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SEQUENTIAL ALLOCATION FOR AN ESTIMATION
PROBLEM WITH ETHICAL COSTS!

By MicHAEL WOODROOFE AND JANIS HARDWICK
The University of Michigan

The problem of designing an experiment to estimate the difference
between the means of two normal populations with unit variances is
considered, when the cost of drawing a sample from either population may
depend on unknown parameters. A quasi-Bayesian approach is adopted in
which the mean difference is estimated by its maximum likelihood estima-
tor, but the design (allocation rule) is evaluated in Bayesian, decision-theo-
retic terms. A three-stage procedure is proposed and its risk evaluated, up
to terms which are small compared to the cost of a single observation. This
procedure is shown to be optimal to second order for squared error loss.

1. Introduction. Consider the problem of designing an experiment to
estimate the difference between the means of two normal populations, called
the treatment and control groups below, when the cost of drawing a sample
from either group may depend on unknown parameters. For example, in a
clinical study to estimate the effect of a new treatment, when compared to a
control, there are ethical costs inherent in assigning a patient to the control if
the early results indicate the treatment is superior, and conversely.

To formalize the problem, let X;, X,... and Y,,Y,... denote independent
normally distributed random variables for which

(1) X, X,,... ~N(n,1) and Y,Y,...~N(»,1),

where u,v € R are unknown parameters. Here X,, X,... denote potential
responses to the control, and Y, Y, ... to the treatment. It is convenient to let

0=v—pu.

Suppose that a total of ¢ observations are to be taken from the two
populations and that the objective of the study is to estimate 6 with a loss
function of the form

L(8,6) =tK[Vi(6 - 6)], 6,0€R,

where K is a nonnegative, nonconstant, symmetric function of polynomial
growth for which K(0) = 0, K(2) is nondecreasing and right continuous in
2 > 0. Suppose further that the cost of drawing a sample from the control, or
treatment, group is a(8), or b(8), where a and b are positive, locally integrable
functions on R. Here the loss has been so normalized that the expected loss
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due to estimation error and the cost of sampling are both of order ¢. It is
convenient to let

(2) c(8) = b(68) —a(6), 0 R,

and assume throughout that ¢ is continuously differentiable on R. The loss
structure is sufficiently general to include both point and interval estimation.
In particular, if K(z) = 0 or 1 for |z| < c or |z| > ¢, where ¢ > 0, then the loss
is ¢ times the indicator of the event 8 & (§ — ¢/ Vt,0 + ¢/ Vt). If ¢ is any
continuously differentiable function, then the conditions imposed on the cost
structure are satisfied by a(6) = 1 + c(8)~ and b(8) = 1 + c(8)*, where + and
— denote positive and negative parts (and ““1” represents the cost of perform-
ing one replication of the experiment).

The model, the cost structure and the loss structure are all invariant with
respect to translations of X;, X, ... and Y;,Y,... by a common constant. The
invariance of the loss has been criticized, since it appears to disallow having
higher losses for 8 > 0 (or large |6]) than for 6 < 0 (or small |6]). To some
extent this criticism may be ameliorated by reparameterizing the problem. See
Remark 2 below for the details. The invariance is implicitly used in the
construction of the estimator and explicitly used in the consideration of
designs, below. Convenient choices of the maximal invariants are X; — X,
i=23...,and ¥, - X;, j=1,2.... Of course, their distributions depend
only on 6. Let

_@m’n=0{X2—Xl,...,Xm—Xl,Yl—Xl,...,Yn—Xl},

for m,n=1,2....

For fixed ¢ > 3, a (translation-invariant) sequential design & is (defined to
be) a sequence &, ..., 8, of indicator variables, taking the values of 0 and 1 (for
control and treatment), for which 8, = 0, 8, = 1 and ;. is Z,, , -measura-
ble for all k= 2,...,t — 1, where n, =8, + - +8,, and m, =k — n, for

=1,...,t To avoid second-order subscripts, m, and n, are denoted by M
and N below, and the dependence of M and N on § is suppressed in the
notation.

If m,n > 1, then the likelihood function, given Z,, ,, is

1/ mn A \2
/mn(0)=exp{—§(m+n)(0—0mn } 6 €R,
where
D &

and X,, and Y, denote the sample means of X;,..., X,, and Y;,...,Y,. Then
6., is the maximum likelihood estimator. Moreover, if & is any sequential
design, then m, and n, may be substituted for m and n, since the likelihood
function is unaffected by the use of a sequential design.

A quasi-Bayesian, decision-theoretic approach to the problem is adopted in
which 6 is estimated by its maximum likelihood estimator, but the design is
evaluated in Bayesian, decision-theoretic terms. Thus, the risk function of a
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sequential design & is defined to be
(3) r/(8;0) = E{tK [Vt (6yy — 6)] + B(0)N + a(6) M},

where E, denotes expectation in the model (1) with v — u = 6, say » = 0 and
v = 0; and the problem is to find a design for which the risk is small.

