) and (3.3)
P{[E(v) - E._(»)|[E(7) - Bi_\(»)] > 0}

> P Ei(v) - E;_y()| = (C,/n)"%)

and
P(|E(7) - Ei_y(7) = Bi(v) + E_y(1)| < (Cu/n)?) > 1,

so (i) above follows. Result (ii) is obtained similarly. O

By similar arguments the following lemma can be proven.

LEMMA 3. Let S and S’ be two mutually exclusive subsets of {1, ..., I} and
let v be a consistent estimate of v. Then

P{[Z P.E()- Y P,..E,.(u)] Y P E(3) - ¥ P.E(%) <0} 5 0.

ieS ieS’ ieS ieS’

A similar result holds for If'j(p.).

We now prove that the order-restricted maximum likelihood estimates u*
and v* are indeed the unrestricted maximum likelihood estimates of u and »
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in a properly collapsed table. This table is obtained by combining particular
rows and particular columns. To accomplish this task, we need some notation.

Let T={S,,..., Sk} X{Ry,..., Ry}, where S,,...,Sx and R,,..., Ry
are partitions of {1,..., I} and {1,..., J}, respectively, such that i < i’ and
j<j forallieS,,i'eS,.,,jeER,,,j€R,.,,1<k<K-1landl<
m < M — 1. With respect to such partitions we define the collapsed table

PlL.=Y Y P;, 1<k<K,1<m<M.
i€S, jJER,,

We will use superscript T' to denote that the given quantity is with respect to
this table. Under this notation, for example, u% denotes the unrestricted mle
for u, in the collapsed table.

LemMa 4. There exist partitions S,,...,Sg and R, ..., Ry as above such
that the order-restricted maximum likelihood estimates (u*,v*) satisfy u* = %

and v¥ =9L,i€8,, jER,.

Proor. The standard way to find the maximum of the log likelihood
subject to the order restrictions (2.1) is the following: Consider all partitions as
above. For a given pair of partitions S,,..., Sk, and R,,..., R,,, find the
global maximum of the log likelihood when u; =A% and v, =57, i € S,,
J € R,,, is imposed. The maximum value of the order-restricted log likelihood
is the largest of the global maxima for which 47 < -+ <pg%fand T < -+ <

»T is satisfied. Consider now such a partition. Then the log likelihood is

Yy

=Y P.loga;+ ) P logB; +¢) Pl upvl,
i J km

which should be maximized subject to

L T apem(éun) = L L en(eulsf) T T ap),

ieS, jER,,
1-1=Y Pyt =Y Pr(ut), 1=1,2,
i k
and

I-1=Y Py'=YPI(I), 1=1,2 =
J m

The maximum can be found using Lagrange multipliers. It is easily verified
then that (47, #7) are the unrestricted mle’s for the collapsed table and satisfy
the likelihood-solution equations (2.5).

Let T' be the collapsed table such that (u*, v*) correspond to the (restricted)
mle (47, #7) with respect to T'. The notation 7' is used to indicate the specific
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(“properly”) collapsed table yielding the desired estimations, while the nota-
tion T used earlier indicates a collapsed table in general.
Finally, we need the following lemma.

LEMMA 5. The order-restricted estimates u* and v* satisfy, in the properly
collapsed K x M table T,

Proor. From the likelihood equations in (2.5) for the unrestricted model
(2.1), we have the following equations for 1 < i < K,

(3.4 L Bji] = o £ 475] exa(d402]),

(3.5) B - ‘?Z BT exp(dafo? ).

Upon dividing (3.4) by (8.5), we obtain Elf(v) in (2.4) expressed as a
function of 47. Now

dE,(3T) .|| Z,B%] exp|dats]
il S

AT N N i
(36) O L B, exp(dme-T)

= ¢ Var(vli) > 0.

Result (3.6) indicates that E7(57) is an increasing function in AT Argu-
ments s1m11ar to those mentioned above y1eld that E T(ﬁT) is also an increasing
function of 4. Now since, by definition, 4,,; > ji;, Lemma 5 follows at once.

O

The results proven so far can be summarized as follows: The restricted
estimates are given by the unrestricted estimates pertaining to some collapsed
table (Lemma 4). If this table is properly collapsed, then the order is preserved
among the quantities E(-) and among the _quantities F(-) (Lemma 5). With
high probability, the order between the E(-)s and the order between the
F(-)’s does not depend on the consistent estimate used whether it is 4 or u*
(Lemmas 2 and 3).

