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BOUNDS ON THE EFFICIENCY OF LINEAR PREDICTIONS
USING AN INCORRECT COVARIANCE FUNCTION!

By MicHAEL L. STEIN

The University of Chicago

Suppose z(:) is a random process defined on a bounded set R c R!
with finite second moments. Consider the behavior of linear predictions
based on 2(¢,), ..., 2(¢,), where ¢,,t,,... is a dense sequence of points in
R. Stein showed that if the second-order structure used to generate the
predictions is incorrect but compatible with the correct second-order struc-
ture, the obtained predictions are uniformly asymptotically optimal as
n — . In the present paper, a general method is described for obtaining
rates of convergence when the covariance function is misspecified but
compatible with the correct covariance function. When 2z(-) is Gaussian,
these bounds are related to the entropy distance (the symmetrized Kullback
divergence) between the measures for the random field under the actual
and presumed covariance functions. Explicit bounds are given when R =
[0,1] and 2(-) is stationary with spectral density of the form f(A) = (a® +
A2)~P where p is a known positive integer and a is the parameter that is
misspecified. More precise results are given in the case p = 1. An applica-
tion of this result implies that equally spaced observations are asymptoti-
cally optimal in the sense used by Sacks and Ylvisaker in terms of maximiz-
ing the Kullback divergence between the actual and presumed models when
z(+) is Gaussian.

1. Introduction. This paper continues the investigation on the effect on
optimal linear predictions of misspecifying the second-order structure of a
random field begun by the author in previous works [Stein (1988, 1990)]. In
particular, a new bound on the efficiency of predictions with an incorrect
covariance function that is compatible (defined below) with the actual covari-
ance function is given. Furthermore, explicit bounds are obtained for some
simple one-dimensional processes. The general setup will be the same as in
these previous works: We suppose z(-) is a continuous random field with finite
second moments defined on a bounded region R < R¢, and we consider the
properties of linear predictions of z(-) based on an increasing number of
observations in R. If the mean and covariance functions of the process are
known, then optimal linear predictors based on a finite number of observations
can be readily calculated; they are just the generalized least squares predictors.
For example, if Z, = (2(¢,), ..., 2(¢,)), then the optimal linear predictor of
2(t,) is

Ez(ty) + cov(2(ty), 2, )[eov(Z,, 2,)| (2, - EZ,),

Received August 1988; revised April 1989.

'Author supported by a NSF Mathematical Sciences Postdoctoral Research Fellowship.
Manuscript prepared using computer facilities supported in part by NSF Grants DMS-86-01732
and DMS-84-04941 to the Department of Statistics at The University of Chicago.

AMS 1980 subject classifications. Primary 62M20; secondary 41A25, 60G60.

Key words and phrases. Spatial statistics, approximation in Hilbert spaces, Kullback diver-
gence, design for time series experiments.

1116

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIK@J:Y

%5

o 2

®

WWw.jstor.org



EFFICIENCY OF LINEAR PREDICTIONS 1117

assuming the matrix inverse exists. In practice, the mean or covariance
function is at least partially unknown, so it is important to know how
predictors generated using an incorrect mean or covariance function perform.
Throughout this paper, we will assume the mean function is correctly specified
and set it, without loss of generality, to be identically 0.

Suppose K,(s,t) and K (s, ) are two continuous positive definite functions
on R X R. For i =0,1, corresponding to K, there is a unique Gaussian
measure P, on the space of functions on R possessing mean 0 and covariance
function K;. We say that K, and K, are compatible on R if P, and P, are
mutually absolutely continuous. See Stein (1988, 1990) for further discussion
on the compatibility of covariance functions and Ibragimov and Rozanov
(1978) and Yadrenko (1983) for results on the mutual absolute continuity of
Gaussian measures. For example, suppose K,(s,t) = K (s —t) and K(s,¢) =
K (s — t) are homogeneous covariance functions for processes in R' with
spectral densities f, and f, respectively, and R is any finite interval. Then by
Theorem 17 in Chapter 3 of Ibragimov and Rozanov (1978), sufficient condi-
tions for the compatibility of K, and K; on R are

