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We would like to congratulate Professor Friedman on this characteristically
ingenious advancement in nonparametric multivariate regression modeling.
MARS is a triumph of statistical computing and heuristics—the clever algo-
rithmic and heuristic ideas make extensive searching computationally feasible.
The resulting modeling technology offers the data analyst a remarkably flexi-
ble tool which we found very useful on a difficult real-world problem. We will
address a few issues that arose in our reading of this excellent paper and our
experience using the MARS program.

1. Some experience with MARS. Two of us (Buja and Duffy) acquired
some experience with MARS in an extensive analysis of data concerning
memory usage in electronic switches. The data comprised 241 observations on
27 variables. It was known from the onset that the available variables gave an
incomplete description of the response. Careful and creative regression model-
ing yielded fits with good global properties (R? = 0.995), but there were still
unacceptably large residuals and poor performance on cross-validation tests.
The fits which we obtained from MARS, on the other hand, excelled in
prediction and cross-validation. In addition, the robustness to influential
points which MARS inherits from the local adaptivity of the selected basis
functions was very advantageous in our context. Our set of observations was
(purposely) chosen to include a subset consisting of notoriously difficult cases.
These cases, as expected, wreaked havoc on regression models but MARS was
able to adapt to them without degrading the fits to the rest of the cases. In
addition, highly accurate MARS models could be built with fewer variables (13
as opposed to 18) which happens to be a true benefit in this situation. The
MARS models involved several second and third order interactions which,
while impossible to anticipate by subject matter experts, seemed reasonable in
the sense that they involved variables which are expected to have large effects
on the way memory is used.

An interesting aspect of this analysis is that the data exhibit genuine noise
despite the fact that switches are basically deterministic systems. This is
because the 27 predictors were selected from a complete set of about 300
predictors based on what information is available to engineers who operate
these systems. The success of the MARS fits can only be explained as a result
of strong interdependence within the large set of predictors, rendering most of
them redundant. Thus, we are profiting from what we call “‘concurvity’’ which
in most contexts is a cause for concern. Further, models based on the theory of
the switching systems would necessarily involve many of the 300 predictors
and would therefore be useless to the engineers. One danger in this, or any,
datazdriven as opposed to theory-driven approach is that the model may be
misleading if future predictions occur in areas of the predictor space where
data are sparse. It would be useful if MARS were accompanied by diagnostic
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tools which indicated when a future set of covariate values is stepping danger-
ously outside the range of the training data. A first naive attempt at deriving
such a tool would be to compute the Mahalanobis distance of test covariate
vectors in the linear predictor space spanned by the basis functions of a given
MARS model. However, such an approach may have problems since the
constant zero stretches of the spline basis functions lead to clumps of data in
the extended predictor space.

We found it quite useful that the first order truncated basis splines are of an
exceedingly simple form. A fitted model is easily communicated to practitioners
and it is trivial to implement on arbitrarily small machines. By comparison, we
do not see a use for the enhanced cubic models in this (prediction) context. For
graphical display and qualitative data analysis, they may have their advan-
tages.

In using MARS to analyze our data the following questions and comments
arose.

1. Friedman recommends running MARS with M, , (the maximum number
of basis functions added in the forwards stepwise procedure) approximately
equal to 2M*, where M* is the GCV-minimizing choice for the number of
basis functions in the model. In our context, M* is in the neighborhood of
35-40. Based on our experience with honest cross-validation, this is too
large for the sample size and it may indicate that, at least for these data,
the default cost being charged for basis function optimization is probably
too low.

2. It appears that no complete description of the heuristic choice of the cost
parameter d is given. If there is no restriction on the degree of interaction
(mi = n), we understand that the default value is d = 3. The question for
which we were unable to find an answer was: How does d depend on mi,
the maximal degree of interaction, if it is specified to be less than n? When
the degree of interaction is limited (mi < n), d is, quite logically, decreased.
We chose in one instance mi = 5, which seemed to result in a value of d
closer to 2 than 3.

