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A SUFFICIENT CONDITION FOR ASYMPTOTIC SUFFICIENCY
OF INCOMPLETE OBSERVATIONS OF
A DIFFUSION PROCESS

By CATHERINE F. LAREDO
Laboratoire de Biométrie, INRA

Consider an m-dimensional diffusion process (X,) with unknown drift
and small known variance observed on a time interval [0, T']. We derive
here a general condition ensuring the asymptotic sufficiency, in the sense of
Le Cam, of incomplete observations of (X,)q.,.r with respect to the
complete observation of the diffusion as the variance goes to 0. We then
construct estimators based on these partial observations which are consis-
tent, asymptotically Gaussian and asymptotically equivalent to the maxi-
mum likelihood estimator based on the observation of the complete sample
path on [0, T']. Finally, we study when this condition is satisfied for various
incomplete observations which often arise in practice: discrete observa-
tions, observation of a smoothed diffusion, observation of the first hitting
times and positions of concentric spheres, complete or partial observation
of the record process for one-dimensional diffusions.

1. Introduction. Drift estimation for diffusion processes continuously
observed throughout a time interval [0, T'] has been largely investigated with
asymptotic results as T' — « or as the diffusion coefficient goes to 0 [see, for
instance, Ibragimov and Has’minskii (1981), Liptser and Shiryaev (1977) and
Kutoyants (1984)]. However, in practice, it may be difficult to observe the
sample path of a diffusion process in every detail. We consider here an
m-dimensional diffusion process X, with an unknown parameter in the drift
function and a small known variance. Our concern is to derive a general
condition ensuring the asymptotic sufficiency, in the sense of Le Cam (1986),
of incomplete observations of the sample path (X,) on the time interval [0, T'],
as the diffusion coefficient goes to 0. For the incomplete observations of
(X,)o < < which meet this condition, we obtain estimators based on these
observations which are optimal. We then study when this condition is satisfied
for various incomplete observations which often arise in practice.

Let the diffusion model be defined by the stochastic differential equation:

(1) dX, = b(X,,0) dt + ea(X,) dW,, X, =x,

where (W,) is a standard m-dimensional Brownian motion, 8 is an unknown
parameter in the drift function b(-, 0): R™ — R™ and the diffusion matrix o:
R™ > R™ XR™, x € R™ and ¢ are known. Consider now that the sample
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SUFFICIENCY OF DIFFUSION OBSERVATIONS 1159

path X, is partially observed on [0, T'] and assume that it is possible to build
on the basis of these incomplete observations a process (Y,) defined on [0, T']
which is smooth enough and meets the condition

ConpitioN 1. suple !X, - Y,||, 0 <¢ < T} —» 0 in probability as ¢ goes
to 0.

Under regularity assumptions on the drift and diffusion coefficients, the
likelihood corresponding to the observations of (X,), ., . exists. In Section 1,
we first obtain that, when suitably normalized, the net of experiments associ-
ated with (X,) converges uniformly on the precompact subsets of ® to the
Gaussian shift experiment. Second, we prove that the logarithm of the likeli-
hood ratio may be closely approximated by asymptotically normally distributed
random vectors, which only depend on the incomplete observations (Y,) [Theo-
rem 1(i) and (ii)]. As a consequence of these two properties, we obtain that the
incomplete observations (Y}), _, .  are asymptotically sufficient in the sense of
Le Cam (1986) with respect to the complete observation of (X,),_,.r
(Corollary 1). The key tool to these results is a stochastic Taylor expansion of
(X,) in powers of ¢ which may be applied under some regularity assumptions
on b(-, - ) and o(-). The main assumption, crucial for establishing Theorem 1,
is that there exists a function V(u, ) such that

d
S V(w,60) = (o(u)o(u)) 'b(u,0)