0 < liminffy(A)X < limsup fy(A)A < o,
A—®

A— o0

for some v > 1 and

(1.1) f ) d\ <,

A|>s

(fo()\) — f1(2)
fo(X)

for some s < «. Suppose ?;,¢,,... is a dense sequence of points in R, and we
observe a zero-mean random process z(:) (not necessarily Gaussian) at
ti,...,t,. Furthermore, suppose K, is the covariance function used to gener-
ate predictions, K is the actual covariance and K, and K, are compatible on
R. For a covariance function K(s,t) on R X R, let H(K) be the Hilbert space
of random variables generated by z(¢), t € R, with respect to the inner product
defined by K. More specifically, H(K) consists of all random variables of the
form a,2(s,) + -+ +a,z2(s,), where s,,...,s, €R, plus all L? limits of
these random variables assuming cov(z(s), z(¢)) = K(s, ¢t). We will also use K
to denote the covariance operator on elements of H(K), so that &, h, € H(K)
implies K(h,, hy) = cov(h, hy). In particular, K(z2(t,), 2(t,)) = K(t,,t,), where
K is interpreted as an operator on H(K) X H(K) on the left-hand side and as
a function on R X R on the right-hand side. The compatibility of K, and K,
implies H(K,) = H(K,) [Ibragimov and Rozanov (1978), page 71]. Stein (1990)
showed that the supremum, over all elements of H(K,), of the mean square
prediction error using the incorrect K, divided by the mean square error of
the optimal prediction based on K is bounded by a quantity tending to 1 as
n — o, However, Stein (1990) only obtained rates of convergence when the
mean function, and not the covariance function, is misspecified.

In the present paper, explicit bounds when the covariance function is
misspecified are given for the first time. In Section 2, a different bound on the
efficiency of predictions under an incorrect covariance function is given. When
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the process is weakly stationary, this bound can be expressed in terms of how
well an element of an appropriate Hilbert space can be approximated by an
element of a subspace generated by the observations, thus providing a general
approach for calculating the bound. The bound can be related to the Kullback
divergence and the variation distance between the zero-mean Gaussian mea-
sures with covariance functions K, and K. An explicit bound is obtained in
the case R = [0, 1] and the two spectral densities are f,(A) = (a® + A?)"? and
f1(A) = (b2 + A%)™P, where p is a positive integer. It is shown that if z(-) and
its p — 1 mean square derivatives are observedat 0 = ¢, <¢, < -+ <t¢, =1,
where the maximum gap between observations is O(n~1), then the relative
increase in prediction error variance caused by using the wrong spectral
density is O(n~™"3.2P) This rather fast rate of convergence suggests that for
purposes of predicting z(-) on [0, 1], the penalty for misspecifying a is very
small.

When p = 1, the inverse of the covariance matrix of the observations can be
written down, allowing for much more precise calculations. In particular, an
asymptotic expression of the Kullback divergence between the Gaussian mea-
sures with spectral densities f, and f; based on n observations on [0, 1] is
derived. An application of this result to the problem of choosing the observa-
tion points to maximize the Kullback divergence is given. This problem is
similar to one considered by Sacks and Ylvisaker (1966, 1968, 1970) on
designing time series experiments to obtain the best estimates of regression
coefficients. In Section 5, it is shown that equally spaced observations are
asymptotically optimal in terms of maximizing the Kullback divergence be-
tween the observations. This appears to be the first such result on asymptoti-
cally optimal designs of time series experiments for distinguishing between
two stationary covariance functions.

2. General results. Suppose K, and K, are compatible covariance oper-
ators on a separable Hilbert space H(K,). Let z,, z,, ... be a linearly indepen-
dent basis for H(K) and take Z, = (z,,..., z,). Using the same notation as
Stein (1990), for A € H(K ), define e,(h,n) to be the error in predicting A
based on Z, assuming K, is the covariance operator, e;(h,0) = h, and let E,
denote expectation under K;. Define

Ey(e,(h,n) - eo(h,n))2

PR TS
5 (h) = E(eg(h,n) _el(h’n))z
&) = Elel(h’n)z ’
b.(h) = Eiey(h, n)2 — Eoeo(h,n)2 ’

