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BERRY-ESSEEN-TYPE BOUNDS FOR SIGNED LINEAR RANK
STATISTICS WITH A BROAD RANGE OF SCORES!

By MuNSUP SEOH

Wright State University

The Berry-Esseen-type bounds of order N~1/2 for the rate of conver-
gence to normality are derived for the signed linear rank statistics under
the hypothesis of symmetry. The results are obtained with a broad range of
‘regression constants and scores (allowed to be generated by discontinuous
score generating functions, but not necessarily) restricted by only mild
conditions, while almost all previous results are obtained with continuously
differentiable score generating functions. Furthermore, the proof is very
short and elementary, based on the conditioning argument.

1. Introduction. Let Xy, 1<, <N, be independent and identically
distributed (iid) random variables (rv’s) with a continuous cumulative distribu-
tion function (cdf) Fy(x), symmetric about zero. We consider the signed linear
rank statistic

N
(1.1) Ty = L chaN(RlJ\rlj)Sgn Xnj»s
j=1

where Ry is the rank of |Xy;| among {|Xy,|: 1 <k <N}, cy;, 1 <j < N, are
known regression constants, ay(j) (interchangeably, ay;), 1 <j <N, are
known constants called scores and sgn x = 1 or —1 according as x > 0 or
x < 0. Note that T3 reduces to the well-known one-sample Wilcoxon signed
rank statistic when cy; = N™'/? and ay; =j, for j = 1,2,..., N.

Let E and Uy,; denote, respectively, the expectation and the jth order
statistic among a random sample of size N from the uniform distribution over
the unit interval (0,1). Then, scores are usually generated by some known
function (called the score generating function) J(¢), 0 < ¢ < 1, in one of the
following three ways:

(1.2) ay;= E(J(UN:J-)), 1 <j < N (exact scores),
(1.3)  ayn; =J(E(Uy.,)), 1 <j < N (approximate scores),

j/N

(1.4) ay; = fj/ J(t) dt, 1 <j < N (approximate scores).
(j-1/N .

The asymptotic normality of T is well known by previous works [see, e.g.,

Hiajek (1962), Hajek and Sidak (1967) and Huskova (1970)]. In fact, under
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suitable assumptions, Ay = sup, |Gy(x) — P(x)| = 0 as N — », where Gp(x)
is the cdf of T (suitably normalized) and ®(x) is the standard normal cdf.
However, one often needs more precise information than the asymptotic
normality can provide and may try to find a suitable rate for A,. To this end,
Puri and Wu (1986) have obtained the order of N~1/2+2 § > 0, with bounded
score generating functions and Puri and Seoh (1984) obtained the order of
N~1/2 with unbounded score generating functions [which can be the Chi-
quantile function J(¢) = ® (¢ + 1)/2)], adapting the ideas of van Zwet
(1982) and Does (1982).

Consider now the unsigned linear rank statistic (the counterpart of the
statistic Tiy) Ty = L. ,cyjan(Ry;), where Ry, 1 <j < N, is the rank of Yy,
among an independent sample Yy, Yy, ..., Yyn with continuous cdf’s. Under
suitable assumptions, Juredkova and Puri (1975), Bergstréom and Puri (1977)
and Huskova (1977, 1979) derived bounds of

O(N~1/2%%) for0<6<3, O(N'%logN) and O(N~'/3?),

respectively. In all these papers the score generating function J was assumed
to be bounded and continuous. Later, the restrictive boundedness was dropped
by Does (1982) for the case of iid rv’s.

We also note that Puri and Seoh (1985), dealing with the so-called general-
ized rank statistic (which includes the statistics Ty, Ty, and some others as
special cases), derived the order of N~!/?2 with bounded score generating
functions assuming the underlying distributions are only independent.

However, all results mentioned are obtained by taking scores generated by a
score generating function J which has bounded first derivatives or continuous
second derivatives.

In this paper, we now derive the Berry-Esseen bound of order N~!/2 for
the statistic Ty given by (1.1) with a broad range of scores with mild
regularity conditions [see Assumption B and (2.7)]. When scores generated by a
known function J are taken, the results obtained extend most of the previous
results for the statistic (1.1), covering some discontinuous score generating
function tending to infinity in the neighborhoods of 0 and 1 at the rate of
{t(1 — ¢)}~/4*%, ¢ > 0. We also note that our method is based on an elemen-
tary conditioning argument, while the method of all previous works claiming
the optimal bound for rank statistics is to approximate the characteristic
function of the statistics (suitably normalized) by that of the standard normal
rv, and then to invoke Esseen’s smoothing lemma. Naturally this requires
laborious computations.

To conclude this section, we note that von Bahr (1976) has also derived the
order of N~1/2 dealing with the so-called rank combinatorial statistic which
includes Ty and T\ as special cases. His result, when applied to linear rank
statistics Ty and T, ensures the optimal bound when scores are uniformly
bounded, while ours allows them to be unbounded.

