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This leads to an estimate of f(y|x) having the form
(1) fyx) = exp(Z Y BinHu(x) By(y) — C(h(X;ﬁ))), yeZ,
Ej .

where £ is the JK-tuple consisting of 3 1 <k <Kandl<j<d,insome
order. This estimate has the form of a multiparameter exponential family, so
the corresponding log-likelihood function is again concave. The asymptotic
theory of such estimates, with 2/ a compact interval in R, #; = --- = #%
and bases consisting of B-splines and without model selection, has been
treated in Stone (1989). It remains to investigate the numerical behavior of
such estimates, especially as modified to incorporate the strategy of MARS.
Perhaps the resulting technology should be referred to as multivariate adap-
tive response splines (MARES).

Suppose, in particular, that 2= {0,1}. Then we can let . be the one-
dimensional space having basis B,(y) =y. In this context, (1) reduces to
logistic regression. Similarly, by letting 2 be a finite set of size 3 or more, we
can apply the strategy of MARS to the polytomous extension of logistic
regression. ,

The more general setup given by (1) allows for the estimation of the
conditional variance and conditional quantiles of an arbitrary random variable
Y given X as well as estimation of the conditional mean of Y given X, which is
treated in the present paper.

The general strategy of MARS is also applicable to time series.
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partitioning ideas is clearly an idea whose time has come and this paper is sure
to generate much interest!

We have a number of comments that fall into several areas.

1. Nonparametric function estimation is a rich field. Of course, the
general idea of nonparametric function estimation is a rich and growing one.
The major methods in one variable are kernel methods, smoothing spline
methods, regression spline methods, orthogonal series methods and nearest
neighbor methods. When the data points are uniformly spaced, if these meth-
ods have their various tuning parameters matched up, they are quite similar
for medium-sized data sets and can essentially be tuned so that they have the
same convergence rates for functions with the same number of (square
integrable, say) derivatives. Even when the data points are not uniform, kernel
methods and spline methods can be shown to be similar under certain circum-
stances. As soon as we get into more than one dimension, however, choices
proliferate and results are not necessarily so similar. Narrowing our considera-
tion to kernel estimates, smoothing splines and regression splines, we may, at
the outset, consider what might be called a tensor product structure versus a
thin plate structure—we will define these by example. Considering two vari-
ables x = (x;, x,) and given a knot t = (¢,,¢,), a basis function of tensor
product type is of the form B, ,(x,x,) = H(x; — t)H(x, — t,), where H
stands for a generic function, usually depending on some order parameter g,
whereas a basis function of thin plate type is of the form B, (x, %) =
H(llx — tI), where |lx — t|| is the Euclidean distance between x = (x,, x,) and
t = (¢;,¢,). Thin plate splines do not know the difference between north and
east, whereas tensor product splines do. Of course, kernels as well as regres-
sion splines come in both types. Friedman’s splines are regression splines of
tensor product type with a sophisticated procedure for choosing the number
and order(s) of the spline basis functions and the knots. It is, of course, equally
possible to do regression splines on thin plate basis functions. [See Poggio and
Girosi (1990) who discuss regression thin plate splines with moveable knots in
the context of neural nets for multidimensional function estimation.] Which
type one might prefer would certainly be related to the nature of the variables
one is dealing with. In principle, it is quite possible to mix the various types of
basis functions. However, Friedman’s recursive partitioning approach to knot
selection fits naturally into the tensor product setup and probably not in the
thin plate setup (since there are not natural cutting planes in that case), while
Poggio and Girosi’s approach appears to fit in to the thin plate case and not
the tensor product setup. In both these cases, knot selection is a nontrivial
operation, and clearly as time goes on further insight will be gained.

2. Smoothing splines with multiple smoothing parameters. We
agree with Friedman that automatic selection of multiple smoothing parame-
ters is inherently difficult and computationally consuming. Nevertheless, our
experience is that it is feasible for relatively small number of covariates and
medium sample sizes on modern workstations. Recall that given responses ¥;



MULTIVARIATE ADAPTIVE REGRESSION SPLINES 117

and covariates x;, where y; ~ p(y; 7(x,)), a smoothing spline regression fit
with multiple smoothing parameters is the solution to the problem: Find
n € J to minimize

n . p
(21) - T L(nx)) + 54 Y 6(fa),
1 B=1

where [,(n) =log p(y;;m), n =Lj_ofs and #= # 0 H#, 0 -+ & H, isa
reproducing kernel Hilbert space with reproducing kernel R=R,+ R, +
*++ +R,; see Wahba (1990). Here x; may be quite general consisting of
several components, in arbitrary index sets. #;), on which there is no penalty,
is of necessity of finite dimension M, say, which is less than n, and as A tends
to infinity, the estimate tends to the maximum likelihood estimate in #;. fs
is the component (projection) of n in &% and J; is a suitable quadratic
penalty, which we will take as the squared norm in #4. The elements in each
#, may actually depend on all or only a few of the components of x. It can be
shown that the solution of (2.1) has an expression