(we note A’ the transposition of a matrix A and d/du, the partial derivative
with respect to u). We then prove in Proposition 1 the existence of estimators
based on these incomplete observations which are consistent, asymptotically
Gaussian and asymptotically equivalent to the maximum likelihood estimator
based on the observation of the complete sample path (X,) on the same time
interval. In Section 2, we study which partial observations of (X,) meet
Condition 1. This is the case for discrete observations when the sampling
interval A = A(e) is such that £ 1/2A(¢) » 0 (Proposition 2). Sometimes,
because of some recording device, one may observe, instead of (X,), a smoothed
path (Y,) which is the result of the convolution of (X,) with a kernel ¢, () =
1~ Y(t/m), where ¢ is a smooth symmetric function with compact support.
Then (Y,) satisfies Condition 1 if ¢ */?>n — 0 (Proposition 3). This condition is
also satisfied when the observations consist of the first hitting times and
positions of concentric spheres if m > 2 under the main assumption that the
solution of (1) associated with £ = 0 leaves any sphere centered at x within a
finite time (Proposition 4). For one-dimensional diffusions with positive drift
function, Condition 1 is verified when the observation is the record process
M, = sup(X,,0 <5 <t) between two prescribed levels x =X, and A > x
(Proposition 5). This observation may still be weakened without losing the
sufficiency property. Indeed, consider the data consisting of the time intervals
greater than a positive value n where M, is constant, coupled with the value
of M, on each of these intervals. Then, if ¢ %5 converges to C > 0 as ¢ = 0,
Condition 1 is met by a process (Y,) built on these observations.
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2. Asymptotic sufficiency of the observations.

2.1. Notation and regularity assumptions. Let R™ be the m-dimensional
Euclidean space and let C = C([0, + %) —» R™) be the space of all continuou
functions defined on [0, +) with values in R™. We shall denote by X, the
canonical coordinates of C, ¢, the o-field generated by (X,,0 < s <¢) and
¢ =V, %, Consider now an m-dimensional Wiener process W = (W), _ .
(i.e., each W' is a standard Wiener process and the W’s are independent), a
function b(-,0) = (b,(+, ), _,,: R™ - R™ depending on a parameter 6 and a
function o: R™ —» R™ X R™. We shall denote by P, , the probability measure
on (C, ¢') under which the canonical process X = (X,) is a time-homogeneous
diffusion solution of the stochastic differential equation (1):

dX, = b(X,,0) dt + e (X,) dW,, X, = x.

The diffusion matrix o, the positive constant ¢ and the starting point x € R™
are known, and 6 is an unknown parameter in ©®, a subset of R*. Let (D, 2)
denote the space of R™-valued functions defined on [0, +») which are left-
continuous with right-hand limits, endowed with the o algebra 2 generated
by the Skorokhod topology on each compact set [see Billingsley (1968)]. We
shall only consider in what follows incomplete observations (Y,),_, ., of the
sample path (X,), _,_, which fulfill the condition

(2) (YDocter =F((X,)o<s<r) with F:(C,¢) - (D, 2) measurable.

We shall use Condition 1 on the incomplete observations (Y,),_,_7:

ConpitioN 1. Forall 8 € 0, sup, _,_7|(Y, — X,)/¢| — 0 in P, ,-probability
as ¢ — 0.

We shall denote by x,(¢) the solution of (1) associated with & = 0:
(3) dxy(t) = b(x,(2),0) dt, xy(0) = x.

The Fisher information matrix corresponding to the observation of (X,),_, .
is

db(xy(5),0)\ _1[ 96(xe(s5), 0
@ o) = [T RO g P20 ) as,
with
(5) e(u) = o(w)o(u),

where (9b(u, 6))/36 denotes the m X k matrix containing the partial deriva-
tives (0b,(u, 0))/367), _ . ; - Let 8, be the true value of the parameter.

AssuMPTION 1. The functions b(u,0) and o(u) have continuous partial
derivatives in R™ X Int(®) up to order 2 [Int(A) is the interior of set Al.
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AssuMPTION 2. For all § € 0, there exists a positive constant K, such that
for all © in R™,

16Cu, O)1I” + llo(w)lI” < Ky(1 + fluf?).

(Il - || denotes the Euclidean norm of R™.)

AssuMPTION 3. There exists V: R™ X ® - R such that V(x,6) = 0 and
(V(u,0))/0u = e(u) 1b(u, 0).

AsSsUMPTION 4. O is a compact subset of R*, 6, € Int(®).
AssuMPTION 5. For all 6 # 6’ in 0, b(x,(+), 8) # b(x,(+), ).

AssUMPTION 6. The k& X k matrix I,(0) defined in (4) is positive definite on
Int(0©).

Assumptions 1 and 2 ensure in particular that the solution of (1) is a strong
Markov process with continuous sample paths uniquely determined on [0, + ©)
and with infinite explosion time [see, for instance, Ikeda and Watanabe (1981)].
When the sample path (X,) is continuously observed on [0, T'], Assumptions 1,
2 and 4-6 are standard and ensure that the statistical diffusion model is
regular. Assumption 3 is specific to the situation of incomplete observations
and is crucial for establishing Theorem 1.