2. Assumptions and main result. Let R} = (R}, R}5,..., Riy) be
the vector of ranks and Dy = (Dy,, Dys, ..., Dyy) be the vector of antiranks
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defined by the inverse permutation of R}, i.e., Dy = (R}) ™. We also denote
sgn X, = (sgn Xp_ ,sgn X, ,...,sgn X, ) Then the statistic T is equiv-
alently expressible fv its dual form to (1. l)fas

N

(2.1) Tﬁ = Zl CDNJaNJ sgn XDNj.
j=

Under the hypothesis of symmetry, it is well known that R}, as well as Dy
is uniformly distributed over the set of all permutations of (1,2,..., N). Also
note that sgn X by 1<J <N, are iid rv’s with the common symmetrlc
Bernoulli distribution and that the vector Dy, is stochastically independent of
the vector sgn X, [see Theorems 19A and 19C in Héjek (1969)]. Hence, we
have

N N
(2.2) ETy =0 and VarTy =72 = E e Y a¥
Nz s

Throughout this paper, we make the following three assumptions, with an
absolute constant « > 1:

AssuMPTION A. The regression constants satisfy

(2.3) Yocki=1, maxNch <aN71

AssumPTION B. The scores satisfy

1 N
(2.4) N Zl a%; > a™!, for all sufficiently large N,
jo
and
(2.5) max a%,;, = O(N'"%),  0<8<3j.
1<j<N

AssumPTION C. The scores satisfy

N
(2.6) )y la ;I = O(N).

J=1
We now state our main theorems.

TueorREM 2.1.  Under Assumptions A, B and C, we have
"P(Tﬁﬁrll =< ) - CD()” = O(N-/2+8)/2),

where || - || denotes the usual supremum norm, ® is the standard normal cdf
and § is given in (2.5).
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THEOREM 2.2. In addition to Assumptions A and B, suppose
N
(2.7) Yy ay; = O(N).
j=1

Then we have that |P(THry' < ©) — ®(-)|| = O(N~V?),

To consider the statistic Ty with scores generated by a known function /,
we consider the following assumption.

AssumpPTION D. The set {¢: J(¢) # 0} has a positive Lebesgue measure and
J can be expressed as a finite linear combination of monotone functions
Jydey ...y d,,, with

(2.8) |J()|=0({t(1-1)}*"™"), O0<e<i,ji=1,2,...,m.

Let the scores ay;, 1 <j <N, be generated in either an exact or an
approximate way [of (1.2)-(1.4)] with a known function J satisfying Assump-
tion D. Then, it follows by Theorem V.1.4a and Lemma V.1.6a in Hajek and
Sidak (1967) that max, _; _ y a%; = O(N'/272), and that

N

. _ 1

Jlim N7 Y. ay; = [OJz(t) dt < o,
Jj=1

(2.9)

N
lim N-! Y a4 = /1J4(t) dt < oo
N-ox j=1 0

Hence, the assumptions of Theorem 2.2 are satisfied, proving the following
corollary.

CoROLLARY 2.3. In addition to Assumption A, assume that the scores are
generated by a known function J satisfying Assumption D in either the exact
way of (1.2) or the approximate ways of (1.3) and (1.4). Then we have

"P(Tﬁ’r&l <) - q>()” = O(N-1/?),

Proving Theorems 2.1 and 2.2 in the next section, we conclude this section
with the following remarks.

REMARK 2.1. Condition (2.4) prohibits scores from taking too many values
near zero. It is trivially satisfied by (2.9), if the scores are generated by
(1.2)-(1.4) by a nonzero monotonic function J.

REMARK 2.2. Note that the Chi-quantile function J(¢) = @Y1 + ¢)/2)
satisfies condition (2.8) [see Does (1982) and Puri and Seoh (1984)]. Hence, our
theorems apply to the exact normal-scores statistic as well as van der Waerden’s
approximate normal-scores statistic for testing the hypothesis of symmetry.
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REMARK 2.3. Theorem 2.1 ensures the optimal Berry-Esseen bound under
the milder condition (2.6) than (2.7), when the scores are uniformly bounded
(8 = 3). Condition (2.6) is considered the optimal one to ensure the bound, in
the sense that the same bound is obtained under a similar condition (finite
third moments of the summands) in the classical case of sums of independent
rv’s. It is hoped that the optimal bound is obtained under condition (2.6)
instead of (2.7). However, with unbounded scores, the latter is the mildest
condition yet used under which the optimal bound is obtained even with scores
generated by a continuously differentiable function [see Does (1982) and Puri
and Seoh (1984)].

ReMARK 2.4. The Berry-Esseen bound can be obtained under the milder
conditions on the regression constants, i.e.,

N N
> cxi=1, > len;I> = O(N~1/%),
j=1 j=1

used by several authors: see, for example, Does (1982), Huskova (1977, 1979)
and Puri and Seoh (1984). However, scores used by these authors are gener-
ated by continuously differentiable functions, while ours are somewhat arbi-
trary, restricted by only mild conditions of (2.4)-(2.7). But our assumptions on
the regression constants are stronger, as might be expected because the
restriction on them is counterbalanced by those on scores.