Eoeo(h,n)2
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and
5 (h) = Egey(h,n)” - Elezl(h,n)z’
Eie(h,n)
where 0/0 is taken to be 0. Note that
(2.1) 1+a,(h) =Eyi/Ee,

which follows from the fact that ey(k,n) and e(k,n) — ey(h, n) are uncorre-
lated under K,. Thus, a,(h) measures the relative increase in the mean
square prediction error caused by using K, to define the linear predictor when
K, is the correct covariance function. Further note that e (%, n) is unchanged
when K, is multiplied by a positive constant, so that all results in this paper
on a,(h) that hold when K, and K, are compatible still hold when aK, is
used to define e (h,n), where a is a positive constant. Again taking K; to be
the presumed covariance operator and K, the actual covariance operator,
b,(h) measures the difference between what we think the mean square predic-
tion error is, E,e?, and what it actually is, E,e?, relative to what we think it is.
Stein (1990) showed

lim sup a,(h) =0
n=% heH(K,)

and

lim sup [b,(h)|—0
n=% peH(K,)

and the analogous results for @,(h) and b,(h). The purpose of this section is
to derive new upper bounds on a,(k) and b,(A).

Let us define b, = b,(z,.,) and b, = b,(z,.,), and

n-1
M, = Y (b+5).

ji=0

Now, K, and K; compatible implies there exists a constant 1 < ¢ < « such
that

(2.2) c '<Eh*/E R < c,
for all h € H(K,).
THEOREM 1. For K, and K, compatible and satisfying (2.2),

imM, =M= Y (b;+b;) exists
j=0

and for n > 0,

(2.3) sup a,(h) <i(c+1)(M-M,)
heH(K,)
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and

(2.4) sup b,(h)* < 2(M - M,)max{1,2(M - M,))}.
heH(K,)

Analogous results hold for @, (k) and b (k).

Define V, to be the covariance matrix of Z, under K, and W, the
covariance matrix of Z, under K. The linear independence of z,, z,, ... imply
V., and W, are invertible for all n. The following lemmas will be useful in
proving Theorem 1.

Lemma 1. For K, and K, compatible and n > 0,

b, +b, = tr(V, = Wo L ) (W,oq — Vi)
= te(V, = W (W, - V),

where tr(Vyt — Wy (W, — V,) is defined to be 0.

(2.5)

Proor. The right-hand side of (2.5) equals
-2+t V, W,  —tr VW, + tr WLV L —tr WV,

so it suffices to show

(2.6) b,=—-1+trV;}W ., —trV,'w .
Let
_ Vn Vn+1
Vi1 = (Vé+1 Un+1)’

and partition W, similarly. Using the formula for the inverse of a parti-
tioned matrix,

-1 -1
trVn+1Wn+1 - trVn Wn
— _ -1 -1 1 _
- (vn+1 Vr/l+1Vn vn+1) ( n+1 WV 2“771+1V v, n+1 + Wy, 11
But
Eqeq )= Vs — ViVt
0€olZ, 411,70 =Vii1 Vat+1Yn Vit1
and
2 1
Eieg(2,41,1) _El(zn+1_vn+lv Z )
— -1 - _ —1
_vr:+1Vn WnVn Vitl 2wr;+1Vn Vn+1+wn+1’

so0 (2.6) and the lemma follow. O

Lemma 2. For K, and K, compatible and n > 0,

sup (b,(h) +b,(h))<M-M,.
heH(K,)
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Proor. Using the compatibility of K, and K, along with Lemmas 4.4 and
4.5 and Theorem 4.3 in Kuo (1975), it follows that tr(V,; ! — W, IXW - V)
increases monotonically in n to a finite limit. From Lemma 1, we see that this
limit is given by M, thus establishing the first claim in Theorem 1. H(K,)
separable implies that M is the same for any linearly independent basis for
H(K,). For h € H(K,) satisfying Ege,(h,n)* > 0, we can choose
2, .9,2) .3,... such that z,,...,2,,h,2/ 9,2/, ,3,... forms a linearly indepen-
dent basis for H(K,). The monotonlclty of tr(V; ! — W)W, — V) implies
that (b, + b ) > 0 for all j, and it follows that

0<b,(h)+b,(h)<M-M,.
Since this inequality trivially holds when E e, (h,n)? = 0, the lemma obtains.
O
ProOF OF THEOREM 1. By definition of b,(k) and b,(k) and (2.1),
E.ey(h, n)? Eye,(h, n)?
Eyeq(h,n)? Ee(h,n)?
(1+d,(h))1+a,(h)).