All these results together provide the way of deriving the ‘properly col-
lapsed table’’: Collapse the original table over rows and over columns for which
the quantities E() and F(i) violate the desired order, respectively. Amalga-
mation should be done with weights that are the relevant relative frequencies.
Here, for instance, amalgamation with respect to rows i — 1 and i is

<P E(V)+ G-1) i—1(ﬁ)}/<Pi-+ 15(;'—1)}~
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Amalgamation is, as stated above, equivalent to collapsing the table over rows
and column for which the quantities E;(#) and F;(ii) violate the desired order.
We have therefore derived and proven the following estimation procedure.

1. Compute the unrestricted maximum likelihood estimates & and 7. If these
estimates follow the desired order, then stop. Otherwise, proceed to step 2.

2. Calculate E,(») and F-’j(ﬁ) and amalgamate them (by pooling adjacent
violators). Lemma 1 and its corollary ensure that with high probability,
amalgamation can be done separately (independently) for rows and columns.

3. Repeat steps 1 and 2 until the quantltles FT(™) and ET(57T) follow the
desired order.

The unrestricted maximum likelihood estimates pertaining to the (first)
collapsed table for which E,(#) and F;(4) follow the desired order are the final
estimates. The above lemmas prove that if the maximum likelihood estimates
exist (and are unique), then with probability approaching 1 (as n — =) the
estimates produced by our procedure are the order-restricted maximum likeli-
hood estimates. Moreover, it follows from the above lemmas that if n is large,
then (with high probability) no more than one-step amalgamation is needed for
obtaining the desired estimates.

4. Testing for fit. The lemmas proven in Section 3 allow us to use some
well-known results in order-restricted inference under normal theory. Let m ;
denote the expected frequencies in cell (i, j) under the unrestricted RC model
and let m}; denote the expected frequencies in cell (i, j) under the order-
restricted RC model. The statistic

(4.1) x%= Z Z (mij - m?j)z/m?j
i

is an appropriate statistic for testing the nested hypothesis H,: Order-
restricted RC model against H;: Unrestricted RC model. Under H, (within
H)) this statistic has an asymptotic distribution which is a mixture of central
chi-squared distributions similar (in principle) to the distribution derived in
Barlow, Bartholomew, Bremner and Brunk (1972), page 126.

To be able to derive a test stated in terms of E,(v) and F;(v) which is
asymptotically equivalent to the test in (4.1), assume that the following order
restrictions apply for some I' <1, J' < J,

By =pg= " =pp<ppyy < " < U,
(4.2) Vi=veg= =V <vp < o <y

LEmma 6. Let U,,...,U,V,,...,V, be independent r.v.’s, where U, ~
N(;LU,Var(E ), V; ~ N(VV, Var(F (p,)) Let TU(UI,.. , Up) be the standard
x2-test for testing [,LU -+ < ul, against “at least one inequality is not
satisfied.” Let T,(Vy,...,V,) be defined similarly.

Then the x>-test (4.1) is asymptotically distributed as

T =Ty(Ey(?),..., E(9)) + Ty(Fu(i),..., Fy(h)).
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Proor. Note first that by Lemma 5, H, and H, can be expressed by:

E(v) <E(v) < -+ <E/@), F(p) <Fy(uw) < - < F,(u).
H,: At least one inequality does not hold.

Now by Lemma 2,
Ep(v) <Epoo(v) < - <Ey(v)
and
Fr(p) <Fpoq(p) < -+ <Fy(p)

with probability converging to 1. By Lemma 2 these strict inequalities hold
with probability converging to 1 even if we replace v and u by consistent
estimators, for example, i and 7. Thus we need consider only

Ey(9) — Ex(9),..., Ep(9) — B, _y(5)
and
Fy(p) — F(@),..., Bp(p) — Fy_y(R).

By Lemma 1 and its corollary, these differences are asymptotically distributed
like the differences between the U’s and the V’s, respectively. Moreover, by
Lemma 2

E . (9) - E(p) = E . (v) - E(v) + 0,(n"1?), 1=1,...,I,

Foi(p) - F(R) = Fyo(n) — Fy(n) +o,(r712),  j=1,...,d".

So, the test appropriate for the vectors U,...,U,V,,...,V,; can equivalently
be used on El(v) JE L(5), F(R), ..., F(L).

