The Annals of Statistics
1991, Vol. 19, No. 4, 1748-1770

BAYESIAN PREDICTION IN LINEAR MODELS: APPLICATIONS
TO SMALL AREA ESTIMATION

By GAURI SANKAR DATTA AND MALAY GHOSH

University of Georgia and University of Florida

This paper introduces a hierarchical Bayes (HB) approach for predic-

tion in general mixed linear models. The results find application in small

. area estimation. Our model unifies and extends a number of models

previously considered in this area. Computational formulas for obtaining

the Bayes predictors and their standard errors are given in the general

case. The methods are applied to two actual data sets. Also, in a special

case, the HB predictors are shown to possess some interesting frequentist
properties.

1. Introduction. It has been some time now that the government agen-
cies in the United States, Canada and elsewhere have recognized the impor-
tance of small area estimation. Estimation of this type is particularly well
suited in a setting that involves several areas (or strata) with a small number
of samples available from each individual stratum. The estimates of the
parameters of interest (like the mean, variance, etc.) for these areas can
profitably ‘‘borrow strength’’ from other neighboring areas.

The appropriateness of model-based inference for small area estimation is
widely recognized. We may refer to Fay and Herriot (1979), Ghosh and Meeden
(1986), Ghosh and Labhiri (1987), Battese, Harter and Fuller (1988), Prasad
and Rao (1990), Choudhry and Rao (1988), Royall (1978) and Lui and Cumber-
land (1989), among others. The methods that have usually been proposed use
either a variance components approach or an empirical Bayes (EB) approach,
although the distinction between the two is often superfluous [Harville (1988,
1990)]. Both these procedures use certain mixed linear models for prediction
purposes. First, assuming the variance components are known, certain best
linear unbiased predictors (BLUPs) or EB predictors are obtained for the
unknown parameters of interest. Then the unknown variance components are
estimated typically by Henderson’s method of fitting of constants or the
restricted maximum likelihood (REML) method, and the resulting estimated
BLUPs (also referred to as empirical BLUPs) are used for final prediction.
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Although the above approach is usually quite satisfactory for point predic-
tion, it is very difficult to estimate the standard errors associated with these
predictors. This is primarily due to the lack of closed-form expressions for the
mean squared errors (MSEs) of the estimated BLUPs. Kackar and Harville
(1984) suggested an approximation to the MSEs [see also Harville (1985, 1988,
1990) and Harville and Jeske (1989)]. Prasad and Rao (1990) proposed esti-
mates of these approximate MSEs in three specific mixed linear models. The
work of Prasad and Rao (1990) suggests that their approximations work well
when the number of small areas is sufficiently large. It is not clear though how
these approximations fare for a small or even a moderately large number of
strata.

Ghosh and Lahiri (1989) proposed a hierarchical Bayes (HB) procedure as
an alternative to the estimated BLUP or the EB procedure. In a HB procedure,
if one uses the posterior mean for estimating the parameter of interest, then a
natural estimate of the standard error associated with this estimator is the
posterior s.d. The estimate, though often complicated, can be found exactly via
numerical integration without any approximation.

The model considered by Ghosh and Lahiri (1989) was, however, only a
special case of the so-called ‘“nested error regression model.” A similar model
was considered by Stroud (1987), but his general analysis was performed only
for the balanced case, that is, when the number of samples was the same for
each stratum. Battese, Harter and Fuller (1988) first considered the nested
error regression model in the context of small area estimation and performed a
variance components analysis.

The objective of this article is to present a unified Bayesian prediction
theory for mixed linear models with particular emphasis on small area estima-
tion. A general Bayesian normal theory model is presented in Section 2 which
can be regarded as an extension of the HB ideas of Lindley and Smith (1972) to
prediction. Most of the models considered by earlier authors can be regarded as
special cases of our model, and certain specific illustrations are provided. Also,
in this section, we have provided in a very general framework the posterior
distribution as well as the resulting posterior means and variances of the
unobserved population units given the sampled units. The proof of the main
result of this section is given in the Appendix. For nonnormal HB analysis, one
may refer to Albert (1988) or Morris (1988).

In Section 3, we discuss the computational issues related to the estimation
of parameters of interest with particular emphasis on the estimation of
population means simultaneously for several small areas. Closed-form expres-
sions cannot usually be obtained for the posterior means and s.d.’s of such
parameters, and numerical integration becomes a necessity. For very high
dimensional integrals, direct numerical integration is often unreliable, and
sometimes even impossible to execute, and some of the recently advocated
Monte Carlo integration techniques may be of help. We shall indicate in
Section 3 how the Gibbs sampling technique introduced by Geman and Geman
(1984), and more recently popularized by Gelfand and Smith (1990), works in
some important special cases of our general framework. The related substitu-
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tion sampling algorithm of Tanner and Wong (1987) and the traditional
importance sampling technique will also be discussed very briefly.

However, in small dimensions, it is often easier to perform direct numerical
integration than to use any Monte Carlo numerical integration method. For
instance, if the integrand is a very complicated function and cannot be
approximated very accurately by a simple smooth function, the importance
sampling technique can at best result in a slow convergence of the desired
integral. The Gibbs sampling is usually very slow, and for evaluation of small
dimensional integrals, any simplicity of this approach cannot adequately com-
pensate for the enormous computing time needed for the method’s successful
execution.

For the sake of illustration of our methods, we have thus used in Section 4
direct numerical integration methods for data analysis. Two examples are
considered in this paper. The first example given in Section 4.1 requires
numerical evaluation of two-dimensional integrals, while the second given in
Section 4.2 requires evaluation of one-dimensional integrals. The data set
considered in the first example pertains to the Patterns of Care Studies, a
study involving the quality of treatment received by cancer patients having
radiation therapy as the primary mode of treatment. The present data form a
subset of a much larger data set analyzed in Calvin and Sedransk (1991). We
have considered a stratified finite population from which samples are drawn in
two stages using simple random sampling at each stage. The HB estimator of
the population mean is compared with an EB estimator proposed in Ghosh and
Lahiri (1988), a design unbiased estimator given in Cochran (1977), page 303,
an expansion estimator, a ratio type estimator and another estimator proposed
in Royall (1976). The HB estimator has the smallest average mean squared
error among these six and the improvement over all but the EB estimator is
quite substantial.