REMARK 2.5. Corollary 2.3 is Theorem 2.2 in Puri and Seoh (1984). They
obtained it, under the existence of continuous second derivative of the score
generating function, by approximating laboriously the characteristic function
of the statistic (1.1) to that of a normal one, and then invoking Esseen’s
smoothing lemma.

3. Proofs of the main theorems. From now on, we drop the subscript
N in cy;, ey, etc., whenever this causes no confusion.

LemMma 3.1. Under Assumption A, we have

N 1N ) 1 XN 12
E|[Y 2at- =¥ a?| = — z(c%’-—)
AT NEY TN-T 2\ TN

N
—\2
2 2
(“J‘““)’
=1

J

where a*= N7'L Y, o

Proor. This is easily verified [or see Theorem II.3.1.c in H4jek and Sidak
(1967), page 61]. O

Note that the vector of antiranks Dy = (D,, D,,..., Dy) is uniformly
distributed over A, the set of all permutations of (1,2, ..., N). We now define
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a subset Q, of Ay by
N

(3.1) Qp = {d €Ay: ¥ cja’> (2a)‘1},
Jj=1

where «a is the absolute constant given in (2.4) and d = (d,,d,,...,dy). Then
we have the following lemma.

LemmMma 3.2. Under Assumptions A, B and C, we have
P(Dy€Qy) 21— KN~V2,
where Q, is given by (3.1) and K is an absolute constant.

ProoF. Let Oy ={d € Ap: LN c% a® —A/N)LY a? < (2a)7 ). Then,
by Chebyshev’s inequality and Lemma 3.1, we have

N N
1-P(DyeQy)=P(|Y cta?- =Y a?| > (2a) 7"

ji=1 N ;)

N 1 N \2 N

<0 E(Z c%,jaf— N Y af) =O(N—2 y a‘;)

j=1 Jj=1 Jj=1
N

=O|N~? max Jay| ) |a,’| = O(N~'/27?),
1<j<N fj:1

which ensures that P(Dy € Q) > 1 — KN~ '/2 Since Q c Qy, the proof of
Lemma 3.2 is complete. O

We now prove the theorems.

Proor oF THEOREM 2.1. Using conditional probability, we derive
|P(T5 <x7y) — (x)|

(3.2) =|E{P(T§ < x7y|Dy) — ®(x)}|
< Y |P(Ty <xmy|Dy=4d) — ®(x)|P(D =d) + O(N~1/?),
dey )
where () is given by (3.1) and the last inequality follows by Lemma 3.2.
For any permutation d = (d,d,,...,dy) in Ay, we denote
N
j=1

"Then, since two vectors sgn X, and D, are independent under the hypothesis
of symmetry, the distribution of 7% conditionally given Dy = d € Ay, is that
of Sy(d), i.e., P(Ty < x7y|Dy =d) = P(Sy(d) < x7y).
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Note that Sy(d) is a sum of independent rv’s with

By (38.1), 02> (2a)™' > 0 for any d € Qy. Hence, we may apply Theorem
V.2.3 in Petrov (1975) to obtain that, for any d € Qy,
|P(Ty <x7y|Dy =d) — ®(x)|
=|P(Sy(d) <x1y) — ®(x)|
<|P(Sy(d)oy' < xryont) — ®(xryon?)|
+|@(x7yoxt) — P(x)]

Jj=1

(3.5) = O( i Z Elcya;sgn X, |3)
+|@(x7yoyt) — ()]

N
=O|N32 Y |a;?
j=1
=0O(N %) + |CI>(xTN(rIQ
in view of Assumptions A, B and C.
We now estimate the last term in (3.5). Since both x and x7yoy' are either
nonpositive or nonnegative, it follows by Taylor’s expansion that, uniformly
on Oy,

|CI>(x) - CIJ(xTN(rIQI)| sl(l - TNUI;l)x{tlt(x) + (//(xTNoﬁl)}l
= O(|1 — TNO'IG1| +|1 — TK;I(TN|),

+|@(x7yoyt) — ()|

(3.6)

where () denotes the standard normal density function. Because |1 — x| <
|1 — x2| for any x > 0, we have, uniformly on QN,

™~ 1 1 N
1-—|<1 ZG cha ~ L 9]
oN ‘7N Nj=1
-1
on 1 N ) N 1 N
1- —|<[1-02[= ) & =0 cza?2- =Y d?||,
‘ ™~ UN(NE: J) ngd ! NEIJ

which, together with (3.5) and (3.6), ensure
|P(Ty <x7ylDy=d) — ()]

6D =O(N"?) + 0

uniformly on Q.
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It now follows by (3.2), (3.7) and Lemma 3.1 that
|P(Tx <xmy) — ©(x)]

9\ 1/2
N 1 N
=O(N~2) + 0 E{ Y ciai- =Y o
(3.8) ji=1 N T
N 1/2
—_\2
=O(N2) + 0 N—l{ Y (af. - a2) }
j=1

Finally, the last term is of order N~(/2+9/2 in view of (2.5) and (2.6). The
proof is complete. O

Proor oF THEOREM 2.2. The proof is exactly same as the Proof of Theorem
2.1 except for the estimation of the last term in (3.8): it is of order N~1/2
under condition (2.7). The proof is complete. O
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