Let e denote the total number of equa.htles among the u’s and among the
v’s. Let e; denote the number of equalities among the u’s alone. Let Py(e,|I’)
denote the conditional probability of having e, equalities among the u’s given
I' w’s are equal. Let Py(eylJ’') be similarly defined with respect to the v’s
where e, = e — e;. By the corollary to Lemma 1 regarding the asymptotic
independence between (E, - E),...,(E, —E,_,) and (Fy-F),...,(F, -
F._ ), we can write 8, (the mixture probablhty of having a total e equalities
among the same parameters given I’ equal u’s and J’ equal v’s) as

B. = Ze: Px(ellII)Py[(e - el)lJ,]‘

e;=0
Now the statistic (4.1) has asymptotically and under the RC model with
restrictions (4.2) the distribution given by the mixture
I'+d'—2
(4.3) P(x*>c)= Y B.P(x% >c),
e=1

where X(ze) is the central chi-squared distribution with e degrees of freedom.
0O
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The mixture probabilities B, depend on P;; as is evident from the variance
structure in Lemma 1. Existing tables for mixture probabilities [i.e., Barlow,
Bartholomew, Bremner and Brunk (1972), page 363] have no use in our
context since they are based on equal weights (equal variances of E;, 1 <i < I,
and equal variances of F;, 1 <j <, in our case). In order to be able to
explicitly calculate the probabilities 8,, one must perform a Monte Carlo study
or a bootstrap estimation which is beyond the scope of this paper. In some
special cases, however (as is shown in the next section), the probabilities B,
can be readily computed.

If the ordered RC model is to be tested against the general alternative, then
an appropriate test statistic can be derived.for such a case by replacing m;; in
(4.1) by the cell counts n;;. By Goodman (1986) the resulting statistic w111
have (under the ordered RC model) an asymptotic distribution which is a
mixture of central chi-squares with (I — 1)(J — 2) + e degrees of freedom.

5. Discussion. In this paper we have developed an estimation procedure
for estimating the score parameters of Goodman’s RC model under order
restrictions. This procedure is basically quite similar to common order-
restricted estimation techniques under normal theory except for one important
aspect. Direct use of normal theory results is not allowed in our context as the
vector i is not independent (even asymptotically) of the vector . We have
bypassed this dlfﬁculty by working with the quantities E and F rather than
with 4; and ?;, and have shown that E and F are Jomtly asymptotlca.lly
normal with a specified covariance matrix. Properly amalgamating the E; and
the FJ results in ordered estimates (for the score parameters) whlch are
asymptotically equivalent to the restricted maximum likelihood estimates (if
they exist). All results proven in this paper are asymptotic. The nonasymptotic
case involves a possible violation of the Kuhn-Tucker conditions as the log
likelihood with respect to the RC model may not be concave. Therefore, we
have no guarantee, in the nonasymptotic case, that the order-restricted esti-
mates are unique. This is in contrast to the situation with the R model and the
C model, where the Kuhn-Tucker conditions are always satisfied and there are
no problems with existence and uniqueness [Agresti, Chuang and Kezouh
(1987)]. Testing the restricted RC model for fit is relatively straightforward
and is based on the same principles as in the common normal theory case. The
only exception is that, while mixture probabilities in the regular case are
assumed to be based on equal weights, such probabilities in our context are
based on possibly unequal weights. We know of no general tables for such
mixture probabilities. It is not the intent of this paper to develop such tables
and we believe that relatively simple Monte Carlo studies or bootstrapping
techniques can be used to explicitly calculate such probabilities.

There are situations, however, in which testing procedure (4.1) can be used
with mixture probabilities that are readily obtained. To exemplify such situa-
tions, assume that only fwo column scores are assumed to be equal while all
other scores are strictly monotone [compare with Goodman (1981), Section 6].
In this case I' = 1, J' = 2 and B, = 1/2 by (4.3). Testing the above proposed
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model for fit at the (upper) a percentile point leads to
a= %P(x(zl) > c),

implying

(5.1) ¢ = x5,(2a).

Goodman (1981) presents a test for equality of scores. If equality of scores is
tested under the unrestricted RC model, then result (5.1) suggests that in
such cases the test procedure (4.1) together with (4.3) is more conservative
than the test mentioned by Goodman (1981). Professor Goodman drew our
attention, in a personal communication, to.the fact that a similar result was
obtained by him earlier [i.e., Goodman (1985), page 62].
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