To anticipate the nature of the solution, consider the fixed sample size
design 8/ in which M and N are constants. Then 0, — 0 has a normal
distribution with mean 0 and variance 1/M + 1/N, so that

EJ{K[VE (Byn — 0)]} = x(a)),

where

. ., bttt

(4) “=uMTNT MUN’

(5) k(1) = [K(r2)®(dz), >0,
R

and ® denotes the standard normal distribution. Since Ma(8) + Nb(8) =
Nc(6) + ta(8), it follows easily that

r(87,0) = t¥[q,,c(0)] + ta(0),
where

N 1 1
(6) qt=—t_ and (/l(p,C):K ;+ l—p + cp,
for 0 <p <1 and c € R. By Proposition 2 below, §(p, ¢) attains its minimum
at a unique point p = g(c) for each ¢ € R. Let

(7) ¢(c) = vlq(c),c] = infy(p,c), ceR.

Then, for all 6, r,(87;6) > tp°c(8) + ta(d) with equality iff N = tq  c(8).

The above derivation suggests an adaptive procedure in which g o c(8) is
estimated sequentially as data accumulate. A three-stage version of this proce-
dure is studied in Section 4.

If ¢ is a (prior) density on R for which [; (a + b)¢ d8 < », then the
integrated risk of a design § with respect to ¢ is (defined to be)

7(8;¢) = ert(la;O)g(O) de.
Then
7(8;€) = E4{tK[VE(0 — byy)] + B(O)N + a(0) M),

where E¢ denotes expectation in the Bayesian model in which: There is a
random variable ® with density ¢; and (1) holds conditionally with u = 0 and
v =20, given ® =0, for all § € R. The main results show that the regret,
(8% &) — tfgle o c(8) + a(0)]£(6) d0, of the three-stage procedures &, ¢ > 3,
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remains bounded as ¢ — « for a large class of £ Moreover, it is shown that
these designs are asymptotically second-order efficient for squared error loss.
This paper is similar in spirit to Robbins and Siegmund (1974) and Louis
(1975) in that optimal allocation rules are sought, although the focus here is
on estimation instead of testing. For recent work on allocation and estimation,
see Shapiro (1983). At a technical level, some ideas are adapted from recent
work on sequential estimation—notably, Hall (1981) and Woodroofe (1985).

2. An expression for the posterior risk. Let 5# be the class of all
Borel measurable functions 4 of polynomial growth; and let

®h = fhdcb
and
Uh(z) = e**/* [ [h(y) — ®h]e™"/* dy,

for all z € Rand h € #. Then U is easily seen to be a linear operator from -#
back into -#. See Stein (1986), Chapter 2. For example, if h,(z) = z* for z € R
and i = 1,2, then Uh(2) = 1 and Uhy(z) = z for all z. The composition of U
with itself is denoted by U2 = U~ U.

For p =0,1,2,..., let #, denote the collection of all &~ € /# for which

|h(z)] <1+ |2 forall z € R.

LEMMA 1. There are finite positive constants J,, J; ... for which U(#,)
J H. where p’ = max{0,p — 1}, forallp =0,1,2....

p<p"

Proor. For p = 0, the assertion is proved by Stein (1986), pages 27 and
28; and a similar proof works for p > 1. O

If ¢ is any prior density and & is any sequential design, then the posterior
density, given ), y, of

is
£(2) = exp{—12%)£(2),
where
0,2

1 /.
Fiz) = ;f(eMN ¥ 7;), eR,

t

X, is a normalizing constant, and o, is as in (4).
Below, =, denotes the class of all absolutely continuous ¢ for which
Jala + B)¢édB < o and [z|¢'| dO < », where ' denotes derivative; and E, de-
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notes the class of all £ € B, for which ¢ is absolutely continuous and
[rl€"1dO < .

ProposITION 1. For any design, any ¢ € B, and any h € #,

Du, N}

1 ¢
E€(h(Z,)| Dy, 5} - Oh + Ta,Ef{Uh(z (£
moreover,
1 ¢
Eg{h(zt)l‘@M,N} = ®h + ?‘thEf{Uzh(Zz)(? (®)|-@M,N}a

if £ € E, and h is a symmetric function.
2

Proor. The proof is similar to the proof of Proposition 1 in Woodroofe

(1989). It is included for completeness.
There is no loss of generality in supposing that ®h = 0. Then, since
f/(2) = 0,£(8)/x,Vt, and 6 and z are related by 8 = 8,y + 0,2/ V¢,

B2\, x) = [ 1(2) F2)ep| — 52°) da

[RUh(z)ﬂ'(z)exp(—%ZZ) dz

= X%a,fRUh(z)f’(O)exp(— %zz) dz

_ L Ef{Uh(Z)(i)(@))
Ve “\e

by a simple integration by parts. If £ € 5, and h is symmetric, then f, is
twice differentiable and ®(Uh) = 0 by symmetry. So the argument may be
repeated, with f, replaced by f,, and

/{;Uzh(z) ft"(z)exp(— %zz) dz
lonnlEfol] <

For > 0, let K (2) = K(72) for z € R, so that «(r) = ®K, for 7 > 0 in (5).