Under Assumptions 1 and 2, the probability measures P, , and P, . are
equivalent on ¢ and the logarithm of the likelihood ratio is

6g, ¢

6 1 By,
(6) gl o5

57) =2.(0) —A.(8,)
with

(1) A(0) = 8—2(/0T(e(xs)"1b(xs,9)) -dX, - éfoTu(Xs,o) ds),

where - denotes the inner product of R™ and v(u,#) is the real valued
function defined by

(8) v(u,8) =b(u,0)/e(‘u)_1b(u,0).

In order to study the properties of the net of experiments P,y .,0 €0),_,at
point 6, we need the following notations. Let A be a ball B(6,,r) = {z € R,
lz — 8ol < r} such that A is included in ®. Under Assumption 6, the matrix
1(8,) is symmetric positive definite. Denote by 1(6,)~/? the symmetric posi-
tive square root of 1(6,) ! and define the net of experiments:

(9) é = {(QZ,{-‘)’ zE A}F>O’ WIth QZ,E = P00+t‘1(60)71/22,5|57"
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The logarithm of the likelihood ratio associated with & is

(10) log( Q... ) = A(2) = A,(00 + eI(85) "%2) — A,(6,).
dQO,E

Now, let G, be the standard Gaussian distribution of R* [G, = .#1(0, I,,) if I,
is the k& X k identity matrix] and let G, be G, translated by z. Then &=
{G,, z € R*} is the standard Gaussian shift experiment of R*.

In what follows, we use a stochastic Taylor expansion of X, in powers of ¢
due to Azencott (1982) [see also Freidlin and Wentzell (1984), with stronger
assumptions on the drift and diffusion coefficients].

THEOREM A [Azencott (1982)]. Under Assumptions 1 and 2, there exists a
continuous centered Gaussian process (g,(t)),. o and a process R (t) such that
forall t > 0,

X, =x,(t) + egy(t) + e2R,(t) with lim Pe,s(sup”R,,(s)” > r) = 0.

e—0,r-> +x s<t
If (3b6(u, 0)) /du denotes the m X m matrix composed of the partial deriva-
tives (9b,(u, 8))/du ;, the m-dimensional Gaussian process g,(t) is defined by

ab(xy(2), 9)
d

(11)  dgy(2) = 8o(2) dt + o(x,(2)) dW,,  £,(0) = 0.

2.2. Asymptotic sufficiency of the observations. We can now study the
statistical properties of the incomplete observations (Y,). Under Assumption 3,
we can define using (4) and (8) the net of centering variables with values in R,
(Z,), » o, which depend only on (Y,),_,_ 7

WV(Yr,6,) 1 rdu(Y,,0,)
Wr.0) L protfo) )
i) 279 a0

We are now in a position to state the main result of this section which is as
follows:

(12) Z, = 8-11(00)‘1/2(

THEOREM 1. Consider Assumptions 1-6. Then,

(i) The net of experiments &, = (Q, .,z € A}, . , converges uniformly on the
precompact subsets of A to the restriction to A of the standard Gaussian shift
experiment % as € — 0. .

(ii) Moreover, if (Y,),.,.r meets Condition 1, one has, for all precompact
subsets S of A,

(13) VzeS, AJ(z2)=2Z —|z?°/2+R(¢,z,0,),
with
(14) Z(Z.|P,, ) > #(0,1,) ase—0,

(15) sup|R(£,z, 00)| — 0 in P, -probabilityase — 0.

zeS
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CoroLLARY 1. Consider Assumptions 1-6 and Condition 1. The observa-
tions (Y,,0 < ¢t < T) are then asymptotically sufficient in the sense of Le Cam
(1986): If &, denotes the o field generated by Z,, there exists a family of
probability measures on €y, {Q] .,z € A}, ., such that:

(a) For the family (Q, ), the o field B, is sufficient.

(b) For all precompact sets S C A, one has lim, _,sup,.5Q.. — Q. .|| =0,
where || - || is the L' distance between two probability measures.

(c) On the o field %,, measures Q. , and Q, , coincide.

(d) The vectors (Z )8 o behave as a dzstmguzshed sequence of statistics.