3. As mentioned in 2, the cost d is set to 3.0 when unlimited interactions are
permitted. Based on our calculations, it appears that the value of d is also
being adjusted based on M, ... How exactly does it affect d? On one
occasion, we observed an apparent oddity in the behavior of d which seems
counterintuitive: d can decrease as M, ,, increases with mi (the maximum
permitted degree of interaction) held fixed.

4. One of the startling features of our MARS runs is the fact that the
piecewise cubic GCV values are often an order of magnitude larger than the
corresponding piecewise linear GCV values. In addition, there is little
correspondence between the piecewise linear and the piecewise cubic GCV’s
for these data. For example, the model which minimizes the piecewise
linear GCV has an associated piecewise cubic GCV which is over three times
larger than the piecewise cubic GCV of another model; this other model,
however, has a piecewise linear GCV which is almost twice the minimal
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value. Further, the two models are very different; the first has 35 basis
functions and interactions up to the third degree whereas the second has
only 21 basis functions and all are restricted to be main effects only. Hence,
if a smooth (piecewise cubic) thodel had been our ultimate objective, we
would have been led very far astray by basing the model choice on minimiz-
ing the piecewise linear GCV. We can see at least three reasons for the
unpredictable behavior of the piecewise cubic modifications: First, the
residual sum of squares is very nonrobust and responds dramatically to a
few bad residuals. Second, in high dimensional predictor spaces and in the
presence of higher order interactions, the seemingly inoccuous piecewise
cubic modification is far from minor because of compounding effects in the
products. And third, our data may very well be better described by piecewise
linear functions due to threshold effects which we observed while perform-
ing graphical exploration of the data.

5. In fitting a series of models with increasing values of M, ., the number of
basis functions in the final model grew quite unevenly. While this might be
expected for choices of M, ,. which produce poorer fitting models, it was
surprising to us for a choice of M, yielding near optimal models (i.e.,
models with piecewise linear GCV values near the minimum). We are
unsure whether to interpret the widely varying numbers of basis functions
as an artifact of our data or as a property of the MARS methodology.

2. Generalized MARS models. Friedman proposes using MARS for
logistic models. This can, of course, be easily extended to include all general-
ized linear models. The standard method for fitting such models is to maximize
the likelihood or, equivalently, to mirimize the deviance. While it would be
natural to use the penalized deviance as the criterion for knot inclusion or
deletion in direct analogy to the penalized RSS or LOF used in the present
paper, this is computationally impractical because iteration is required to
estimate the parameters and the crucially important ability to rely on the
updating formulae is lost. Consequently, Friedman offers an approximation
and here we offer another.

Suppose the basis set has £ members and we wish to find the (¢ + 1)st. The
exact inclusion of a candidate b,,; can be achieved by using an iteratively
reweighted least squares algorithm, with the initial values and working re-
sponse provided by the fit to the set of size k. Instead of iterating to
convergence, we propose using one iteration and instead of using the deviance
to evaluate the fit, we propose using the weighted residual sum of squares or
chi-squared approximation to the deviance. Since the fits for all candidates for
b, ., use the same working response and the same weights, Friedman’s entire
updating approach carries over. Once the approximately optimal b, , ; has been
selected, the corresponding iterations can be completed to estimate the associ-
ated coefficients.

This approximation for evaluating a candidate b, , is exactly that used in
Rao’s score test [Pregibon (1982)] with the additional advantage that we
exploit the updating facility to simultaneously perform multiple score tests.
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3. ANOVA decomposition. The ANOVA decomposition is achieved in
MARS by grouping together all terms involving the same variables. Thus all
the functions involving only X, comprise the main effect for X;, all terms
involving only X, or X,, the interaction for X; and X, and so on. The usual
ANOVA decomposition for categorical designs ensures that interactions are
free of lower order effects by imposing suitable summation constraints. Note
that the tendency for these surfaces to include lower order effects in MARS is
exacerbated because MARS can destroy the hierarchical structure of its basis
during knot deletion. It would be useful if MARS could produce an interaction
surface which was free of lower order effects. One could then use this surface
to assess the way in which the variables interact, without being distracted by
the lower order effects.