(1+b,(~))(1 +b,(h)) =

Thus,

(2.7) a,(h) <b,(h) +b,(h) +b,(h)b,(h).

Using (2.2), it follows that b,(h) and b,(h) are bounded above by ¢ — 1 and
(2.8)  b,(h) +b,(h) +b,(h)b,(h) <3(c+1)(b,(h) +b,(R)).

Combining (2.7), (2.8) and Lemma 2, (2.3) obtains. Since b, + b, — 0 as
n — oo, for any £ > 0, 2(c + 1) can be replaced by 1 + ¢ for all n sufficiently
large in (2.8) and (2.3).

From Lemma 2 and (2.7), we have

M-M,>b,(h) +b,(h) > —b,(h)b,(h).
If b,(h) and b,(h) are both nonnegative,
M-M,>b,(h) >0.

Now b,(h) + b,(h) is nonnegative, so b,(k) and b,(h) cannot both be nega-
tive. Suppose b,(h) > 0 and b,(h) <0, so that |b,(h)/b (R)| = 1. If
b,(h)/b,(h)| = 2, then

M-M,>b,(h) +b,(h)=3%b,(h) >0,
and if 2 > |b,(h)/b, (k)| > 1, then
M~-M,> -b,(h)b,(h) > b (h)°.

Finally. suppose b,(h) <0 and b, (h) >0, so that |b,(h)/b (k)| > 1. If
16,(h) /b (h)| > 2, then

M-M,>b,(h) +b,(h) = —b,(h) >0,
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and if 2 > |6,(h)/b,(h)| = 1, then
M-M,> -b,(h)b,(h) =b,(h)>

Combining these inequalities, (2.4) obtains. O

3. Distances between equivalent Gaussian measures. If the process
in question is in fact Gaussian, then M — M, can be interpreted as a measure
of the information in z,.,,2,.,,... not contained in Z, for distinguishing
between P, and P;. The purpose of this section is to relate M — M,, to more
familiar measures of distances between probability measures. Thus, the bounds
obtained in the next section on M — M, imply bounds on these other mea-
sures of distance. Following the notation in Blackwell and Dubins (1962), let
P™(Z,) be a conditional distribution for the ‘“future’” observations Z_, =
(2,41, 2p+9s - --) given the present observations Z, under P;,. For P, and P,
equivalent on a o-algebra <, there exists a density ¢ satisfying

P,(A) =qudPo,

for all A € . Define

9.(2,) = [4(2,,2_,) dP§(Z_,|Z,).
Based on Z,, the Kullback divergence between the equivalent measures P,
and P, is given by
I(P,, P,) =E,logq;".

The Kullback divergence is used in Section 5 to define an optimality criterion
for designing experiments to distinguish between two possible models for a
Gaussian process. The entropy distance based on Z, is a symmetrized Kull-
back divergence and is defined as [Ibragimov and Rozanov (1978), page 75]

rn(PO’ Pl) = In(PO» PI) + In(Pl’ PO)
Then r, is increasing and P, is equivalent to P, if and only if

r(Py, P,) = nli_I)I:c"n(Po»PJ

is finite [Ibragimov and Rozanov (1978), page 77]. Using a general result on the
convergence of Kullback divergences [see Kullback, Kegel and Kullback (1987),
pages 33-35, for example],

lim In(PO’ PI) = EO ].Og q—I,
which we will denote by I(P,, P;). We thus have
r(Py, P) = Eylogq™" + E, log q,

for P, and P, equivalent. For equivalent Gaussian measures P, and P, with



EFFICIENCY OF LINEAR PREDICTIONS 1123

zero means, we have
logq,' = —3log|V,| + 3log|W, |- 32,V 'Z, + 3Z,W,'Z,,
S0
r(Po, Py) = Eo( =32,V 'Z, + 32,W;'Z,) + E(32,V,)'Z,, - 3Z,W,'Z,,)
= —n+ trW; WV, + $trV,'W,.
Thus,
Thnt1 — T = %(bn + 5n)7

so that for equivalent Gaussian measures r, = 3M, and r = ;M.
Similarly, we can show

(3.1) EI(Pg(Z,), P{(Z,)) + E\I(P{(Z,), P§(Z,)) = 3(M - M,).