The second example is related to the prediction of areas under corn and
soybeans for 12 counties in North Central Iowa. The problem was originally
considered by Battese, Harter and Fuller (1988) using a variance components
method. We have used this example to illustrate how a naive EB approach can
sometimes grossly underestimate the associated standard error of an EB
estimator. In this particular example, the posterior s.d.’s as obtained by us are
slightly smaller than the ones of Battese, Harter and Fuller.

In Section 5, we have considered a special case of the general HB model and
have provided the posterior distribution of the unobserved population units
given the sampled units. In this special case, the HB predictors of the linear
parameters of interest are shown to be the best within the class of all linear
unbiased predictors under the assumption of finiteness of second moments.
For a class of spherically symmetric distributions including but not limited to
the normal, the HB predictors are shown to be optimal within the class of all
unbiased predictors. Optimality properties of this type extend the earlier work
of Henderson (1963) and others on the prediction of real-valued parameters to
the prediction of vector-valued parameters. The proof of the main result of
Section 2 is deferred to the Appendix.
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2. The description and analysis of the HB model. Consider the
following Bayesian model:

(A) Conditional on b = (by,...,5,)", A\ =(1,...,A)7 and r, let
Y ~ N(Xb, r~}(¥ + ZD(A)Z7)),

where Yis N X 1.
(B) B, R and A have a certain joint prior distribution proper or improper.

Stagé (A) of the model can be identified as a general mixed linear model. To
see this, write

(2.1) Y =Xb+2Zv+e,

where e and v are mutually independent, with e ~ N(0, r~!¥) and v ~
N(0, " 'D(A)), where eis N X 1 and v is ¢ X 1; in the above X (N X p) and Z
(N X q) are known design matrices, ¥ is a known positive definite (p.d.)
matrix, while D(A) (¢ X ¢) is a p.d. matrix which is structurally known except
possibly for some unknown A. In the examples to follow, A involves the ratios
of the variance components. Sometimes we will denote D(A) by D when A\ is
known.

In the context of small area estimation, partition Y, X, Z and e, and rewrite
the model given in (2.1) as

YO X ZM e
(2.2) (Y<2)) B (X(2>)b + (Z(z))v * (e(z))’
where Y and e® are n X 1, X is n X p and Z® is n X q. Also, Y® and
e®are(N-n)x1,X?is (N —-n)Xp and Z® is (N — n) X q. We assume
for simplicity that rank(X®) = p.

In the above Y is the vector of sampled units from m small areas, while
Y@ is the vector of unsampled units. It is possible to partition Y7 into
YT = (YT, ..., YDT), where Y/(n; X 1) is the vector of sampled units for
the ith small area. Similarly, Y®T can be partitioned as Y®7T =
YPT, ..., YPT), where YP((N, — n;) X 1) is the vector of unsampled units
for the ith small area.

Following the model-based approach in survey sampling, one of the primary
objectives of this paper is to find the conditional (predictive) distribution of Y®
given Y = y™, The analysis will be done in two stages. In the latter part of
this section, we derive the predictive distribution of Y® given Y putting
independent uniform prior distributions on B and gamma distributions on
R,A,R,...,A,R.

Before finding the conditional distribution of Y® given YV, we identify
some of the existing models introduced for small area estimation by several
authors as special cases of (2.2). In what follows, we shall use the notation I,
for an identity matrix of order u, 1, for a u-component column vector with
each element equal to 1 and J, = 1,17, Also, let col,_;_,(B,) denote the

matrix (B,...,B7)" and let ®_ A, denote the matrix [‘;‘ : ]
4
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First, consider the nested error regression model

(2.3) Yy=xb+v,+e;, j=1,...,N,i=1,....m.
The model was considered by Battese, Harter and Fuller (1988). They assumed
the v’s and e;;’s to be mutually independent with v,’s iid N(0,(Ar)~1), and
e;;’s iid N(,r"'). In this case, X = coly ;e mleol, ;. (x7))), X® =
COllsism(COInﬁlsjsNi(x’iI}»’ 0 = ®inilln, and Z® = eairillNl—n,’ ¥ =1y,
t=1, A=) and D(A) =2A7'I,. In the further special case of Ghosh and
Lahiri (1989), x,; = x; for every j=1,...,N,, i = 1,..., m. Note that A =
Vle,;)/V(v)), a ratio of the variance components.

The random regression coefficients model of Dempster, Rubin and
Tsutakawa (1981) [see also Prasad and Rao (1990)] is also a special case of
ours. In this setup, X, X®, ¥ and D(A) are the same as in the nested error

regression model, but
m m
1) _ T 2) _ T
ZWo = EBI [COIlsjsn,xij]’ 7 — ®1 [COInL+lsjsN, x;; |
i= i=

The models given in Choudhry and Rao (1988) are special cases of our general
model as well.

It is possible also to include certain cross-classification models as special
cases of our general linear model. For example, suppose there are m small

areas labeled 1, ..., m. Within each small area, units are further classified into
¢ subgroups (socioecox}omic class, age, etc.) labeled 1, ..., c. The cell sizes N,
i=1,...,m, j=1,...,c, are assumed to be known. Let Y k=1,...,N;,

denote the measurement on the £th individual in the (i, j)th cell. Conditional
on b, r and A, suppose

Yo =x7b+1 tm;t vt
(2.4) . .
=1,...,N;,i=1,...,m,j=1,...,¢c,

12

with 7,’s, n,’s, v,;’s and e, ;,’s mutually independent with e, '8 iid N(O, r™1),
;s iid N(O,(A3r)7Y), m’s iid N(O,(A,r)™Y) and s iid N(O,(A,r)~1).
Special cases of this model have been considered by several authors. Lui and
Cumberland (1989) [also Royall (1978)] considered a model where 7,’s and Yi;’s
are degenerate at zeros. Also, they assumed the variance ratio A, to be known
in deriving their estimators and did not address the issue of unknown Ay
appropriately.

Next we show that the two-stage sampling medel with covariates and m
strata is a special case of our general linear model. Suppose that the ith
stratum contains L, primary units. Suppose also that the jth primary unit
within the ith stratum contains N;; subunits. Let Y; i» denote the value of the
characteristic of interest for the %th subunit within the jth primary unit from
the ith stratum (& = L,...,N;, j=1,...,L;; i =1,...,m). From the ith
stratum, a sample of /; primary units is taken. For the jth selected primary
unit within the ith stratum, a sample of n;; subunits are selected. Without
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loss of generality, the sample values are denoted by Y, k=1,...,n,;,
J=1...,l,i=1,...,m.
Assume conditional onb, r and A:

Y.