‘@M,N}’

EX{h(Z,)| Zu, v}

Il

CoroLLARY 1. For any design & and any ¢ € E,, the posterior risk is
R,(&;8) = E4{tK[Vi (0 — Byy)| + Nb(O) + Ma(0)|Zy, x)
(8) = t‘/’(‘]n Ct) + 1-‘t + tEf{a(®)|'@M,N},
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where
o ) é—n
I, = o/E{U Ka't(Zt)?(@) gM,N s
C = Eg{c(@))l-@M,N},
q; and ¢ are as in (6), and = indicates a definition.

PrOOF. Since Nb(®) + Ma(©) = Nc(®) + ta(®) and Vi (O — 6,,y) = 0,2
E(tK [Vt (0 — byy)] + Nb(O®) + Ma(©)| 2y, v}
= E{tK,(Z,) + Nc(®) + ta(0)| Dy, n)
=tk(o,) + I, + NC, + tE*{a(0)|Zy n},

by Proposition 1. O

Of course, the integrated risk may be obtained by integrating R, with
respect to P¢.

Some properties of the function ¢, defined in (6), are needed below. These
are stated here and proved in Section 7.

PropPOSITION 2. For every ¢ € R, (p,c) is twice continuously differen-
tiable and strictly convex in 0 < p < 1 and ¥(p, ¢) attains its minimum at a
unique point p = q(c). Moreover, q defines a twice continuously differentiable
function from R into (0, 1).

CorOLLARY 2. The function ¢ of (7) is twice continuously differentiable
and concave on R.

Proor. The differentiability is clear from Proposition 2. The concavity
follows from (7), since ¥(p, ¢) is linear in ¢ foreach 0 <p < 1. O

3. An asymptotic expression for the integrated risk. Asymptotic
normality of Z, is needed in the analysis of the integrated risk.

ProposITION 3. Let ¢ € E, and let 6 = 8% t >3, be any sequence of
sequential designs for which min(M, N) — = in Pf-probabzlzty ast — «, Then
OMN — O in Pft-probability and the P*-distribution of (OMN,Z ) converges
weakly to that of (O,Z), where ® has density ¢ and Z denotes a standard
normal random variable which is independent of ®. Moreover, all positive
powers of |Z,| are uniformly integrable on min(M, N) > nt for any n > 0.
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Proor. To begin, let g be a continuous function and # be a measurable
function with |#| < 1 and |g| < 1. Then, by Proposition 1 and Lemma 1,

|E{g(un)h(Z,)} — E4g(Oyn))®h|
=lEf{g(éMN){Eg[h(Zt)l‘@M,N] - <I)h}}|

= Ef{g(éMN)%Ef[Uh(Zt) %’(@))(—@M,N]}

2J,
/ min(VN ,VM) | £

as t > », where J;, is as in Lemma 1. Letting g = 1, shows that Z, is
asymptotlcally normal. That OMN - 0 in Pf-probablhty is an easy conse-
quence of the asymptotic normality; and the limiting joint distribution of
(8yn» Z,) then follows easily since E{(g(6,,5)} » E{g(®)).

For the uniform integrability, first we observe that

(@) dP¢ > 0,

Pg{léjk—f)l >g,dj=>rork Zr}
9) <P(X;|>3e,3j=2r} +P{Y, — 0| > 1c,3k > 1}
< dexp(—ire?),

for all ¢ >0, r=1,2,..., and 6 € R, by Bernstein’s inequality for martin-
gales, applied to the reverse martingales X »J=1,and Y, -0, k> 1, for
fixed 6. So, for any design §,

Py|Z,| >z, M > nt and N > nt}

A 2z
(10) 5P9{|0jk—0| > —‘/t:EIjznt orant}
< dexp(—3n2?),
for all 2> 0,7 >0 and 6 € R, since g, > 2 for all ¢£. Of course, P, may be
replaced by Pf in these inequalities for any density ¢, by simply integrating
over 6; and the uniform integratability is an easy consequence of this. O

Let E, denote the class of all twice continuously differentiable densities &
with compact support in R for which

o

£do < >,

2

(11) /’;f?d0<oo and /’;%

”

for some a > 1. Further, recall the definition of ¢ from (7) and define a
function o: R — (0, ©) by
1 1

o*(0) = q-c(9) + 1-qoc(8) - goc(8)[1 —qoc(0)]’

for § € R, where ¢ and c are as in Proposition 2 and (2).
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THEOREM 1. Let ¢ € B,; and let 6 = &', t > 3, denote any sequence of
sequential designs for which
(12) g2 - 0%(0) in Pi-probability ast — ©
and
(13)  lim ¢"P¢{(min(M,N) <t} =0, Va>0,37<(0,1).

Then
nﬁinf{ft(a;g) —t[[g=c(6) +a(0)]£(0) do}
(14) ’ "
>1 fR (H"(8) — ¢">c(8)c'(8)°a?(8)}£(0) d,
where

H(0) =03(8)x'>0(8), 0 €R.
Moreover, the limit exists and there is equality in (14) if
(15) lim ¢[ {4la,,C,] - #(C)} dP¢ =0,
where  is as in (6), ¢ is as in (7) and B is defined in (16) below.