Proor oF THEOREM 1. (i) Clearly, property (i) implies that the family (P, ,)
is locally asymptotically normal in the usual sense. This is a known result [see,
for instance, Kutoyants (1984), with the stronger assumption that the drift
and diffusion coefficients have bounded continuous partial derivatives up to
order 2]. However, in what follows, we need all the properties contained in (i),
which are obtainable only under Assumption 1.

To avoid trivial complications, all the results proved in this section will be
obtained in the case m = 1. The case m > 1 is just a repetition.

Let us define the random vectors:

ab(X,,0,) (dX, — b(X,,0,) d
(16) Z€=I<oo)‘”2(ff s )( ((X)Q) ))
o s 1<j<k

According to Le Cam [(1986), chapters 10 and 11], (i) will be proved if the
following properties hold for the logarithm of the likelihood ratio: For all
precompact subsets S of A, one has

(17) VzeS, AJ(z)=2'Z —|z|?>/2+ R(e,z,0,),

with

(18) L(Z,|Py, ) = #(0,1,)

and

(19) sug|R(e, 2,05)| > 0 inP, -probability as e — 0.
ze

Let us first prove (18). Since diffusion (X,) satisfies (1), Z, verifies
b(u, )
a0

By Theorem A, the quantity (/|| f(X,, 8,) — flxy (s), 00)||2 ds) converges to 0
in P, _-probability and therefore Z, converges under P 9, L0 the variable
16, ) 1/2[0Tf(x0 (s),8,) dW,, which is Gaussian with mean 0 and covariance
matrix I,. Developmg now b(X,,60) in Taylor series, the remainder term
appearing in (17) may be expressed as

R(E)Z) 00) = %Zi(Al +A2 +A3)Z,

(20) 2, = 1000) ™% [T(X,,8,) AW, with f(x,0) = o(u) "
0
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where the matrices A, are defined by
2
B T _1f 19 b(X,,0, + etz)
Al—sfo a(X,) (j(; 297
°b(X,,0, + €tz)

T ds 1 ’
Ay [y [ (6K 00) 0,0y + et T

t| dW,

s

Ag = fT(H(er(s), 00) H(X,,0,+ stz)) ds
0
with

H(u,6) 1 6b(u,0)(6b(u,0))‘

o(u)? 96 a6
The first term A; = A(¢) is a martingale with respect to <,. Therefore, by the

Lenglart domination property [see, for instance, Jacod and Shiryaev (1988)],

one has
2

n o
v h,'rl > 07 Po,s(”Al” = h) < Pg,g(”BIH > 17) + 7 with
ds 2b(X,, 0, + etz) \°
B1=£2fT Zfl ( g )dt .
0 o(X;)* Yo a6
Define the set, for § > 0,
(21) Cs =| X, — x,(s)| < 6.

By Theorem A, Po _(Cy) converges to 1 as ¢ goes to 0. On Cj, the norm of B,
is bounded by & 2Tk 1» where K, is a constant depending on T, 6,, r and 8
Similarly, ||A,|| is bounded on C by eTK,(T, 6,,r,8) and || A,|| by

0H(u,0) dH(u,0)

|Xs - xoo(s)| sup | ——— + er sup ———”,

(u,0)eB u (u,0)€B

where B is the compact set U, _rlxy(s) — 8,x,(s) + 8] X (||0 — 6| < r).

Combining these inequalities, one obtains that condition (19) is fulfilled by the
remainder term. This completes the proof of (i).

(ii) Clearly, to obtain (ii), it suffices to show that the difference || Z, — Z,| —

0 in Py . -probability as ¢ — 0 uniformly for z € S. By the It6 formula, one

has

77 - 1[0V(XT,00) B aV(YT,OO)]
e ) 26
T ab(Xs’OO) b( 0) 3b(Ysy00) b(}7s700) d
2 —?fo( s A A

e .70 1 b(X,,0) 9
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Therefore, ||Z, — Z,|| is bounded from above by

Yt - Xt
(23) sup (W, + W,) + eTW,
0<t<T €
with
82V(Xs’00)
W, = su _—,
' tsT,(?e@ du 96
3 1 9b(X,,06,)
W, = sup — 3 ,
t<T,0c0 || 9% | 0 (X,) a0
3 1 b( X, 0,) 9
Wy= sup |— o(X,)"|.
2 s<T,0€0 du (O'(Xs)2 a0 ( )

It follows from Theorem A that the three random variables appearing above
are bounded on the set C; defined in (21) by constants which are independent
of z. Therefore, joining this with Condition 1 yields the uniform convergence
to 0 of ||Z, — Z_|\. This completes the proof of Theorem 1. O