_ T
ek =X b+ &+ te,

2.5
(2.5) k=1,..,Njj=1,..,L,i=1,...,m,

where ¢’s,m;;’s and e, »’s are mutually independent with £;’s iid N(0,(A;7)™ 1),
;s iid N(O, (/\zr) 1), e;;’s iid N(O, r~"). Let

YO = col [ col { col (Y, ,k)}]

l<ism|1l<j<l; \1<k<n;
Y® = col col { col (Y, Jk)}
l<i<sm|1l<j<L; \u;;<k<N;
lj= 1 +nth[JSll],i= 1,...,m.

v=(s"wlw ) s= col (), w,= col ( col (17”))

l<i<m l<i<m \1<gj<

and

wom el (gl ()

Also, let e be defined similarly as Y&, i = 1, 2. Then (2.5) can be written
as (2.2) with appropriately defined X, X®, Z® and Z®. Note that here ¢ = 2
A=, A,)7, ¥ =1y, DIA) = Diag(A{ 1Im, A7) with N=X7,v% N,
The ideas can be extended directly to multistage sampling. We may mention
here that Bayesian analysis for two-stage sampling was introduced first by
Scott and Smith (1969) in a much simpler framework. A multistage analog of
their work was provided by Malec and Sedransk (1985).

Next, in this section, we provide the conditional distribution of Y® given
YO = y®_ The following nomenclature will be used to label certain known
distributions. A random variable Z is said to have a Gamma(a, 8) distribution
if it has pdf f(2) = [exp(—-az)afz?~'/T(BII,q A random vector T =
(T,,..., TP)T is said to have a multivariate ¢-distribution with location parame-
ter p, scale parameter @ and degrees of freedom v if it has pdf

(2.6) g(t) o 187 2[v + (¢ — ) O7X(t — p)]
[see Zellner (1971) page 383, or Press (1972) page 136]. Assume v > 2. Then
EM =p, V(D = /(v - 2).

We assume condition (A) given at the beginning of this section. In stage (B)
of the model, it is assumed that
(2.7) B, R,AR,..., A,R are independently distributed

with B ~ uniform(R?), R ~ Gamma(3a,, 380), ag20, g =0, A R ~
Gamma(3a,,3g,), i =1,...,t, with a; >0, g, >0,i=1,...,¢ In this way,
some improper gamma distributions are included as a possibility in our prior.

—(w+p)/2
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Before stating the main result of this section we need to introduce addi-
tional notation. We write £ = X(A) = W + ZD(A)Z7, partition ¥ into T =

[E“ 2‘2] and define X,,, = X,, — 2, '3,

b
Also, let
(2.8) K=3; - Eﬁlx(l)(X(I)TEl—llX(l))_IX(l)TEﬁl,
(2.9) M=, K+ X(Z)(X(I)Tzl—llx(l))‘IX(1)T21_11,
(2.10) G=Z2p, + (X~ 2"212‘41_11)((1))(X(1)T2:1*11)((1))‘1

X (X® — 3, X7,

The posterior distribution of Y® given Y = y® is given in the following
theorem in two steps.

THEOREM 1. Consider the model given in (2.1) [or (2.2)] and (2.7). Assume
that n + L:_y8;, — p > 2. Then, conditional on A =\ and YO = y®D, Y® js
distributed as multivariate-t with degrees of freedom n + L'_,g, — p, location

parameter My and scale parameter

¢
ao+ X ar; + yPTKy®
i=1

¢ -1

i=0

Also, the conditional distribution of A given YV = y has pdf

t
Fy®) o |zu|‘”2|x“”2;fx<”|_1/2{ I A?”"’_I]
i=1
(2.11)

t
ay + Z a;A; + y(l)TKy(D
i=1

—[n+3{_o8.—-pPl/2
X ]

The proof of Theorem 1 is deferred to the Appendix. Using the moments of
a multivariate-¢ distribution, it follows now that if n + L!_,g, > p + 2, then

(212) E[Y®|y®] = EMly )y,

t

~1
n + Zgi_P_z)
i=0

V[Y‘z)ly(l)] = V(My‘”ly(l)) +

(2.13)
XE

1

t
{ao + Y a;+ y(I)TKy(l)}G
i=1

Using (2.12) and (2.13), it is possible to find the posterior means and
variances of £(Y,Y®) = AY® + CY®, where A and C are known matrices.
The Bayes estimate of £(Y®,Y®) under any quadratic loss is its posterior
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mean, and is given by

(214) es(v?) = [ + CEQMY )]y,
using (2.12). Similarly, using (2.13), one may obtain
(2.15) V[g(Y(l),Y<2>)|y(1>] - CV(Y(2)|y(1))CT.

Note that when A = ©2,17 and C = &2 1%, _, , €YD, Y?®) reduces to the
vector of population totals for the m small areas. Computational issues related
to the simultaneous estimation of several small area totals will be addressed in
Section 3.

3. Numerical computations. It is evident from Theorem 1 that the
conditional distribution of Y® given Y’ cannot usually be obtained analyti-
cally because of the complicated posterior pdf of A given Y® = y® [see
(2.11)]. As mentioned in the Introduction, Monte Carlo numerical integration
is a distinct possibility, particularly when the dimension of A is large. One may
think of the importance sampling method as a natural candidate for such
purposes. To implement such a procedure, we write f(Aly") given in (2.11) as
fOAly®) = ck(X,y), where the norming constant ¢ has to be numerically
evaluated. Now, for any real-valued function A()\),

j:o . f:h(h) f()\lym) da

_Jo [SR(M{E(N, yP) /g (Ny®)}e (Aly D) dA
o k(N y D) /g(NyP) g (\y®P)dn 7

where g(Aly®) is some “standard” pdf from which a random sample can
easily be generated. Hence (5 --- [gh(N) f(Ay®) d\ can be approximated by

L2 hOD) (RO, y©) /g (0] y D))
Zis=1k()\‘i),y‘l’)/g(h(i’ly(l)) ’

where the number of replicates is very large, and X*”’s are generated from
g\ ly®).

Unfortunately, finding g(Aly®) in the present context can be quite form-
idable. Even when A is one-dimensional, f(Aly®) may turn out to be multi-
modal, and thus defy any simple approximation. One such example appears in
Ghosh and Rao (1991). In such circumstances, it is natural to seek other
Monte Carlo integration methods.