M n p
(2.2) n(x) = ZIdn(X)dv + Zl( ZleﬁRﬂ(xi,x))ci = ¢"(x)d + £"(x)c,
v= i= B=

where {¢;,..., ¢y} span #,, £Tx = (¢,),..., X)), &&) =
Y B_103Rp(x;,%x) and ¢ and d are the minimizers of

(2.3) - f L(6T(x,)d + £7(x;)c) + %,\ Zp: 6,c"Qgc,
i=1 B=1

where @ is an n X n matrix with (i, j)th entry Ry(x,,x;). £&’s in the
smoothing spline examples have knots at the data points x; and under certain
circumstances, they span the same space as commonly used local bases such as
the B-splines on the real line. Let S be the matrix with (j, »)th entry ¢, (x,),
Q =X}f_ 10,Qs W=diag(w,,...,w,), where w; = —dI?l,/dn? and u=
(uy,...,u,), where u;, = —dl,/dn,. The Newton iteration for minimizing
(2.3) proceeds by solving

W/%(Q + nAW 1) + W1/28d = W'/2g,
S7d =0,

where § = n, — W™lu, n, is the fit at the previous step and W and u are
evaluated at m,. See, for example, Gu (1990a). This setup provides a unified
numerical treatment for broad varieties of nonparametric regression problems
with either Gaussian or non-Gaussian responses and with all kinds of covari-
ate structures; see the next section. Generic algorithms for solving (2.4) with
automatic smoothing parameters A and 6’s appear in Gu, Bates, Chen and
Wahba (1989) and Gu and Wahba (1991) mentioned by Friedman. Trans-
portable code is available from the netlib under the name RKPACK; see Gu
(1989). We feel comfortable with these algorithms for n up to 500 and p up to

(2.4)
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6 on the contemporary workstations and with smaller p we can afford
larger n.

3. ANOVA decomposition and varieties of subspaces. A nice feature
of the MARS product is the ANOVA decomposition which greatly enhances the
interpretability of the computed fit. It is known that the same structure can
also be obtained via interaction smoothing splines, which are important spe-
cializations of (2.1). Recall that for a bivariate covariate x = (x,,x,) on a
domain 7, X 7, given reproducing kernel Hilbert spaces #' = #} & H#}
of functions on .7}, i = 1,2, the tensor product Hilbert space of functions on
T, X 7, has a tensor sum decomposition #'= #! ® H#? = (¥} ® HZ) &
(HL © HP) & (Hy ® HP) & (H]! ® #72). Assuming finite dimensional #7,
i = 1,2, an interaction spline is obtained by specializing (2.1) with % =
Hy ® HE, Hy= HL® HE Hy=Hy @ H#?2 and Hy = H#! ® #2. When
H¢={1}, i = 1,2, the setup provides an ANOVA decomposition of the esti-
mate by construction. When we take the tensor sum or tensor product of any
two reproducing kernel spaces, we just add or multiply their reproducing
kernels to get the reproducing kernel of the resulting space. Obviously, the
tensor sum on each coordinate can take more than two operands and so can
the tensor product.

Examples of interaction splines in subspaces of tensor products of W3[0, 1]’s
appear to be the most popular in the existing literature. However, the forego-
ing general framework covers a much broader spectrum of model specifica-
tions. Consider a covariate x on a categorical domain 7= {1,...,C}. A real
function on {1, ..., C} is just a real vector in the Euclidean space R¢. Adopting
a roughness penalty proportional to the Euclidean norm of the projection of a
vector onto {1}*, a smooth vector would then be one with a small variance.
The corresponding Hilbert space decomposition is R¢ = {1} ® {1}* with a
reproducing kernel R(x,x'), x,x' € {1,...,C}, representable as a C X C real
matrix, 117/C + [I — 117 /C], where the term in brackets is the reproducing
kernel for {1}* . Using R€ for categorical (nominal) covariates in the construc-
tion of tensor product Hilbert space, one can incorporate both continuous and
categorical covariates simultaneously to build a model with a natural ANOVA
decomposition. We understand from Friedman’s talk at Interface 90 that
categorical covariates can also be incorporated into the MARS framework. It
would be interesting to compare the two approaches.