Since the Kullback divergence is nonnegative, the right-hand side of (3.1)
serves as a bound for both terms on the left-hand side. (3.1) can be used to
bound the expected variation distance between P{(Z,) and P{(Z,). The
variation distance between arbitrary measures P, and P, defined on the same
o-algebra ¥ is

p(Py, P;) = sup |P0(A) _P1(A)|~
Ael

If I(P,, P,) is the entropy distance relative to this same o-field, then it follows
from Kullback (1967) that
I(P,, P,) = 5p*(P,, Py).
Replacing P, and P, by the conditional distributions P§(Z,) and P(Z)),
these relationships hold almost surely, so taking expectations under P,, we
obtain
so by (3.1) and the nonnegativity of Kullback divergences,
Eopz(P(;L(Zn)Y Pln(Zn)) =< M- Mn’

and by the Cauchy-Schwarz inequality,
(3.2) Eop(P§(Z,), P} (Z,)) < (M - M)/,
Blackwell and Dubins (1962) showed that if P, and P, are arbitrary equiva-
lent measures,

p(P{(Z,), PI(Z,)) - 0 almost surely.

(3.2) gives a bound on the average rate of convergence when P, and P, are
equivalent zero-mean Gaussian measures. Whereas Theorem 1 is a statement
about the properties of linear predictors of linear functionals, (3.2) allows us to
make statements about how much predictions of nonlinear functionals are
changed when an incorrect Gaussian measure is used to produce the predic-
tions. For example, in mining applications, one is often interested in the
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“tonnage”’ function: The probability that the mineral concentration at some
site is greater than some cutoff grade z, [Matheron (1984)]. Suppose the
mineral concentration z(-) which is necessarily nonnegative, is modeled so
that its logarithm is a zero-mean Gaussian measure. If P, and P, are
equivalent zero-mean Gaussian measures for log z(:) on a region R, then by
(3.2),

EOIPO(Z(x) > z0|Zn) - Pl(z(x) > ZOIZn)I <(M _Mn)l/z,

for all z, and all x € R, where M and M,, are calculated using the covariance
structure of log z(*).

4. Explicit bounds. In this section, rates of convergence for a,(h) and
b,(h) are obtained for some simple one-dimensional processes when R = [0, 1].
The main results are stated in Section 4.1; proofs are given in Section 4.3. A
general approach to bounding a (k) is discussed in Section 4.2.

4.1. Main results. Assume K, and K, are homogeneous covariance func-
tions on R! with corresponding spectral densities f, and f;. Suppose f,(A) =
(a? + A2)7P for a positive integer p and that K, and K, are compatible on
[0, 1]. These conditions imply that z(-) has exactly p — 1 mean square deriva-

tives under either K, or K,. Define T, = (¢y,,...,¢,,), where 0 =
ton <ty, < - <t,,=1. Assume
(4.1) max (¢, —t;,_,,) =0(n"").

l<j<n ’

Suppose we observe z(k)(tjn) fork=0,...,p—1land j=0,...,n. That is, we
not only observe 2(-) at T,, but also all of its mean square derivatives at these
locations. We thus have p(n + 1) “observations.” Let us define quantities
such as @y ,_;, by ,_; and My ,_, asin Section 2 where the observations
are taken to be z(-) and all p — 1 of its mean square derivatives on T,.