Proor. Let 6 = 8!, t > 3, denote any sequence of designs; fix a ¢ € E; let
9 and 6 denote the minimum and maximum of its support; and let B = B,(5; ¢)
be the event

(16) B={byny<c[8-1,8+1]}n{min(M,N) > nt},

where 7 is as in the statement of the theorem. Then B is 2, y-measurable;
and

P¢(B’) < P{min(M, N) < nt}
+ Pf{|éjk -0|>1,3j2ntork> nt}=o(t""‘),

as t — o for all & > 0, by (9) and (13).
Recall the expression for the posterior risk from Corollary 1, and write

Fi(8:6) —t[ [¢c(6) +a(0)]6(6) db
= t/ {‘/’[Qz’ct] - (P(Ct)} dP*
(17) 7
+ t/B[go(Ct) — poc(0®)] dPt + fBr, dp¢

+fB'{tK[\/t_(® — Byw)] + c(®)N = tpoc(0)} dPt.

The first term on the right side of (17) is nonnegative and approaches 0, by
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assumption, if (15) holds. The limits of the other terms are computed in
Lemmas 3, 4 and 5 below. In these, § = §%, ¢ > 3, denotes any sequence of
designs for which (12) and (13) hold; ¢ denotes a fixed member of E,; and all
limits are taken as ¢t — «. The theorem is a direct consequence of these three
lemmas. O

LEMMA 2.

lim [ V2 [C, - c(bun)][ dP€ =0,  Vp>0.

Proor. It suffices to prove the lemma for p > 2, by Holder’s inequality.
Let h.2) = Vt[c(Byn + 0,2/ VE) — c(Byyn) — c'(Byn)o,2/ V] for z € R, so
that

ﬁ[Ct - c(éMN)] = cl(éMN)UtEE{Ztl'@M,N} + Eg{ht(zt)l‘@M,N}a

for all ¢ > 1. Next let J denote an upper bound for |c'| on [ — 1,6 + 1]. Then
h(Z,) converges to 0 in probability, by Proposition 3 and the assumed differ-
entiability of ¢; and |h (Z,)| < J|Z,| on B. So

1im[ |h(Z,)[" dPt =0,
t B

by Proposition 3 and the form of B. Next, by Propositions 1 and 3 and the
form of B, there is a constant J' for which

[ o (Bun) B2 2, )] dP¢ < [ T| B2 2} dPE — o,

since the integrand approaches 0 in Pé-probability, by Proposition 1, and is
bounded by J'E¢[|Z,|P| D), y], which is uniformly integrable, by Proposition 3.
O

LEmMA 3.

limt [ [¢(C,) = ¢c(®)] dP¢ = = [ ¢ c(6)c'(6)*0*(6)£(0) do.

Proor. By a simple Taylor series expansion,

o[c(©)] - ¢(C,) = ¢'(C)[c(®) ~ C] + 3¢"(CF)[c(®) - C.]%,
where C;* denotes an intermediate’ point. So, since B € Z) 5 and
EHc(®) — C| Dy, n} = 0,

th [¢oc(®) — ¢(C,)] dP = [B 1te"(C)[¢(®) - C,]* dPX.

Now, since © — 0,y = 0,Z,/Vt and o, » 0(®) in Pé-probability, the inte-
grand on the right converges in distribution to 1¢"° ¢(®)c'(0)%0%(©)Z?, where
Z denotes a standard normal random variable which is independent of @, by
Lemma 2, Proposition 3 and another simple Taylor series expansion. More-
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over, it is dominated on B by a constant multiple of t|0MN - 012 +¢C, —
c(BMN)| , which is uniformly integrable on B, by Proposition 3 and Lemma 2.
So

lim [ 34"(C)[e(0) — C,I* AP = § [ ¢">c(0)c'(6)’a*(6)£() db. D

LEMMA 4.

li{nfBI’t dpPf = ngH"(e)g(e) de.

Proor. Let g, = U -, Then, since B is I, y-measurable,
3 2¢ 3
/Ft dP* = /gt(zt)a't _(®) dP* = Yi,e t V2,6
B B &

where

§I'
= [BEg{gt(Zt)l-@M,N}a'tzEg{?(Q) -@M,N} dP¢

and

¢ = fBg,(Z,)U, {5—(6) - E‘f[g—(@)l%l N]} dPt.

Let a be as in (11) and B be the conjugate value (1/a + 1/8 = 1). Then

Y2, < { f o

By Lemma 1 and the conditions imposed on K, there are positive constants J
and p for which |g,(2)| <J(1 + |z|°) for all z€ R on B for all sufficiently
large ¢. So, the second factor is bounded, by Proposition 8. Moreover, since o2
is bounded on B, the first factor approaches 0 as ¢ — «, by the martingale
convergence theorem. So vy, , — 0.