The recently advertised Gibbs sampler bears some interesting promise, at
least in the special case when ¥ = I,y and D(A) = Diag(A; 'I,..., A/ 'T,),
where L¢_,q; = q. We shall write W, = RA;, and correspondingly w; = ra,,
i=1,...,¢t. We assign a uniform (R?) prior for B, a Gamma(za,, 3g,) prior
for R and Gamma(3a;, 3g;) priors for the W’s, where B, R, W,, ..., W, are all
independently distributed.
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We shall write v7' = (v/,...,v]), where v, has dimension g;. Based on the
model introduced at the beginning of Section 2, the joint pdf of
YO Y® B,v, RW,...,W,is

f(y<1)7 Y<2), b’ V, r’ wl; ceey w[)

arn/? exp[—%r"y(” - X®p - ZVv ||2] rN=-ny2

Xexp[ —ir|y® - X®b - Z®v ||2]
(3.1)

t
x TT{w# /2 exp(~ $w;lvlI°) exp( ~ 3aor)rée/2~!
i=1

t
x T1 {exp(— %aiwi)wlglﬂ‘l}.
i-1
Then the required conditional distributions are given by

(3.2) Bly®,y®,v,r, wy,...,w, ~ N[(XTX) TIXT(y - Zv), r‘l(XTX)_ll,

¢ -1

viy®,y®, b, r, wy, ..., w, ~ N (ZTZ + 9 "_1"”1(“) iy~ Xb),
(3.3) t i
r‘l(ZTZ + @ r_lwllq,) ,
=1
Rly(l)’ y(2))b’v’ wl’ MR wt
(3.4)

~ Gamma(%{lly ~Xb — Zv | + a,}, L(N + go)),

w’ily(l)7 y(2)7 by v,r, wj’ .] *1
(3.5) L 1 |
~ Gamma(g(llvill +a;),3(q; +gi)), i=1,...,t,

(3.6) Y®ly®,b,v,r,wy,...,w, ~ N(X®b + Z®v,r 'Iy_,).

Gelfand and Smith (1990) have pointed out that it suffices to know (3.2)-(3.6)
to find the joint distribution of Y®, B, v, R,W,,..., W, conditional on Y® =
yV. Also, they have provided the recipe of finding the Monte Carlo approxima-
tion to the posterior pdf of Y® given Y = y® on the basis of these
conditional distributions. However, the procedure requires p + ¢ + 1 + ¢ +
N — n random variate generations to complete a cycle. If we run m sequences
out to the ith iteration, a total of mi (p + ¢ + 1 + ¢ + N — n) random variate
generations are needed, and we need a great deal of total computing time. The
substitution algorithm of Tanner and Wong (1987) requires even (p + q +
1+¢t+N-n)(p+q+t+ N - n) random variate generations to complete
a cycle in as much as other conditional distributions involving subsets of the
random variables given in (3.2)-(3.6) are needed. Clearly, if the dimension of A
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is small, it is much simpler to execute direct numerical integration using one
of the available packages. To carry out direct numerical integration, we have
written our programs in the FORTRAN language, and have used the IMSL
version 9.2 subroutine packages. A microvax computer was available for
execution of our programs.

4. Data analysis. We now turn to the actual data analysis. The first set
of data relates to the quality of radiation therapy care for cancer patients,
while the second set of data relates to the prediction of areas under corn and
soybeans for 12 counties in North Central Iowa.

4.1. Radiation therapy data. The data were collected with the primary
objective of comparing the quality of radiation therapy for cancer patients
among subpopulations of a population of facilities where radiation therapy was
practiced. We have, however, used the data primarily for the comparison of
several estimators of the finite population mean when two-stage sampling is
performed. Our finite population of units is actually the sample units arising
from a 1978 survey of patients suffering from cervical cancer. For conducting
this survey, radiation therapy facilities were grouped into several strata that
were thought to be relatively homogeneous in the quality of care that patients
received. The five strata considered in this paper correspond to strata 1, 2, 4, 5
and 6 of Calvin and Sedransk (1991) who have provided a more detailed
description of what these strata actually are. The number of facilities con-
tained in these five strata are 10, 15, 11, 30 and 11, respectively, and are
treated as primary sampling units (PSUs). Among these PSUs, we have
selected a 1 simple random sample resulting in the selection of 3, 5, 4, 10 and
4 PSUs from the five strata. From each selected PSU, with p patient records,
a simple random sample of size [3(p + 1)] is selected, where [«] denotes the
integer part of u.

The present analysis considers “pretreatment” scores for each patient. For
a given patient, for each disease site, a committee of experts identified a set of
services and procedures (S/P’s) that were thought to be of prime importance
for a complete pretreatment evaluation and for planning and monitoring
therapy. The committee also assigned weights (0.5 to 4.0) to these S/P’s to
indicate their relative importance. Then, for each patient, a score is defined by
Y W*Z,/x W*, where Z, =1 if the ith S/P is performed, while Z; =0
otherw1se W* is the correspondlng weight. The larger the score, the closer the
patient’s care conforms to acceptable standards of care.

Let Y;;, denote the score for the kth patient in the jth facility within the
ith stratum Although the Y;;,’s lie between 0 and 1, these are weighted
averages of independent Bernoulh variables, and a normal approximation due
to the CLT is not totally out of the way.

We assume the model given in (2.5) with b = u, the general effect, and

= 1. As described in Section 2, from the ith stratum, a sample of [, (< L;)
prlmary units is taken, while for the jth selected primary unit within the zth
stratum, a sample of n,; (< N;;) subunits are selected. We denote the sample



1758 G. S. DATTA AND M. GHOSH

observations by Y ;,, k=1,...,n;;,j=1,...,0;,i = ,5. Also let y® be

the vector of sample observatlons, Yij n, ; Z i 1yl ko , i =Ay/(Ay +1n;;),
Zi 1(1 Blj)ylj/zj 1(1 B ) a; = 1/(A1+/\ Ej 1(1 Btj)) 5’_=

25=1(1 - q; )y,/X5 1(1 a [ = - n;;)/N;;. Then the HB predictor of

y; =Lk JL LNy Y, Jk/Z jL1N;j, the population mean for the ith stratum, is

given by

-1

Ll
eup = ( Y N, Z N;;(1 = f;;By;)¥;;
j=1

(4.1.1) {( Y N,

=Il,+1

ll
Z zjf Blj}
Jj=1

y® }
The posterior pdf of A given in (2.11) simplifies in this case to

m m -1/2
1o nay®) o | 11 11857 (L)1 £ 1 - 0

i=1j=

x{(1 - a;)¥; + a;7}

m
Ss+ag+ad; +ary, + Y Ky

(4.1.2) X
i=1

—(n..+go+81+82—1/2

(£ £ ’

where m =5, s = L. 12 12221(yijk - 5’11')2, K =21 -@a;), Ky, = 1(1
a,)y;, Kg = 2[ZJ=1(1 Bij)yizj -1 - ai)):l (1 - B”)y ] and n.
Zf’;lf_‘,g; ;- In finding the HB predictor, we have used (4.1.2) with aO
80=81=82=0, a; =a, =0.0005, and have carried out two-dimensional
numerical integration.