PrOPOSITION 1. For fy(A) = (a? + A)™P and f(A) = (b2 + A2)"P, where
a,b > 0, p is a positive integer and {T,} satisfies (4.1),

(4.2) sup aT,,,p—1(h) = O(n~minG.2p))
heH(K,)

When p = 1, this rate of convergence is shown to be the best possible in
Section 5. I would conjecture that this rate of convergence is the best. possible
for all positive integers p. Using (2.3), Proposition 1 gives a rate of conver-
gence for the supremum of |b,(h)| over h € H(K,) of order n~! when p =1
and n~3/2 when p > 2. By more direct means, we can obtain a sharper bound
on |b,(h)|.
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PROPOSITION 2. Suppose fo(A) = (a® + A2)"? and T, satisfies (4.1). If f,
satisfies

A) = fo(A C
45 A = FoN) | _ )
fo() (1 +22%)
for some constant C and positive integer q < p, then
(4.4) sup |an,p—1| = O(n~—™inCa,p+D)Y
heH(K,)
If
A) — A B
(45) AN = FolA)

= 7>
fo(2) (1 + A%
for some constant B > 0 and for positive integer q < p, then

(4.6) sup bp ,_(h) = An"%,
heH(K,)

for some constant A > 0.

When f(A) =(b%2+2A%)7?, p>1, and b < a, we see that under (4.1) we
have

sup n%bp , (h) and  sup {—n25Tmp_1(h)}
heH(K,) heH(K,)

are bounded away from 0 and « as n — =, but by (4.2)

sup ap ,_(h)=0(n"?).
heH(Kq)

We have that the maximum possible effect on the mean square errors of
predictions from using the wrong covariance function is at least an order of
magnitude less than the effect on the value of the mean square prediction
error obtained by using the wrong covariance function. This result is in line
with practical experience, which suggests that misspecifying the covariance
structure tends to have a larger impact on what we think the mean square
prediction error is than on the actual efficiency of the predictor [Starks and
Sparks (1987)].

4.2. General approach. Suppose H(K,) is generated by z(¢)for t € R, R a
compact region in R', and K(s,t) = Ky(s — ) and K(s,t) = K(s — t) are
continuous covariance functions on R' with spectral distributions Fy(dA) and
F(d)), respectively, and are compatible on R. Define Ly, z(F, X F,) to be the
L, closure with respect to the inner product

(0,0 pyxr, = [(A, m)W(A, 1) Fo(dA) Fy(dp)
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of functions of the form
(A, 1) = L cjpein s,
Jk
where the range of summation is finite, s »t, € R, and the c;,’s are real
constants. By Theorem 8 in Chapter 3 of Ibragimov and Rozanov (1978), K,

and K, are compatible on R if and only if there exists a function ¥(A, n) €
Ly g(F, X F)) satisfying

(4.7) Ko(s —¢t) —K(s —t) =

17 [T TR (A, w) Fo(dN) Fydp),

for s,t € R. Now the Hilbert space H(K,) is isomorphic to the Hilbert space
of functions Ly(F,), where Ly(F,) is the closure with respect to the inner
product

(0, 0)r, = [@(N)#(X) Fy(dA)

of functions of the form
n
Z cj e”‘tf,
j=1

ty,...,t, € R. Let ¢, ¢,,... be a linearly independent basis for Lz(F,) and
21,2, ... the corresponding elements in H(K,). For example, ¢;(A) = el
' =1,2,..., where ¢,¢,,... is dense in R, form a basis for Lz(F,); the
element corresponding to ¢; in H(K,) is z(¢;). Define V, to be the n x n
matrix with jkth element

f‘Pj(A)m Fo(dA) = Eozjzk

and W, the n X n matrix with jkth element

e (Neu(V) Fi(d) = Eiz;z,.

Then V, and W, are nonsingular, so we can define c, for j,k =1,...,n tobe
the jkth element of W; ! — V"1 and

WA, ) = kz ¢ (M)pn(h) -
jr k=1

By straightforward calculation
(48) [0, w) [ Fo(dN) Fy(dp) = tr(V;t = W )(W, = V). -

Following Ibragimov and Rozanov (1978), pages 89-90, we have that
V(A ) > W(A, p)
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in Ly, z(F, X F)),
2
JI¥ (A, 1) = W, (A, 1) [[Fo(dA) Fy(dp) = M — M,,

and ¥, (A, ) is the projection of W(A, u) onto the subspace of Ly, (F, X F,)
of functions of the form