Proor oF COROLLARY 1. Since the net of experiments & verifies Theorem
1(3) and (ii), Theorem 10.1 of Le Cam (1986) applies. This leads to properties
(a), (b) and (c): Here, the incomplete observations (Y,,0 < ¢ < T') are asymptot-
ically sufficient in a very strong way. Let us now study (d). At first glance, the
experiments obtained by observing only (Y,) are weaker than the experiments
&,. However, we obtain here that the net of statistics Z, form as good an
experiment as &.. According to Le Cam, this characterizes ‘‘distinguished
statistics.” For a precise definition, we refer to Le Cam [(1986), Chapter 7,
Section 3]. Now, property (d) holds for the (Z,), . ,, if the probability distribu-
tions @, . and @, , asymptotically satisfy: For all precompact subset S of A,
one has

(24) VzeS, limsup{k*Q,.,Q,.) —**(Q...Q.)} <0,

e—0,c9

where k%(-,-) is the following yx2-type distance between two probability
measures P and @:

(dP - dQ)*

. 1
k (P’Q)=§f d(P+Q) °

Now, one has

RA(Q...Qo.) — k@, Q) < k(Q..,QL.) + k(... Q).),
KA(P,Q) < |P - Q..

Therefore, (d) is merely here a consequence of (b).
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An expected consequence of Corollary 1 is that all tests or estimates based
on (Y)y_,.r will perform as well as those which could be obtained with
(X,)o <, <- Here, we shall only study estimators based on (Y,), _, _ . For this,
let us define the approximate likelihood:

L.(6) =1.(6) —1.(6,),

(25) )?

with 1(0)—i V(Yr,0) — 2fTb((Y) ds |.

Using now (6), (7) and (25), we can successively define the maximum likelihood
estimator 0 of § and a pseudo-maximum likelihood estimator 6, by the
equations

(26) supA,(6) = A.(6,), supL.(8) =L.(6,).
6O 606

Note that they are well defined under Assumption 4. O
The properties of 58 may be summarized as follows.
ProposITION 1. Under Assumptions 1-6 and Condition 1, the following

properties hold:

(a) For all h > 0, P,_ E(||0 0ol > h) = 0as e - 0.
(b) L(e~X0, — 00)|P0 D)= A0, 10 D as e > 0.
(¢) 6746, —6,) > 0in P,  .-probability as ¢ — 0.

Proor orF ProposiTION 1. (a) Let us first define
(27) D, ={|Y, —x,(s)|<8,0<s<T} and U,(0) = —£2L,(6).

By Theorem A and Condition 1, P, (D;) — 1 as ¢ converges to 0. Hence,
U,(6) converges in P, -probablhty to the function K (6,, 6) defined by

K(6,,0) = V(x(,o(T),OO) - V(xoo(T)’ ‘9)

__}_.[Tb(x,,o(s),oo)z—-b(x,,o(s),o)2
27 (T(;wcf,o(s))2

1 IT(b(x%(s),‘ao) ~bs2).0))"
27 a'(xao(s))2

The identifiability assumption (Assumption 5) ensures that the function
K(6,, - ) is positive for all  # 6, and null at 6,. Hence, the random function
U.(6) is a contrast function in the sense of Dacunha-Castelle and Duflo [(1983),
Chapter 3]. The function 6 — K(6,, 6) is continuous. Therefore, according to
Dacunha-Castelle and Duflo (1983), the consistency of 6, holds if the continu-

(28)
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ity modulus of U/(8), w(U,,n) = supy_g <,|U.8) — UL8)], is such that
(29) Va>0,3n7 >0, lin(l)Poo,s(w(Ug”’?) >a)=0.

Clearly, U, verifies
Y,,0)" - b(Y,,0)’|
5 ds
20(Y,)

Let K={x,5),0<s<T,0c0land K; ={xcR™, A yeK |y —x| <8}
On the compact set K; X 0O, b(u, ) is uniformly continuous, hence the two
quantities

|U.(6) -

b
<|V(Yy,0) — V(Yy,8)| + [OT‘ (

B(n) = sup sup |V(u,0) — V(u,0)],
Ky [0=0li<n

b(u,0)® — b(u,0)?
o(u)?