For the analysis of v, ,, it follows from Lemma 1, Proposition 1 and the

consistency of o,, that w.p.1 (P%),
lim E¥(£,(Z,)|Zu,n} = ®[U°K 0]

o

. , « 1/a 1/8
Eﬁ(g—(m dPﬁ} { [ &z de} :

and
D[UK )] = 3 fR (22 - 1)K[0(0)2]¢(2) dz = 30(0)x'[0(0)],

for all 6 by (fairly) routine calculations. It is clear from the analysis of v, ,
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that E¥g,(Z,)| Dy n}oPEH(£"/€XO)| 2y ), t = 8, are uniformly integrable.
So

lim vy, ,
p ,

Ny 2o &
fRE“(@)K [7(0)]o*(6) - (6)£(6) d6

3 H(0)¢'(6) o

%fH"(e)g(e) de. 0
R
LEMMA 5.

li:nj;’{tK[\/Z(G — Oyn)| + c(®)N — tpoc(0©)} dP¢ = 0.

ProOOF. Since ¢ has compact support, there is a constant J for which
|c(8)] + |poc()] <J for all § in the support of ¢ Moreover, K(2)? <
J[1 + [2/?7] for all z for some p>1 and J > 0; and E4|O — 6,,,[?"} is
bounded, by a simple application of (9). So there is a J” for which

j;,ltK[‘/t_(@ — byn)] + Ne(0) — to(0)|dP¢

< VE{tK[VE (O — by )] + Ne(©) — to(0)%} VPE(B)
< J't1*?\/PE(B') - 0. O

4. A three-stage procedure. An ad hoc procedure which takes observa-
tions in three batches is investigated next. Such procedures were introduced by
Hall (1981) for sequential estimation and have been studied by Woodroofe
(1988) and Meslem (1987) in related contexts.

Let r=r, t>5, and s=s, t>5, be any two sequences of positive
integers for which 2r + 2s < ¢ for all ¢ > 5,

18 I r+s 0 4 i tlogt 0
( ) tgralo t B an tEIolo S\/}T e

In the first batch, r observations are taken from each population. Then 6.,
may be computed. Let

n = min{t -r—- 2s,max{r, [q oc(é,,)(t - 2s)]}} and m = (¢t—-2s) —n,

where [-] denotes the greatest integer function. In the second batch, ¢ —
2(r + s) additional observations are taken of which n — r are from the treat-
ment group and m — r are from the control group. The 6,,, may be computed.
Let "

N = min{t - m,max{n, [q oc(an)t]}} and M=¢t-N.
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The remaining 2s observations are taken in the final batch. Of these N — n
are from the treatment group, and M — m from the control.

THEOREM 2. If 6 = &', t > 5, is the three-stage procedure, then the limit
exists and there is equality in (14) for any £ € E,,.

Proor. Fix a ¢ € E,,. Then it suffices to show that (12), (13) and (15) are
satisfied by §.

Slnce r—w, § . — O in Ptprobability, by Proposition 3; and, therefore,
2 - d%0)in P‘f-probablhty Moreover, there is an 7 for which < g < c(8) <
1 —n and |(goc)(8)| < 1/n for all 6 €[0 — 1,6 + 1], where 6 and 6 denote
the minimum and maximum of support(¢). With this choice of 1 and large ¢,

Pé{min(M, N) < nt} < P{§,, — O] = 1} < 4exp(—3r) = o(¢t7),

as t — o for all @ > 0, by (9) and (18). So, (12) and (13) are satisfied.

That (15) is satisfied is the content of Lemma 8 below. In Lemmas 6, 7 and
8, & denotes the three-stage procedure, ¢ denotes an arbitrary element of &,
m is as in the previous paragraph and all limits are taken as ¢ — . O

LEMMA 6. Fort > 5, let A = A, denote the event

2
A={b,e[6-1,0+1]}n{b,,c[6-1,6+1]}n {|émn -8, < "_tf}
Then
P{(A) =o(t™®), Va>0,
and
n= [(t - 23)q°c(§,r)] and N = [tqoc(émn)], on A,
for all sufficiently large t.

Proor. The first assertion follows directly from (9) and (18); and the
second is clear, since n <goc(d,,) <1 —non A and (r + s)/t — 0. For the
third assertion, it suffices to show that [tq o c(B,,,)] > n and [tqec(b,, Il <
t — m on A for all large ¢. Since |(g°c)()] < 1/n forall § — 1 <6 < o+ 1,

tq o c(émn) —n>2sqe c(é,,) + t[q 0 c(émn) —qo c(é,,)}
(19) ton oA
> 2sm — ;7—|0mn - 0,,| 2> 7ns,

on A for all large ¢. The first relation follows easily; and the second may be
established similarly. O

LEMMA 7.

lim t/ (Brew = B,0)* dPE = 0.
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Proor. Let Y, y denote the average of Y, for i = n + 1,..., N. Then
— — N-ny\ _ —
Ty~ %= [ [T =) - (5, - 0).