We have discussed the tensor product structure versus the thin plate
structure in Section 1. In general a tensor product structure is appropriate for
combining individually interpretable covariates and a thin plate structure is
appropriate for dealing with rotation invariant problems. The example later
indicates that certain problems require mixed structures. From the Eastern
Lake Survey of 1984 implemented by the Environmental Protection Agency of
_the United States, a data set has been derived by Douglas and Delampady
(1990) which contains geographic information, water acidity measurements

and main ion concentrations of 1798 lakes in four regions in the eastern
United States. An attempt is made to explore the dependence of the water
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acidity on the geographic locations and other information concerning the lakes.
Preliminary analysis and consultation with a water chemist suggest that a
model for the surface pH in terms of the geographic location and the calcium
ion concentration is appropriate. Obviously, a thin plate structure is appropri-
ate for the geographic location. To account for the joint effect of geographic
location and the calcium concentration, however, a tensor product structure
appears to be appropriate. A tensor product reproducing kernel Hilbert space
with a thin plate space component for the geographic locations and a W2
component for the calcium concentrations does the job simply. This example
actually illustrates the fact that the general framework of interaction splines
can paste up arbitrarily complicated components to provide an interpretable
ANOVA decomposition.

To use a thin plate spline as a component of an ANOVA model as we have
just described, one needs an explicit reproducing kernel. [Only a so-called
semikernel is needed for the construction of a thin plate spline by itself; see
the references in Wahba (1990).] An explicit reproducing kernel appears in
Wahba and Wendelberger (1980), but it is not a natural one to use in an
ANOVA model. We will provide a more natural one here. Let 2" be the thin
plate function space (in two variables) consisting of linear functions plus all
functions (modulo the linear functions) for which the thin plate penalty
functional

I =] /f(f3u+2 2+ £2) dud

is well-defined and finite. Now let t;, j = , K, be any set of K > 3 points
in R? not falling on a stralght hne Let qbl(x) =1/ VK and let ¢, and ¢, be
linear functions satisfying Z _16,(t,)¢,(t;) =1, u = »,0, otherwise, and let
w;x) = X3_,¢,(t;)¢,(x). If we endow Z with the squared norm

I FlI%-= Z (Z ¢v(tj)f(tj)) +dJ(f),

v=1\j=1

it can then be shown that the reproducing kernel for & is

3
R(x%) = ¥ 6,004,(%)

+[E(x,x’) - f w;(x)E(t;,x) — f w,(x)E(t,,x)
j=1 k=1

K K
+ X wj(x)wk(x')E(tj’tk) )
j=1k=1

where E(x,x) = (|x - x| logllx — x|)/(87). The term in brackets is the
reproducing kernel for %, if #), is taken as the span of the linear functions.
Furthermore, each element f of %, satisfies the discrete orthogonality
conditions ZK 19t f(t;) =0, v=1,2,3. It is natural to choose K = n and
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the t;’s at the data points. With this construction, thin plate splines can be
included in a nonparametric ANOVA model, possibly by moving span {¢,, ¢}
into ;. This construction extends to higher order and higher dimensional
thin plate splines in a straightforward way.

4. Model selection and concurvity. Model selection in MARS is built
into the stepwise estimation procedure by choosing bases and knots to mini-
mize an intuitive GCV score. In a smoothing spline setup (2.1), model selection
is by selective inclusion of subspaces and selection of smoothing parameters.
Stepwise nonparametric estimation procedures are likely to be confused by
concurvity (collinearity), for which Friedman proposes several cures in his
algorithms. On the other hand, the direct approach of Section 2 estimates all
terms simultaneously and is not bothered by negligible terms and concurvity.
For the sake of parsimony and interpretability, however, one wishes to remove
aliasing effects and noise terms in a fit. Recently, Gu (1990b) proposed simple
geometric diagnostics to tackle the problem. Recall that the solution 4 of (2.1)
also minimizes

n

(4.1) 21 wi(.}—'i - n(Xi))z +nA Zlaﬂ_lJﬂ(fﬁ),
ﬁ:

where the j,’s and the w,’s are those of (2.4) evaluated at 7; see, for example,
Gu (1990a). Evaluating the computed fit on the data points, one obtains a
retrospective linear model

W2y =W, + £, + - +f, + &)

(4.2) i
=Wl28d + W2k, + W'/%e,

where fﬁ = (fp(xy),..., fﬂ(xn))T and F =, - f'p). Removing the null model

effect by projecting (4.2) onto the orthogonal space of W1/2S, one gets

(4.3) z=F, +e.

The collinearity indices of F [Stewart (1987)], which is equivalent to the
cosines between the columns of F, measure the concurvity in the fit. The
columns of F are supposed to predict the response z so a near orthogonal
angle between a column of F and z indicates a noise term. Signal terms should
be reasonably orthogonal to the residuals, hence a large cosine between a
column of F and e makes a term suspect. cos(z,e) and R2 = |z — e||2/||z||2
are informative ad hoc measures for the signal-to-noise ratio in the data.
Finally, a very small norm of a column of F relative to that of z also indicates
a negligible term. It could be argued that the cosine diagnostics can be treated
as absolute measures provided an automatic smoothing parameter selection is
adopted. These diagnostics can be used to sequentially delete redundant
subspaces to build a parsimonious model in a backward fashion; see Gu
(1990b) for details and examples.