y(n) = sup sup
K |16—0'|<n

satisfy
lim B(n) = lim y(n) = 0.
n—-0 n—0

Therefore, on the set D; defined in (27), one has w(U,,n) < B(n) + $Ty(n),
which implies (29).
(b) To study 6., let us use the classical decomposition of U, for j = 1,..., k:

100, 1k U
(30) 0= ;W(OO) + z Z ( 00)30160‘](00) + Rl j(OO’ £ 00) ’

where the remainder term is

1 (92U€(0 + Sh)
RM(O, h) = 4/(; W ds.
Using this decomposition, the proof is straightforward since ¢~ 10U, /00X 8,) =
—1(0,)'/%Z,, which converges to .#(0,1(8,) as & — 0, by Theorem 1(ii).
Applying now Theorem A and using Condition 1, one easily obtains that
((3?U, /96" 967 X0,)); < ;. ; < », converges to I(6,). Therefore, (30) yields

(31) e 16, — 6,) =1(8,)"°Z, + op, (1),

where 0p(1) denotes a remainder converging to 0 in P-probability.

(c) Tt follows from Theorem 1G) that £, — 6,) = I(6,)/?Z, + 0p,, (D).
Hence, one has ¢ 46, — 8,) = I(0)VXZ. — Z,) + op, (1). The proof of Propo-
sition 1 is achieved using Theorem 1Gi). O

3. Incomplete observations of (X,),_,_, satisfying Condition 1.
Let us now present various examples of incomplete observations satisfying
Condition 1. For simplicity’s sake, parameter 6 will be omitted when possible.
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3.1. Discrete observations of the sample path. The sampling interval is A;
the observations therefore consist of (X,,)o ., <y, Where N = T/A. Let f be
an arbitrary function defined at the points kA, £ =0,..., N, with values in
R™, and associate with f the interpolated function f2:[0,7] — R™ defined
as

A (¢t — kA)
FA(E) = F(RA) + ————(F((k + DA) — f(kA))
for kFA<t <(k + 1)A.

From the discrete observations X, ,, we can define the process

(33) (Yt)ostsT = (XtA)OstsT'

(32)

ProposiTION 2. Consider Assumptions 1-3. Then, if A = A(e) satisfies
£ ?A(e) > 0 as & — 0, the interpolated process (Y,)y_,.r defined in (33)
meets Condition 1.

Proor. The stochastic Taylor expansion of (X,) given in Theorem A yields
Y, - X, = x%(t) —x(t) +e(g2(2) — g(2)) + e2(RE(¢) — Ry(2)),

where x2(+), g2(-) and R5(-) are, respectively, the interpolated functions on
[0, T] of x(-), g(-) and R,(-). Set w(g,A) = supit-s/<ag(t) — g(s)|. One
easily checks that

Iy, - X,|| A
—— < — sup
€ [0,1)

d%x

57 (s)

(34) d?t

+ 2w(g,A) + 4 sup |eRy(2)].
[0,T]

By Assumption 1, the norms of the m X m matrices d2x/dt*(s) are uniformly
bounded on [0, T']. The process g(¢) is continuous and sup(|le Ro(t)[,0 <t < T)
converges to 0 by Theorem A. Therefore, if the sampling interval A satisfies
e ?A - 0, inequality (34) leads to Proposition 2. O

REMARK 1. From (34), one may observe that the order of magnitude of A
with respect to ¢ is given by the goodness of the approximation of x(:) by
x2(+), which clearly can be improved if the drift 5(x) is in C*(R™). Here, we
only determine a sufficient condition for the asymptotic sufficiency of discrete
observations. Using another method which takes into account the stochastic
structure of these observations, Genon-Catalot (1990) has obtained the opti-
mality of estimators based on discrete observations of (X,),_,_ for one-
dimensional diffusions having ¢ for diffusion coefficient when the sampling
interval satisfies A = €%, 0 < a < 2.

3.2. Smoothed or filtered diffusion. In practice, it often occurs that, be-
cause of some recording device, a smoothed path (Y,), _, . is observed instead
of (X,)y -, < - This is not, strictly speaking, an incomplete observation of (X,).
Usually, the smoothing of the sample path occurs in the following way. Let ¢
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be a nonnegative function belonging to C/(R,R), I > 2, with compact support
included in [—1, +1] and such that [T]e(¢)dt = 1. Set ¢, (t) = (1/7)e(t/7).
We assume that one observes on [0, T'] the process (Y,) defined by

T
(35) Y, = X7 = (¢, X), = [ o,(t =) X, ds.
The process (Y,) is also called a filtered diffusion.