So, since N is 9, ,-measurable and N > n > n¢ on A for all sufficiently large
t, there is a constant J for which

B (T~ T ) = [Tye ) + (S| (5 -0

<J{ + s—2n2(Y -9) }

w.p.1 on A for all sufficiently large ¢. So, by the Z,, _n-measurability of A,
Wald’s lemma for second moments and (18),
o2

2
tf(Y -v,)* de<th{ +—n2(Y —0)}deth{tiz+%}-+0,

as t — . A dual argument shows that [,(X,, — X,,)2dP¢ — 0 to complete the
proof of the lemma. O

LEMMA 8.

li:n th{tﬁ[qz,C't] —¢(C,)}dP*=0

Proor. It suffices to prove the lemma with B replaced by A N B, since
¥(q,,C,) and ¢(C)), ¢t > 5, are uniformly bounded on B and, therefore,

t[  [¥(q:,C) - ¢(C,)] dP¢ < JtPE(A) - 0,
B-A

as t — o for some constant J.
Since dy(p, c)/dp vanishes at p = g(c) and |0%4(p, ¢)/dp?| is bounded on
compact subsets of (0, 1) X R, there is a constant J for which

¥lq,,C] - o(C,) = ¥lq,,C,] — ¥[qa(C,),C,] <J[q, — q(C)]*

w.p.1 on AN B for all large ¢. Next, since [N — tg oc(ém")| <1, on A for
large ¢, by Lemma 6, there is a constant J’ for which

1 o Ca A
lg; —q(C,)| < 7 +|q°c(0mn) - q°c(0MN)| +|q°c(0MN) - q(C,)|

S R \
< I + |0 = Buan| +[e(Ban) - cl)
w.p.1 on A for all sufficiently large ¢. So, by Lemmas 2 and 7,
lim t] lg, — q(C,)|* dPt = 0. O
t ANB
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5. Global optimality. Theorems 1 and 2 assert that the three-stage
procedure is asymptotically optimal (to second order) in the class of all
procedures which satisfy conditions (12) and (13), but leave open the possibil-
ity that it is asymptotically suboptimal in the class of all procedures. In this
section, the three-stage procedure is shown to be asymptotically optimal in the
class of all procedures for the special case of squared error loss, K(z) = z2 for
z € R, in which case U2K(z) = 1 for z € R.

A preliminary result is needed.

PROPOSITION 4. Let ¢ be a continuous density which has compact support,
is positive on the interior of its support and is monotone near the endpoints of
its support. Then there is an € = e(£¢) > 0 for which

(20) P{|Z,| <¢|Dy N} <3
w.p.1 (P%) for all designs 8 and all t = 3,4 ... .
Proor. Let ¢ be as in the statement of the propos1tlon and let & be any

des1gn Further, let l = MN/t, the information in the sample; observe that
i2 > 1/2; and write 6 for 8,,y. Then

(21) PH|Z,| < ¢|Dy, N} = . W 2 ’
fR§(0 + T)e"w /2 dw

for all ¢ > 0.

To identify &, let [0, 8] denote the support of ¢{. Then ¢ must be non-
decreasing near 0 and nonincreasing near 6. So there are § < 6’ < §” < § for
which ¢ is nondecreasing on [6,6'] and nonincreasing on [0”,8]. Let A =
min{(0” — 0')/4,1}; let J be so large that 1/J < £(6) < J for (6 + 0')/2 <0 <
(0" + 6)/2; and let £ > 0 such that 36 < min{(6’ — 9),(8 — 6"),A/J?}.

If § <0 — ¢/i, then the right side of (21) is 0. If § — ¢/i < 6 <o — 18¢,
then the numerator is at most 2¢£(8 + £/i), and the denominator is at least
8¢/ \/_)6(0 + ¢/i) (since [z > /%), so that the ratio is at most Ve /4 < 1/2. If
0 —18: <6 < (0 + 0")/2, then the numerator is at most 2J¢, and the de-
nominator at least A/JvVe (since [ > [2), so that the ratio is at most
2¢J2/e /A < 1/2. The remaining three cases may be handled similarly to
complete the proof. O

In the final theorem, £, denotes the class of ¢ € B, for which ¢ is positive
on the interior of its support, monotone near the endpoints of its support and

4

3
(22) uolf?(O) > —o,

where 0/0 is to be interpreted as 0. Then E,, contains all densities of the form
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£(0) ={(0 — 0)*(6 — 8)*}%L(0), where —o < § < 8 < ®, & > 2 and ¢ is positive
and twice continuously differentiable on R.

THEOREM 3. Suppose that K(z) = 22 for all z € R; and let 5° denote the
three-stage procedure. If ¢ € B, then

tlim lim{’_'t(')’;f) - Ft(ﬁo;f)} =0,
— o y
where the infimum extends over all sequential designs 7.

Proor: Since the infimum is nonpositive for all ¢, it suffices to show that
its limit inferior is nonnegative as ¢ = «. For a given ¢ € E,, it is easily seen
that there is an optimal procedure which may, in principle, be computed from
backward induction. See, for example, Whittle (1982), Chapter 11 and/or
Haggstrom (1966), Theorem 4.1. So, it suffices to show that conditions (12)
and (13) are satisfied by the optimal procedure. Condition (13) is established
first.