Hastie and Tibshirani [(1990), page 266] propose a strategy for this which
can be adapted to MARS. As in standard ANOVA, one needs only to uncouple
the components in the fitted model, not during the fitting (unless one requires
an a priori hierarchy in the terms). Let us focus first on a bivariate interaction
term, say f(X;, Xy) = L ,a,b,,(X,)b,,(X,). We first identify all the univariate
basis functions in each of the tensor products pairs. In this case they are the
b,, and b,,. We then project the interaction surface onto the joint space
defined by them and the other main-effect basis functions involving those two
variables. This additive main effect component of the interaction is then
removed and lumped together with the original main effects, leaving a residual
component which can be interpreted as a pure interaction and which is
orthogonal to these (new) main effects. It is important to stress that the fit of
the model has not been changed during this operation, simply its ANOVA
decomposition.

Of course, if higher order interactions are present, this procedure would
have to be used in a top down fashion. It is not entirely obvious how this would
proceed. For example, if the term in question is a third order interaction, then
we should isolate all bivariate interaction basis pairs. These would be grouped
with similar and lower order terms involving the same variables and the entire
set used to remove the second order effects from the third order interaction.

Incidently, in the simple linear regression model Y = a + 8, X; + B, X, +
vX,X,, we would not need to do all of this to understand the interaction effect.
Decomposing such a fit amounts to looking at the coefficients (their sign and
magnitude). Although these are fitted jointly, we know from the Gram—Schmidt
process that 9 is also the coefficient of X;X, adjusted for X, and X,. This
would not be the case if the model were Y = a + B, X; + yX, X,.

4. Shrinking versus knot deletion. In a discussion of the additive
predecessor to MARS, called TURBO, Hastie (1989) outlined in some detail a
method for shrinking a TURBO model. The idea is that the forward stepwise
_ algorithm results in a rich set of knots /basis functions for each additive term.

In particular, the knots will be denser on some variables and locally, within a
variable, there may be clusters of knots in regions of high signal-to-noise ratio.
At this point the model is (purposefully) overparametrized and some regular-
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ization is needed. As an alternative to backward knot deletion, Hastie sug-
gested regularizing by shrinking according to an appropriate smoothness
penalty. He suggested the penalty ¥ ;A;/(f/"(x;))* dx; and pointed out that the
resulting procedure is a generalized ridge regression. Furthermore, since the
second derivatives of the piecewise-cubic approximations to the piecewise-lin-
ear basis functions have local support, the ridge penalty matrix is diagonal.

With an appropriate set of penalty functionals, a similar approach can be
taken with MARS. Wahba [(1990), Chapter 10] outlines in some detail an
approach using tensor-product splines, which are exactly what MARS uses to
build up its bases. In Wahba'’s setting, models are fit in subspaces of the tensor
product space of all the univariate reproducing kernel Hilbert spaces and the
penalty functionals (norms) of these subspaces are inherited from the univari-
ate spaces. For example, functions involving only X, and X, would be
penalized using [[(3%f(x,, x,)/0x2 dx2)? dx, dx,. In practice then, the terms
are grouped according to their components (much like the ANOVA grouping in
MARS), each group gets assigned an appropriate penalty (and potentially its
own smoothing parameter) and then the fit is computed by penalized least
squares. Thus suppose the MARS model after the stepwise inclusion stage can
be written

f(x17x2""’xp)=a+ Z fk(xk)+ Z flm(xl,xm)'i_”"

kel (I, m)el,

where I; denotes the sets of j-tuples corresponding to interactions of order ;.
Each of the f, has a linear representation in terms of an appropriate set of
tensor-product bases. Then the shrunken model is the minimizer of the
penalized criterion

;l(yi _f(xi))2+ Y MP(f) X MnPr(fim) o,

kel (U, m)el,

where the P, are the penalty functionals.