MULTIVARIATE ADAPTIVE REGRESSION SPLINES 121

5. Accuracy estimates. For any method, it would be nice to be able to
say something about the accuracy of the estimate. Monte Carlo bootstrap is
one method that has found use in the application of smoothing splines. In the
Monte Carlo bootstrap, one generates a new set of data via a random number
generator centered about the estimated model. In this setup the distribution of
the y; has to be assumed up to parameters which can be estimated, that is, p
is Gaussian, Bernoulli and so on. From this new data set, one estimates a
curve or surface and by repeating the operation, obtains a cloud of curves or
surfaces which hopefully gives some idea of the accuracy of the estimate.
Although the clouds one gets seem reasonable, it still appears that not much is
known about their properties, although they have been around a while. In
particular, since the estimate is generally a bit smoother than the truth, it is
possible that these clouds give too rosy a picture. This method might be used
with Friedman’s approach here, if (assuming the ¢; are i.i.d. zero mean
Gaussian) an estimate of o2 were available.

In the single smoothing parameter spline case, there are coverage bands
(also called Bayesian ‘‘confidence intervals’) which have the property that the
expected number of true data points they cover is about 0.95n; see Wahba
(1983) and Nychka (1988). It would be interesting to see what happens in the
multiple smoothing parameter case and also if there is anything like a counter-
part for MARS. Some authors, in the case of (nonadaptive) regression splines,
have suggested the usual parametric confidence intervals for the estimated
basis coefficients, as though the estimate were really in the span of the basis
functions. This has yet to be justified if the true function is not in this span
and hence there is bias. There is, however, no free lunch in the case of
nonparametric regression, since the good methods are all biased and we have
to accept a somewhat weaker definition of confidence interval in the nonpara-
metric regression case if we wish to remain honest.

6. Hybrid methods. Hybrid methods which combine regression spline
and smoothing spline ideas have also been considered; see, for example,
Nychka, Wahba, Goldfarb and Pugh (1984), Hutchinson and Bischof (1983)
and O’Sullivan (1990). Let {B,(x)}{Y, be a set of N basis functions, where N
is generally (much) smaller than n. The estimate of 7 is then that 7 is the
span of the {B,;} which minimizes (2.1). If N is closer to n, then the estimate
will be a good approximation to the minimizer in & of (2.1) and the A and 6,’s
will be controlling the smoothing. In this case, the basis functions are mainly
used to ease the computation and the location of the knots may not be very
crucial. For example, if n is large, one might choose a set of basis functions
with the knots a regular subset of the data points, as did Hutchinson and
Bischof (1983). In their case the basis functions were formed from representers
of evaluation at the knot points. That would amount to using ¢, ..., ¢, and
a subset of the &’s of (2.2) in the present context; see also Wahba (1990),
Chapter 7. O’Sullivan (1990) used a large basis of tensor products of B-splines,
with a thin plate penalty functional.
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If N is smaller, then the basis functions may be helping along the smooth-
ing (and they might be explicitly used to eliminate the possibility of too much
fine structure that is known not to be there), in this case their number and
locations of their knots may bé more influential.

7. An omnibus GCV? We think that all of these methods and combina-
tions will come into use and no one of the possibilities is going to turn out to
be uniformly superior—which method is best is going to depend on the
context. Of course, it would be lovely if there was one grand criterion for
comparing among the different methods, given a particular data set. It would
be nice to have something like an omnibus GCV criterion, which would
compare different model building procedures (for example, a pure smoothing
vs. a pure regression procedure), but this is something remaining to be done.
As Friedman takes pains to note, all of the degrees of freedom for signal must
be accounted for. In order to compare across different methods, this account-
ing should be done in comparable ways. In the case of smoothing splines, when
a subspace is added, if this subspace carries an independent smoothing param-
eter, then the minimum GCV value is nonincreasing. To see this, note that if
the smoothing parameter for the new subspace is estimated as infinity, then
we have reverted to the model without the new subspace. It is not yet known
how to charge for adding another free smoothing parameter in this context.
The preceding suggestions on methods for choosing subspaces as a form of
model selection were in part motivated by this lack.

Given a sufficiently large data set, in practice it is of course possible to do
the classical double cross-validation, say, divide the set in half, fit and tune two
or more models for comparison on the first half of the data and compare them
as to their predictive ability on the second half. Naturally, this brings up the
question of what is a “significant” difference—which, again, could be an-
swered if one could partition the data into several subsets. Data sets are
getting bigger and computers more powerful, so statisticians are not likely to
be out of business soon!
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