Let & denote the optimal procedure and let R, denote the posterior risk,
using the optimal procedure. Then the principle of optimality (dynamic pro-
gramming) requires that forall m > 1and n > 1,

(23) E{(R,Z,, ,) = ess inf E¢(R}|2,,,)

ae.on{m,=m,n,=n}foral k=3,...,t— 1, where n, =8, + - -+ +§,,
m, =k —n,, the essential infimum extends over all designs &' for which
8/=29; for j=1,...,k, and R, denotes the posterior risk of the design &'.
By Prop0s1t10n 4 there is an ¢ > 0 for which E4(Z?| 2y n) > 12¢ w.p.1 for
all ¢, using the optimal procedure. Let J, be an upper bound for |c(0)| for all
6 € [0, 6], the support of ¢&; and let 0 <7 < min{e /2J,,1/8}. It is shown
below that P¥{M < nt} = 0 for all sufficiently large ¢. Condition (13) follows
directly from this result and its dual (in which M is replaced by N). Let

r=inf{lk>1:m,<nt - (¢t —k—1)and §,,, = lork =t}.

Then 7 is a stopping time with respect to Dpnp B =1,...,t;and {M < nt}
{r <t} for all ¢t > 1/7. In fact, if & is the largest j for whlch 8; = 1, then
7<k—1on{M > nt} for all ¢+ > 1/n. Moreover, it follows from the mlnlmal-
ity of 7 that m_>nt — (¢ — 7) for all ¢ > 1 /9.

Next let & be the design for which §; = §, for all 2 < 7 and §; = 0 for all
k=7+1,...,t. Then M'>M + 1 and nt <M’ <nt+ 1 on {r < ¢} for all
t>1/n. Now

R,— R, =1+1II + III,
where
= t(0? — 0,2)E¢[Z2| Dy, n ],
I = ta,fz{Ef(zﬂ.@M,N) - Ef(Zf].@M,, N)}
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and
III = NC, - N'C,.

Let t > 4/7; and let m and n be positive integers for which m + n < ¢. Then,
ae.on{m_=m}n{n_=n}

42
2 _ 2 _ r r_
at a-t MNM,N'(N M)(M M)
and
I> 12—t (N -y —m) » (MM
= 2oy (N MO0 =30 2 S5 (Z5= ).
Next
IT =11, + II,,
where
2 2 2\ ¢ £
II, = o/ (O't - o )E ?(@)) -@M,N
and
4 §II § gl!
IIz = O't' Ef ?(@) '@M,N - E ?(@) DM',N' .
Here

E§(112|°@m,n) = 0’

ae. on {m,=m} N {n, =n}, since o, is measurable with respect to Z,, ,
and Z,, , € Dy yN Dy n- Moreover, there is a constant J for which
0/2 <J w.p.1 and £"(9) > —JE(8) for all 0 [see (22)]. So

2

I, > —J?2 (N'—M)(u)z —2J2(u)

NM'N' M n M

Similarly, ,
III = III, + III,,

where

I, = C(N - N') > —Jont( M - M)

M

and

E{(I1y| 2, ,) = N{E4(C|Z,,) — E4(C/| D, )} = 0
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a.e. on {m_=m} N {n, =n}. So, for all ¢ > min{4 /7, 2J2/¢},
E‘[R|D,,.] - E¢[R}|2, .| = E{(1 + 11, + I1L,|2,, )

et 2J2 ; M -M
> {T—T—Jont}E [( i ).@m’n:I
>€—tEf[(M,_M)D ]>0
z m -

ae.on {m_ =m}N{n_=n}for all m and n for which m + n < ¢. Since m

and n were arbitrary integers for which m + n < ¢, it follows easily from (23)

that P¥r <t} = 0 for all sufficiently large ¢. Condition (13) follows.
Condition (12) is now easily established. To see how, write

1
~7(8:€) = [ [92c(6) + a()]£(6) do
R

= f[‘//(qt,ct) - d’(Ct)] dP* + f[‘P(Cz) - ‘P°C(®)] dP* + ;/Ft dP*.

Now E*(IT}|*) remains bounded as ¢ — « for some a > 1, by Proposition 1,
(11) and (13). Moreover, C, — ¢(®) in P*-probability and ¢ is bounded on the
(compact) image ¢ = ¢([9, 0]) of [8, 8] under c. So the last two terms approach
0 as t — «. Next the limit superior of the left side is at most 0, by Theorem 2,
since the risk of the optimal procedure is at most the risk of the three-stage
procedure, So ¥(q,,C,) — ¢(C,) approaches 0 in probability; and this requires
q, > q°c(®) in Pé-probability, since inf{|y(p,b) — ¢(b)|: |p — q(b)| = 5,
b € €} > 0 for every 6 > 0. Relation (12) follows immediately. O

6. Remarks.

1. Together, Theorems 2 and 3 assert that one design, the three-stage
procedure, is asymptotically second-order optimal with respect to a large class
of prior distributions for squared error loss. This may be contrasted with the
estimation problem, where second-order efficiency requires knowledge of the
prior. A similar phenomenon was observed by Woodroofe (1985) for one-sam-
ple stopping problems with squared error loss.