Without going into all the details, it is worth pointing out that each of the
P.(f,) evaluates to a quadratic form aZ M,a, in the coefficients for the
basis functions in f,; if the cubic approximations to the piecewise-linear
functions are used, then each of the M, is diagonal and once again the
problem is a generalized ridge regression. We have used a different regulariza-
tion parameter A, for each of the previous components. In practice one could
simply use a single global A and trust that the forward knot selection will give
some terms more importance than others. Alternatively, one could lump all
terms of the same interaction order together with the same penalty and shrink
them all at the same rate.

This is a current research project by Friedman and Hastie and we are
experimenting with other strategies and penalty functionals.

5. MARS for classification. One of us (Tibshirani) has made some
progress in the development of a methodology for classification that tries to
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combine some of the features of MARS and CART. Consider a two-class
problem with Y = 0 or 1. The working model is

Pr(Y = 1|x)
og =a+ Y file) + X fia(a,x,) + o,
1-Pr(Y =1lx) kel (1, m)el,

where the I’s are as defined in the previous section, but where the f’s are
tensor products of order 0, that is, products of indicator functions of the form
(x; — )" and (x; — #)~. The motivation for 0 order splines is, as in CART, the
ease with which models can be substantively interpreted when terms are of
this form.

The model estimation is carried out as follows:

1. The model is constructed in a forward stepwise manner, exactly as in
MARS. A score test (analogous to that described in Section 2) is used to
select the split point for each variable. In contrast to CART, a basis function
is not removed from the model after it has been split, thereby encouraging
main and lower order effects to appear.

2. The model is pruned in a backwards hierarchical fashion, similar to the
pruning in CART. In detail, a pruning operation consists of deleting a pair
of functions of the form b(x)x; — )™ and d(x)(x; — #)~ and any higher
order terms in which they appear. k-fold cross-validation (of the entire
estimation procedure) is used to determine the optimal amount of pruning.
In contrast to CART, we favor the use of deviance rather than misclassifi-
cation cost to guide the pruning; this enhances the interpretability of the
final model.

The result of this process is an estimated binary logistic model with a linear
predictor that is a sum of products of indicator functions. In addition, a global
(cross-validation) estimate of its classification performance is available, which
is hopefully a more accurate estimate of future performance than GCV esti-
mates, such as those used by MARS, which do not involve cross-validating the
term selection process. The model can be interpreted either in terms of its
basis functions or of the binary partition of the predictor space that they
define. Initial studies suggest that this procedure is more effective (as a
descriptive tool) than CART in cases where main effects dominate. On the
other hand, in general it does not seem to classify as well as CART does.
Extensions to ordered and unordered multiple class problems are possible.
Further details will appear in a forthcoming technical report.
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This article reviews a set of key developments in nonparametric function
estimation, many of them due in part or in large to Professor Friedman, which
have radically changed the scope of modern statistics. MARS is an impressive
addition to this set. There is a growing practical interest in innovative adaptive
function estimation techniques. For example, I am aware of the need for
sophisticated covariate adjustment in connection with survival analysis of a
large clinical trail, where N = 27,000 and n > 200; the thought of sending
these data to MARS for analysis will have undoubted appeal!

1. General comments. With any adaptive regression technique, it is of
interest to know the kinds of functions which cause greatest difficulty. MARS
is coordinate-sensitive. A rotation of the coordinate axes in the examples in
Sections 4.2 and 4.3 will destroy the simple additive and low-order interactive
structure. Will this substantially degrade the performance (ISE) of MARS?
Perhaps the effect could be ameliorated by allowing linear combination splits
in the algorithm. A natural set of split coordinates would be those obtained by
successive orthogonally restricted regression of residuals r at the Mth order
model on the covariates: The linear combination ¢, determining the first split
coordinate solves the least-squares regression of r on covariates, the linear
combination ¢, determining the second split coordinate solves the least-squares
regression of r on covariates but subject to the orthogonality constraint
cjc; = 0 and so on. The relevant formulas are available in Seber ([4], pages
84-85). Algorithm 2 only requires a minor change to incorporate consideration
of linear combination splits. Obviously it would no longer make sense to have a
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