PropPoSITION 3. If ¢ is symmetric, and ¢ Y25 >0 as ¢ > 0 [resp.,
*lve(v)dv # 0 and e~ 'n — 0], then the process (Y,)y ., r, defined by (35),
satisfies Condition 1.

Proor. It is similar to the proof of Proposition 2. O

3.3. First hitting times and positions of concentric spheres. Assume that
m > 2 and recall that X, = x. Let r > 0. The first hitting time of the sphere
S(x, r) by the m-dimensional diffusion (X,) is

(36) T.=inf{t > 0,| X, — x| = r}.

Under Assumptions 1 and 2, T, is almost surely finite.

Let R > 0 be a prescribed positive number and consider now the incomplete
observations of (X,) consisting of (T,, X5 ) for 0 < r < R. We shall compare
these observations to the complete observation of (X,) between 0 and T%. For
this, let us define

(37) r,= sup |X, - x| andset Y,=X; for0<¢<Tg.
O<s<t 4
ASSUMPTION 7.
VOO, V>0, (xo(t) —x)-b(xy(t),0)>0.

This ensures that x,(¢) leaves any sphere centered at x within a finite time.

ProposITION 4. Under Assumptions 1-3 and 17, the process (Y))o., 1,
defined in (37) meets Condition 1 on the time interval [0, Tk].

Proor. The process (T,), . , is left-continuous with right-hand limits and
so belongs to D. The mapping: (X,),., — (T,), ., is measurable from (C, ¢)
into (D, 2) since the mapping (X,) — T, is measurable and 2 is generated by
its natural projections. Condition 1 is contained in Genon-Catalot (1989) in a
different formulation and framework. Indeed, if ¢ is a smooth function,

D,(¢) = e‘l(/;TR<p(XS) ds — -/[o R)‘P(XTr)dTr) isan op(1l) as e — 0.

Condition 1 is obtained using that [0, Tr] = U, ., < [T, T,+] and that Y, = X,
OnTrStSTr+. O
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ReEMARK 2. The statistical study is not modified by the fact that the
observations are taken on a random time interval. Indeed, (6) and (7) are still
valid if one substitutes T' by T, since for all § € 0, P, (T; < ©) = 1. The
Fisher information matrix is taken in this case on time interval [0, t,,o(R)],
where ¢,(R) = lim, _,,Tg in P, -probability.

3.4. Record process for a one-dimensional diffusion. In the case m =1,
an incomplete observation of (X,) which occurs in practice is the record
process of diffusion:

(38) M,= sup X,.

O<s<t
Let A > x = X, and denote by T, the first hitting time of a level a > x:
(39) T, = inf{¢t > 0, X, = a}.

We shall compare the observation of (X,) on [0, T,] with the observation of
(M,) on the same time interval.

AssUMPTION 8.
VueR,V0e0O,b(u,b) >0.

ProprosITION 5. Consider Assumptions 1, 2 and 8. Then the process (M,)
defined in (38) fulfills Condition 1 on time interval [0, T,].

Proor. See Genon-Catalot and Laredo (1987). O

REMARK 3. Under Assumption 8, one has that for all 6 €0, T, is P, ,
almost surely finite. Therefore, the statistical analysis on the random time
interval [0,7T,] may be done as in Remark 2, the information matrix being
taken between 0 and #,(A) = lim, |, T, in P, ,-probability.

REMARK 4. Truncated observation of the record process. Like the original
diffusion, the record process might not in practice be observed in every detail.
The sample path M, is nondecreasing and almost everywhere constant. Let 7
be a given positive constant. A natural incomplete observation of the record
process is therefore composed of the data consisting of the time intervals
greater than 7, where M, is constant, coupled with the value of M, on each of
these intervals. The following question then arises: How much is it possible to
impoverish these observations (i.e, which are the greatest values of 7) without
losing the asymptotic sufficiency property on [0,T,]? One can prove [see
Laredo, 1989]:

() If n = n(e) satisfies ¢ 2n(e) > C = 0 as ¢ — 0, there exists a process
(Y,) built on these observations which fulfills Condition 1 on the time interval
[0, T,].
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(i) If n = &%, @ < 2, there exist examples where all information about 6 is
lost.

Here, using the method presented in the above section, one improves a
previous result obtained in Genon-Catalot and Laredo (1990), where asymp-
totic sufficiency of these observations had been obtained for n = &%, with
a > 4.
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