Z ajk‘Pj(/\)éok(li) )
j k=1

with respect to the inner product { -, - )5 <5, so that
2
n

(4.9) M-M, < [[¥(4, 1) = ¥ aue;(MNey(n) | Fo(dA)Fy(dp),
j k=1

with equality if a;, =cJ, for j,k=1,...,n. It should be noted that Ibragi-
mov and Rozanov (1978) say that (4.8) decreases in n when it in fact increases.
We thus have an approach analogous to the one developed by Stein (1990) for a
misspecified mean function for bounding the efficiency of linear predictions
under an incorrect model compatible with the truth. The main problem in
obtaining explicit bounds from (4.9) is that F, and F, implicitly define
¥(A, n), and we need to know W(A, w), or at least some of its properties, to
bound M - M,,.

4.3. Proofs. In this section, we give proofs of Propositions 1 and 2. The
proof of Proposition 1 makes use of an explicit formula for (A, u). Suppose
R =[0,1] and f, and f, satisfy
(4.10) fi(A) < (1 +22) 77,
for some positive integer p, where a(A) < b(A) means there exist constants c,
and c, such that

0<c; <a(A)/b(A) <cy <o,

for all A. Generalizing (1.3) on page 30 of Ibragimov and Rozanov (1978), it
can then be shown that Ly, z(F, X F,) coincides with the class of functions

p71 . p—-1 )
Y au(in)(ip)* + (1 +id)" Y (i’u)Jlej(u)emu du
J, k=0 ‘ j=0 0
-1
(410 H(1 - i) T (0 [y (0)e 0 dv
0

j=0
+(1+iA)"(1 - i/.L)pflfIS(u, v)elAe=r) dy du,
070

where the a;,’s are real constants, the 8;’s and y,’s are real and square
integrable on [0, 1], and 8(u,v) is real and square integrable on [0, 1]°. Then
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W(A, n) as defined in (4.7) must be of this form since it is an element of
Ly« g(Fo X Fy).

Even under these additional conditions, it is still, in general, very difficult to
obtain an explicit expression for (A, u). We now develop the form of such an
expression when fy(A) = (a® + A*)7? and f,(A) = (b% + A?)"P. Note that K,
and K, are compatible on any bounded interval by (1.1). It will be convenient
to rewrite (4.11) in the slightly different form

p—1

Y ap(a+in)’ (b —ip)* + (a+ir)” z (b—w)[ e B, (u) du

J, k=0 _

(412) 1 (p - ip)” Z (a+ i)t)jfle_i””vj(v) dv
Jj=0 0

+(a +i))"(b - ip,)pflflﬁ(u, v)elAu=m) dy du,
07’0

which we can also show coincides with Ly, z(F, X F,) when a,,, 8,,v, and &
satisfy the same conditions as before. To determine 8(u, v), substitute (4.12)
for ¥(A, 1) in (4.7) and take (a + 3/ds)P(b + 3 /3t)” of both sides of (4.7). The
left-hand side gives

3 \? a\* 1 1 A0
(a+———) (b+—)f —— — T |€ da
ds at (a® + A?) (62 + A?%)

(62 + A2)7 — (a2 + 22)°
f (a —iA)?(b +ir)”
by differentiating inside the integral, which is justified by

I S
(@ +22)" (b2 +2)
For s > t, (4.13) equals
2mi Pl dr-l [ nony (02207 = (a® + Az)p]

(4.13)
ei)\(s—t) d/\’

(p—Dldart (a—ir)?

A=ib
p-1 p )
C B2 b e e
A similar result holds for s < t, and we obtain that (4.13) equals
p-1 p

2r(b-a) T (] 1)@= -0y

(4.14) J
X{e—b(s—t)I(s>t) 4 pmalt— sI(s<t)}

Applying (a + d/3s)P(b + 3/3t)? to the right-hand side of (4.7) and inter-
changing integration and differentiation, we just get &(s, ¢). This interchange
can be justified along the lines of the argument on pages 97 and 98 of
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Ibragimov and Rozanov (1978). Thus, &(s,¢) is given by (4.14). Applying
(a + d/3s) to both sides of (4.7), through lengthy calculations, it is possible to
show that g8,(u) has the form

p—1

Z ‘Bjmume—bu’

m=0
where B;,’s are real constants. Applying (b + 3/3¢)P to both sides of (4.7), it
can further be shown that y,(v) has the form

p—-1

Z ,yjmvme—au’

m=0
where v;,,’s are real constants.