2. If the loss structure is changed to L,(6, ) = tw(6) K[Vt (9 — 6)], where K
is as above and w is a smooth positive weight function, then Theorems 1, 2
and 3 may be applied after reparameterization. To see this, let a*(9) =
a(8)/w(6) and b*(8) = b(8)/w(0) for 6 € R. Then for any density ¢ € E;,

fRE,,{tw(O)K[\/Z(O — byn)| + Ma(6) + Nb(6)}£(6) do
= KE[RE‘,{tK[‘/Z(o — byn)| + Ma*(0) + Nb*(0)})é*(6) df),

where £*(0) o w(0)¢(0) for 0 € R and «, = [wé d6. The latter integral is the
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integrated risk for the problem in which a, & and ¢ have been replaced by a*,
b* and ¢*. So Theorems 1 and 2 are applicable to it; and Theorem 3 is
applicable if K is the square function.

3. We conjecture that Theorem 3 (and hence Remark 1) are valid for a
much larger class of loss functions.

4. We also conjecture that analogues of Theorems 1, 2 and 3 exist for the
fully Bayesian formulation of the problem in which 6 is estimated by a Bayes
estimator, although some additional terms may appear in the expansions.

5. The three-stage procedure does not specify how subjects are to be
allocated within batches. This could be done by drawing balls from an urn, in
order to preserve some blindness. It would be interesting to know what kinds
of biased coin designs could be used within batches without affecting the
expansion for the risk.

6. There is also a fully sequential procedure which may be described as
follows: First take r > 1 observations for each population; after m observa-
tions have been taken from the control and n from thg treatment, take the
next observation on the treatment iff n < (m + n)q - ¢(6,,,). It is conjectured
that this procedure has the same risk as the three-stage procedure, asymptoti-
cally to second order. It would be interesting to know whether the fully
sequential procedure is better than the three-stage procedure is any important
sense.

7. There is also a fully sequential formulation of the problem, in which a
stopping time is sought, along with the allocation rule. For squared error loss,
this degenerates into two one-sample sequential problems; but for other loss
functions, it does not.

8. In the proof of Theorem 1, it is not necessary that (13) hold for all a > 0.
If K(2) <J(1 + |z?) for all z for some J > 0 and even integer p, then it is
sufficient for (13) to hold for some a > 2 + 2p.

9. There is a corresponding first-order theory [obtainable by dividing (14) by
t] for which a two-stage procedure is asymptotically (first-order) optimal. This
theory is not pursued here, because it is nearly trivial in the present context. It
could be developed in a much more general context, however.

7. The proof of Proposition 2. The notation of Sections 1 and 2 is used
without comment. Two lemmas are needed.

LEMMA 9. « is strictly increasing and infinitely differentiable on (0, ).
Moreover,

o%'(a) = 2‘/:2(p( il ) dK(z) >0

g
and

2
k"(c) 2 ——k'(o0), Vo>0.
o
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Proor. The differentiability follows easily from the relation
w 1 (2
«(o) =2 K(z)—¢(—) dz, o>0.
0 g g
In fact, differentiation under the integral sign is permitted. See, for example,

Brown (1987), pages 34 and 35. Now d{o ™ lp(0 ™ '2)} /o = 3%p(0 ™ '2) /8?2 for all
o and z. So

(o) =2/OOOK(z)a—a;—<p(§)dz

o[ L2 ax
“2f el ) K@
0 (Z
= 20_—2]' zgo(—) dK(z),
0 g
for all o > 0. This establishes the third assertion of the lemma. That «(o) and
o 2%k'(0) are strictly increasing follows immediately; and the final assertion then

follows from

d
0< d—{(rzK'((r)} =0o%"(0) + 20«'(0), o> 0. m]
o

Lemma 10. «{y/[1/p + 1/(1 — p)] } is strictly convex in 0 <p < 1.

Proor. Let
3 3 1 1
T—T(p)— [;—FT——;}
Then
#(p) = (p-3(p), (p) =7%p) +3(p - 1)*r*(p)

d2 1 1 ” 2 ' ”
Ep—z-ic ;+?; =k"(7)1? + k' (7)1

and

T2
> K'("r){’r" - 2—}

T

= (D{r*(p) + (p — 3)*7°(p)},

where the inequality follows from Lemma 9. Since the last line is positive, the
lemma follows. O

Proor orF ProprosiTioN 2. That (p,c) = k() + ¢p is strictly convex and
twice continuously differentiable in p for each fixed ¢ € R follows directly
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from Lemma 10. Clearly,
a
gt (pr) = (p—3)r’(7) +c,

for 0 < p < 1. This is increasing in p by Lemma 10. Since 7 = o as p — 0 or
1, dy(p,c)/dp approaches —o or « as p approaches 0 or 1, by (the third
assertion in) Lemma 9. Thus, the equation dy(p,c)/dp = 0 has a unique
solution p = q(c) for all ¢ € R. Here g(c) minimizes ¢(p, ¢) by the convexity;
and the differentiability of ¢ is easily established. O
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