An alternative estimator of y; is due to Ghosh and Lahiri (1988) which uses
estimates of B,;’s and «,’s rather than assigning any prior distribution on R
and A. The resulting EB estimate of y; is given by

L, -1 g,
€gB = ( Z N”) {Z Nij(l - fijBiJ')yij
Jj=1 Jj=1
L, l,
(4.1.3) +{ . Y N+ Z IvijfijBij}
=1,

X{(l - ‘ii).)_’i* + &J*}},
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where B, = (1 +4;'n,)7% & =A;'A7 +A7Sh 1 - B )Y, 5y =
Th - Bij)yu/zé (1 - B, ) i 3 1 # 0 and y,* 17513, otherwise.
Similarly, 3, = 2™ (1 — &, )yl/Z 1(1 —a&)ifAf'# 0and 5, = m L™ ¥,

otherwise. The estimators A; ' and A; ! are given by Ghosh and Lahiri (1988),
pages 205-206.
Four other estimates of y; are given below. These are:

ll

Z 4 ijyij

Jj=1

(4.1.4) e = (I;—)

i

Ll
/ ( Y N, j) (a design-unbiased estimate),
j=1

1, n, 1,
Z Z Yijr T Z (Ivlj ij)yij
j=1k=1 j=1

1, 1, L,
Ivijyij/z Ivij)( > Nij)
Jj=1 j=1 Jj=1,+1

(the ratio-type estimate),

(4.1.5)

+

(4.1.6)

L; 1, 1, l
"’(Z N; - X nij)( x nijyij)/z nij]
j=1 j=1 j=1 j=1

(the expansion estimate),

L, -t
eho = ( NLJ) [Z Zyijk+ > (N;; = n)3,;
~ ~ ~
(4.1.7) ! !
(Royall’s estimate).

(B[ £,

The estimates ep, e, and ey are all based on predicted values of the
unobserved units on the basis of the sampled units. However, in contrast to
the present model, they can possibly be justified on the basis of some other
models as given for example in Royall (1976). Table 1 provides the true
population means as well as the six different estimates for each stratum.

The average absolute biases of the HB estimate, the EB estimate, the design
unbiased estimate, the ratio-type estimate, the expansion estimate and Royall’s
estimate for the given data set are given respectively by 0.03102, 0.03156,
0.12932, 0.06277, 0.06009 and 0.04844. Thus the HB estimate has a slight
edge over the EB estimate and much greater edge over the others in terms of
average absolute bias. Also, the total sum of squared deviations of the HB
estimates from the true means is 0.0085. The corresponding figures for ey,
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TABLE 1
The true means v;’'s and the estimates

i i i i i i
Yi (5731 €EB €y €R €9 €Ro

~

0.73326 0.79789 0.80314 0.71201 0.91849 0.92190 0.93210
0.76149 0.76357 0.76442 0.91002 0.77214 0.76815 0.75043
0.74482 0.76778 0.76844 0.78208 0.78382 0.78299 0.75043
0.68933 0.75057 0.74971 0.89651 0.73864 0.74003 0.71533
0.74549 0.74130 0.74181 0.98056 0.71313 0.72653 0.71998

Cub LON =

ey, €r, €, and egoy turn out to be 0.0091, 0.1211, 0.0391, 0.0400 and 0.0409.
Thus the percentage reduction in the total sum of squared deviations for the
HB estimates is 6.6 in comparison with the EB estimates, 93.0 in comparison
with the design unbiased estimates, 78.3 in comparison with the ratio-type
estimates, 78.8 in comparison with the expansion estimates and 79.3 in
comparison with Royall’s estimates. An EB point estimator is usually on par
with the corresponding HB point estimator. So the small improvement of the
HB estimator over the EB estimator in reducing the total sum of squared
deviations is not so surprising. However, the improvement of the HB estimator
over the other four estimators is indeed startling. One possible explanation for
this fact is that many of the other estimators are optimal under models which
do not take into account variation in the primary sampling units. Our model
accounts for this extra source of variation in producing more reliable esti-
mates.

We also mention in passing that the posterior s.d.’s associated with the HB
estimates in the five strata are given respectively by 0.050, 0.036, 0.043, 0.030
and 0.039.

4.2. Prediction of areas under corn and soybeans. Next, we analyze a data
set where the objective is to predict areas under corn and soybeans for 12
counties in North Central Iowa based on the 1978 June Enumerative Survey
as well as LANDSAT satellite data. The data set appears in Battese, Harter
and Fuller (1988) who conducted a variance components analysis for this
problem. The background of this problem is as follows.

The USDA Statistical Reporting Service field staff determined the area of
corn and soybeans in 37 sample segments (each segment was about 250
hectares) of 12 counties in North Central Iowa by interviewing farm operators.
Based on LANDSAT readings obtained during August and September 1978,
USDA procedures were used to classify the crop cover for all pixels (a term for
“picture element’”” about 0.45 hectares) in the 12 counties. The number of
segments in each country, the number of hectares of corn and soybeans (as
reported in the June Enumerative Survey), the number of pixels classified as
corn and soybeans for each sample segment and the county mean number of
pixels classified as corn and soybeans (the total number of pixels classified as
that crop divided by the number of segments in that county) are reported in
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Table 1 of Battese, Harter and Fuller (1988). In order to make our results
comparable to that of Battese, Harter and Fuller (1988), the second segment in
Hardin County was ignored.

Battese, Harter and Fuller (1988) considered the model

where i is a subscript for the county and j is a subscript for a segment within
the given county (j = 1,..., N;, the number of segments in the ith county,
i=1,...,12). Here Y; ; is the reported number of hectares of soybeans and
%y;; (x5;;) is the number of pixels classified as corn (soybeans) for the jth
segment in the ith county. They assumed (in our notation) E(v,) = E(e, =0
V(v,) = (Ar)~1Y, V(e ) = r7t, cov(y;, e;;)) =0, cov(v;, v;) =0, 1+ 7,
covie, ;,e; ) = 0 if (i, j) # (', j'). First, assuming A and r known, these
authors obtained BLUPs of u; =bg + b1%y;,) + boXg;,, t v, i=1,...,12,
where %, =N, 'CNx,;, a=1, 2 Then, using Henderson’s method III,
they obtained estlmates of the variance components, and their final predictors
involved the estimated variance components. [For details, see Battese, Harter
and Fuller (1988).] Henderson’s method being an ANOVA method could lead
to negative estimates of A ~!. If this were the case, Battese, Harter and Fuller
set it equal to 0. This phenomenon is likely to happen, particularly when the
number of small areas or strata is small.

In this particular example, we have t=1,A,=ADN)=A"1,, ¥=1I,.
Then X, = Diag(I, + A~ 1Jn1’ I, + A7, ) so that [Z,,| = TI2{(x +

n;)/A}). Also, ertlngx =n; 'L ,x,;,i=1,...,m, one gets

m
XOT3IIXD = Z le xL = Y n¥(n; +2) g, xT
(4.2.2) P ’ i-1

= H()) (say).
Next, writing y;, = n; 'L ".,y,;, one gets

n,

m m
yTKy® = MDY (yij _5’i)2 +A x n(n; + /\)_15’2

i-1j-1 i-1

- { i i xij(yij —nyn; + ’\)_15/1‘)} H™ (1)

(4.2.3) i=1j=1

X { Z X_‘: xij(yij —nyn; + A)_lyi)}

= Qo(1) (say).
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The conditional pdf f(Aly®) given in (2.11) simplifies to

f(/\ly(l)) o A(m+g1)/2—1 ]__I(A + ni)_1/2|H(A)|_1/2
(4.2.4) i=1

X(ag + ad + Qg(1)) TP,

The posterior means and variances of the finite population means are now
obtained from (2.8)-(2.10), (2.12)-(2.13), (4.2.2)-(4.2.4) and using the formu-
las for iterated conditional expectations and variances.

REMARK 1. Let Vi(y™®) and V,(y®) denote respectively the variance of the
conditional expectation and expectation of the conditional variance of the finite
population mean. A naive empirical Bayes procedure effectively ignores V; and
can lead to serious underestimate of the variance. A HB procedure on the
other hand rectifies this deficiency. Battese, Harter and Fuller have a frequen-
tist approach which also incorporates the uncertainty of estimating the vari-
ance components into account.

We find the posterior means and variances of the population means for the
12 counties. Our approach eliminates the possibility of obtaining zero esti-
mates of the variance components. The improper prior with a, = a; = 0.005,
8o = &; = 0 is used for predicting areas under soybeans.

Table 2 provides the HB predictors (eyg), the EB predictors (egg), the BHF
predictors (epyp) and the associated standard errors syp, sgp and Sy,
respectively. Note that the EB predictors are obtained by replacing A with its
Henderson’s Method III estimate in E[N; 'E:,Y;ly®, Al. Also, we provide
the V, and V, values to demonstrate that V; can sometimes contribute
significantly toward the posterior variance.

As one might anticipate, eyp and epp are extremely close as point predic-
tors; epyp differs from egp because it uses a different estimate of A, and

TABLE 2
The predicted hectares of soybeans and standard errors

County €Hn €egB €gaF  SHB SEB  SBHF Vi A

Cerro Gordo 78.8 78.2 71.5 11.7 11.6 12.7 7.67 128.59

Franklin 67.1 65.9 64.8 8.2 7.5 7.8 11.94 54.92
Hamilton 94.4 94.6 95.0 11.2 11.4 12.4 1.97 123.61
Hancock 100.4 100.8 101.1 6.2 6.1 6.3 1.35 37.59
Hardin 75.4 75.1 74.9 6.5 6.4 6.6 0.37 41.84
Humboldt 81.9 80.6 79.2 10.4 9.3 10.0 22.62 85.40
Kossuth 118.2 119.2 120.2 6.6 6.0 6.2 7.99 36.23
Pocahontas 113.9 113.7 113.8 7.5 7.5 7.9 0.06 55.98
Webster 110.0 109.7 109.6 6.6 6.6 6.8 0.64 43.91
Winnebago 97.3 98.0 98.7 7.7 7.5 7.9 4.11 55.70
Worth 87.8 87.2 86.6 11.1 11.1 12.1 4.06 118.17

Wright 111.9 1124 112.9 7.7 7.6 8.0 1.62 57.48




BAYESIAN PREDICTION IN LINEAR MODELS 1763

thereby leads to slightly different predicted values. It is important to note that
the difference between epyp and either egp or eyp is much more pronounced
than any difference between eyp and egg.

The naive EB estimator, in general, underestimates the standard error in
comparison with the HB estimator. With the exception of Hamilton County,
sgp 1s always smaller or equal to syp. The difference can be significant as
evidenced from the figures given in Humboldt County where sgg is about 10%
smaller than syg.

However, syp and sgyp are both very good as estimates of standard errors.
In this example, while sgyp is never smaller than syg by more than 6.1%, it
can exceed syg by about 9.7%.

One may wonder whether the proposed HB predictors which perform so
well conditionally enjoy any frequentist properties. To answer this, we under-
took an extensive simulation study using the BHF model. The detailed results
are not reported in this paper, but our findings indicated that the simulated
mean squared errors for the HB predictors were matching those for the BHF
predictors up to the fifth decimal place, while (1.96) s.d. coverage probabilities
turned out to be slightly bigger for HB than BHF, both being very close to 95%
under all circumstances.

5. The HB predictor in a special case. We consider in this section the
special case when M is known, while B and R are independently distributed
with B ~ uniform(R?) and R ~ Gamma(}a,, 1g,). We are still interested in
finding the posterior distribution of Y® given Y = y®, Recall the notation
K, M and G given in (2.8)-(2.10). Since A is known in this case, we have the
following Theorem 2 instead of Theorem 1.

THEOREM 2. Assume that n + g, > p + 2. Then under the model given in
(A) and (B) with N\ known, and an independent uniform (RP) prior for B and
a Gamma(}a,, 1g,) prior for R, the conditional distribution of Y® given
YO = yO s multivariate-t with location parameter MyV, scale parameter
(n+ gy, —p) Ha, + yYPTKyD)G and degrees of freedom n + g, — p.

The proof of Theorem 2 is similar to the proof of the first part of Theorem 1
provided in the Appendix and is omitted. Using the properties of the multivari-
ate-t distribution, it is now possible to obtain closed-form expressions for
E[§(Y(1),Y(2))|Y(1) = y(1)] and V[§(Y(1), Y®) YD = y<1)]’ where §(Y(1), Y®) =
AY® + CY®, In particular, the Bayes estimate of &Y™, Y®) under any
quadratic loss is now

(5.1) ' et(y®) = (A + CM)y?.

We may note that the posterior mean given in (5.1) does not depend on the
prior distribution of R.

There are alternative ways to generate the same predictor e%(Y®) of
£YD, YD), Suppose, for example, one assumes only (2.1) or (2.2) with b
known (r may or may not be known). Then the best predictor (best linear
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predictor without the normality assumption) of £&Y®,Y®) in the sense of
having the smallest mean squared error matrix is given by

Ee[g(Y(l),Y(z))|Y(l)]
(5.2)
= C[Z,; 2 YD + (X@ — 3, 311XD)b] + AY®  (ae. YD),

where 6 = (b7, r)T.

[We say that E < F for two symmetric matrices E and F if F — E is
nonnegative definite (n.n.d.).] If b is unknown, then one replaces b by its
UMVUE (BLUE without the normality assumption)

(XOTEIXD)” xory YO,

The resulting predictor of £(Y, Y®) turns out to be e5(Y™). In this sense,
e5(YD) is also an empirical Bayes predictor of &Y, Y®). Harville (1985,
1988, 1990) recognized this for predicting scalars.

We shall now discuss some frequentist properties of e}%(Y®). First, we
assume the normal model (2.1) or (2.2) with A known. No prior distribution
for B and R is assumed, and 6 = (b7, r)7 is treated as an unknown parame-
ter. We prove the optimality of e%(Y") within the class of all unbiased
predictors of £(Y®,Y®). This result is then used to prove the optimality of
e%(Y®) once again within the class of all unbiased predictors of &Y™, Y®)
for a class of spherically symmetric distributions of Y including but not limited
to the normal distribution.

We start with the following definition.

DeFINITION 1. A predictor T(Y®) is said to be a best unbiased predictor
(BUP) of &YD,Y®) if EJT(Y®) — &(YD,YP)] = 0 for all 6 and for every
predictor 3(Y®) of £(Y®, Y?®) satisfying Ey[3(Y®) — &(YP,YP)] = 0 for all
0, Vi[T(Y®D) — (YD, Y?)] < Vo[3(YD) — (YD, YP)] for all & provided the
quantities are finite.

The following theorem is proved.

THEOREM 3. Under the model (2.1) or (2.2), e5(Y®) is the BUP of
g(Y(l), Y(Z)).

PrOOF. Write Hy = A + CZ,, 7! and U = C[X® — £, $11X®]. Then,
from (5.2), E[(YD, YD) YDP]=H, YDV + Ub ae. (Y?). For an arbitrary
predictor 3(Y(®) of (YD, Y®), write

(YD) — (YD, Y?) = [3(YD) — (H, YD + Ub)|

(5.3)
+[(HoY® + Ub) — £(Y®,Y®)].
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Then, from (5.2) and (5.3),
Ee[{S(Y‘l’) — E(YD, Y®)}a(YD) — g(Y(l),Y<2’)}T]
= E,[{(3(Y®) - H,Y®) — Ub)
(5.4) X{(3(YD) - HoY®) - Ub}|
+ E,[{HY® + Ub - §(Y®,Y®))

X {HoY® + Ub — £(Y®,Y®)}"].

Hence minimization of the left-hand side of (5.4) wrt 8(Y) amounts to the
minimization of the first term in the right-hand side of (5.4) wrt 3(Y®). Since
Y® ~ NXDb, r~1%,)), from the classical theory of least squares it follows
that the first term in the right-hand side of (5.4) is minimized wrt 8(Y®) if
and only if 3(Y®) — H,Y® = UXOVTEIXD)-IXOT$-1YD g (YD), that
is, 3(Y®) = (A + CMYD = e%(YD) ae. (YD), The proof of Theorem 3 is
complete. O

ReEMARk 2. It follows from the proof of the theorem that the BUP of
£§YD, Y®) is unique with probability 1.

REMARK 3. It is possible to generalize Theorem 2 for a more general class
of distributions of Y. Suppose that conditional on R =r, Y ~ NXb, r %),
while marginally R has any proper distribution. The objective is once again to
minimize the left-hand side of (5.4). We achieve this by first computing this
expectation conditional on R = r. We may note that E[£(Y®D, Y®)| YD = y?D),
R=r]1=H,y? + Ub does not depend on r. Hence we obtain an identity
similar to (5.4) conditional on R =r, and as in the proof of Theorem 3,
conclude that e%(Y?) is the BUP of &YV, Y®),

Next we dispense with any distributional assumption in (2.1) and show that
et (YD) is the BUP of £&(Y®,Y®) within the class of all linear unbiased
predictors. A predictor 8(Y®) is said to be linear if 8(Y ) has the form HY®
for some known u X n matrix H. If, in addition, E[3(Y®) — &YV, Y®)] =0
for all 0, we say that 8(Y") is a linear unbiased predictor (LUP) of £(YV, Y®),
We now introduce another definition.

DEFINITION 2. A LUP PY® of &Y®,Y®) is said to be a best linear
unbiased predictor (BLUP) if for every LUP HY® of &Y™, Y®), V,HY® —
§YD, YD) — V,PYD — (YD, YP)) is n.n.d. for all 0.

We now prove the following theorem.
THEOREM 4. Consider the model (2.2) and assume that Ejle] = 0, Ey[v] = 0,

EJfev”] =0, Eje’e] < » and EfvTv] < ». Then e%(YY) is the BLUP of
g(Y“), Y(2)).
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ProoF. Suppose WY® is an unbiased predictor of £Y®,Y®). Then
EfWY® — (AY® + CY@®)] = 0 for all 8, which is equivalent to (W — A)X®
= CX® = CMX® from (2.8) and (2.9), that is, (W — A — CM)X® = 0. Next
write

WYD — §(Y(1), Y(2)) =WY®D — e”,}(Y(l)) + e%(y(l)) - §(Y(1),Y(2))
=(W-A-CMY?D + C(MY® — Y®).

Observe next that since MX® = X®),
E,[C(MY® - Y?){(W - A - cM)YV)|

= E,[C{M(Y® - Ey(Y®)) — (Y® — Ey(Y®)))

XYDT(W - A - CM)”|

= E,[C(MZ,, - 2,,)(W - A - CM)7].
But, using (2.8) and (2.9),
(5.7)  MEZ,; - By = (X® - 3,31 XO)(XOT X D) T'XOT,

Since XPT(W — A — CM)T = [(W — A — CM)X?]T = 0, it follows from (5.6)
and (5.7) that the left-hand side of (5.6) is 0. Now, from (5.5),

E,,[{WY“) ~ §(YO,YO)HWYD — g(Y(I),Y(z))]T]

(5.5)

(5.6)

- E0[{Wy(1) — &5 (YD) {WY® — eg(ya))}T]
+ Bl (e3(Y®) - 6(Y, Y Hep(Y) — 5(Y, Y2)) ]
> By|{e3(Y®) — §(Y©, Y®)}{e3(Y®) - (¥, Y?))"|
with equality if and only if WY® = e%(Y?) a.e. (YV). The proof of Theorem

4 is complete. O

APPENDIX
Proor oF THEOREM 1. Under the assumptions of the theorem, the joint pdf
of Y, B, R and A is given by
f(y,b,r,Q) ,
a rV/28| 7 exp| - 1r(y — Xb) "= (y — Xb)|exp(— aor)rée/2 !

¢ ¢
X exp| —37 ), ai)‘i) I1 ()‘ir)g'/z_lrt
i=1 i=1

(A1) o
= |z~ exp[—ér{(y —Xb) =Yy - Xb) +a,+ ¥ ai)‘i}]

i=1
. ¢
(N+Z!_og)2—1 g./2-1
Xr 08021 | |1Ai .
i
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Now
(y — Xb)"E7}(y — Xb)
_ T
(A.2) = [b - xT=1%) 'X7Ely| (XTEIX)
x[b - (XT=7'X) X" Yy + y7Qy,

where Q = 27! — T7IXXTE"1X)"!XTX "L From (A.1) and (A.2), one gets
the joint pdf of Y, R and A given by

f(y, r, )\) o |2|—1/2|XT2—1xl—1/2r(N+)'_‘,f~=0gi—p)2—l

t
x exp[ - 37(ao + Zi_1a;:4; + y7Qy)] 1_[1A§‘/2_1.
ie

Now, integrating wrt R, one finds the pdf of Y and A given by

(A.3)

t —(N+3{_og;—p)/2
fy,\) o [ZI7VAXTE X" ag + X ;A +¥7Qy
(A.4) i=1

t
x [TAs/27L,
i=1

1=

Now, using a standard formula for partitioned matrices [e.g., Searle (1971),
page 46], we have

_ _ 3 _ Tw_ _
(A.5) y'Ely = y(l)Tzuly(l) + (y(2) - 22121113'(1)) 2221.1()’(2) - 2212111)’(1))-
Similarly,
yTE_IX - y(1)T21—llx(1)
_ Tew_ _
(A.6) + (y<2) - 2"212"111)'“)) 2"221.1()((2) - 2"212"111}(“))
=tl + t7 (say),
XTE_IX — X(I)Tzl—llx(l)
+ (X(z) - 2"2121_11X(1))T22_21‘1()((2) - 2,3 XP).

Using the matrix inversion formula [see Exercise 2.9, page 33 of Rao (1973)],
we have from (A.7) that

XTE7X) /
= (X<1)Tzl—11x(1))—1 _ (X(I)Tzﬁlx(l))—l(x(z) _ 22121_11X(1))T
x{222.1 + (X(z) - 22121—11X(1))(X<1)Tzl—llx(l))—1

(A.7)

X (X® — £, 25XD)") o
X (XD — 2, BIXO)(XOTEIXO) !
= (X‘”Tzl‘llx(l))_l - (X‘l)TE;llx(l))_l(X<2) - 22121‘11X(1’)TG‘1
X (XD — 5, ZRIXO)XOTEFXD) " by (2.10)
=M; - M, (say).

(A.8)
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From (A.6), (A.8) and (2.8)-(2.10), we get after simplifications
Yy ETIX(XTEIX) T XTE ly = tTM,t, — tTM,t, + tTM,t,
— t; Myt, + 267 (M, — M,)t,,

(A.10) t{Mltl = Y(I)T(Eﬁl - K)y(l),
(A.11) thZtl = (My(l) - 22121_113'(1))TG_1(MY<1) - 2"212"1_11)’(1)),

: _ Tie_ _ _

th1t2 = (y(2) - E212"1113’(1)) [222141(“'2221.1 - E221.1]
X(r® - ZuSily®),
T

M,t, = (y(2) - 22121_11)'(1))

X [22_21.1(“'22_21‘1 - 235 + G_l](y(2) - 2,30y D),
(A.14)  t{M;t, = (My® - 22121_11y(1))T22~21.1(y(2) - ZuZn'y?),
tT M,t, = (My(l) - 22121_11y(1))T[22_21.1 - G_l]

X (y<2) - E2121_11)'(1)),

(A.9)

(A.12)

t3
(A.13)

(A.15)

Using the same definition of Q, it follows from (A.5)-(A.15) with some
algebraic manipulations that

(A.16) y"Qy =y TKy® + (y? - Mya))T(;—l(y(z) - My®).

Combining (A.4), (A.16) and (2.6), one gets the first part of Theorem 1.
Now to find the conditional distribution of A given Y® = y® one can have
as in (A.4) that the pdf of Y¥ and A is given by

-1/2 _ -1/2
f(y(l)’)‘) a |2y / IX(I)TEHIX(D'
(A17) t —(n+Zi_0&-P)/2
X|ag+ Y, aA; + yOTKy® [Tas2-1,
i=1 i=1

Since f(Ay®) a fiyD, N), (2.11) follows from (A.17). O
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