We now turn to the proof of Proposition 1. The element in Lz(F,)
corresponding to z®*Xt;,) is (iA)*e’*. Let L; , , be the subspace of
Ly r(Fy X F,) generated by functions of the form

(id) et —ip) ke iktmn,
By (4.9), we can bound M — M 1,,p—1 by approximating W(A,u) with an
element of Ly ,_;. Following Stein (1990),

n p-1
. tn (thn . .
(a + l/\)p(b _ l“)P Z Z cjklm-/;)J j;)k Sltme(a+u\)s+(b i)t dsdt
J, k=11, m=0

€ LT,up—l’

for c;;;,,’s real constants. Thus, letting g(s, t) = 8(s, t)e " (@s+20),

/

(a+i0)"(b—in)” [ ['5(s, 1)eiCe=u0 ds dt
0“0

n p-1 2

. . n (thn . .
—(a+i))P(b—ip)” X X Cjklm[tj fk sltmela+iNs+(b—int do dp
Jj k=11,m=0 0 -0

X (a? +22) (62 + p2) T drdp

=[/‘1[1ei()‘s~ﬂt)
070

(4.15)

2
drdu

n p-1

! b

x|8(s,t) — Y ¥ Cirimls<t,,t<t,ys't™e* Y | ds dt
jk=11,m=0

n

p-1 2
1,1 .
=47T2/;)/;)92(as+bt)[g(3,t) - Z Z cjklmI(sstjn,tst,m)Sltm:I dsdt

Jk=11l,m=0

n n

2

n p—1

t n t n

=472 ¥ [ /k 2@t g(s,t) = ¥ ¥ Y cipnsit™| dsdt,
Jok=1"%-1,n"tk-1,n I,m=0j=jk'=k
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where the second equality is by Parseval’s relation. For real constants &;,,,,,
we can choose the c;;,,,’s such that

p-1 n n p-1
)M IEDM Cj’k’lmsltm = Y bjum(s - jn) (t—t)",
I,m=0j'=j k'=k I,m=0
for j,k =1,...,n. Let us first consider those terms in (4.15) for which j = k.
Setting b =0if I > 0or m > 0, letting b,,00 = g(¢;,,¢,,), and using (4.1),

Jilm

Y T
D f,’ f’ e2asto0(g(5,t) — g(tjn,tjn))2 dsdt = 0(n~3).
j=1 tjfl‘n t‘]fl,n
Because 6(s, t) = 8(s — t) has a discontinuity in its first derivative at s — # = 0,
it does not appear possible to improve on this rate. For j # &, let b;,;,, = 0 for
l+m=p,andforl +m <p — 1,

9t 9m

bikim =Ma_sl¢%_mg(s’t)

)
It follows that
2
tin tin as l m
)y ft jt'k eXasto| g(5 1) — Z bipim(s —t;,) (2 —¢;,) ] dsdt
J#*k ty-1,n tk-1,n m=0
= 0(n~?P).

Thus, (4.15) is O(n~™nG.2P),

Now consider approximating a term like (a + iA)P(b — in)/[le “‘SB (s)ds
for j =0,...,p — 1. Because we have observed z(0),...,z""1Y(0), we can
obtain (b — iu)’ exactly, so we want to choose constants c;;, such that

[

(b—in)(a+ m)”[le“sgj(s) ds — (b —in)’(a+ir)”
0

2

x ¥ c,-kfo’" sle@+s gs| (a2 + 22) (6% + u2) P dr du

2

di

=0f

is small. Using Theorem 4.1 from Stein (1990) and the fact that 8,(s)e™*° has
a square integrable pth derivative on [0, 1], this last expression can be made
O(n=?P). Since the terms (a + iA)/(b —in)* for j,k=0,...,p — 1 are in

LT",p—17
(4.16) M- MT,,,p—l = O(n—minG,2p))

and Proposition 1 follows from (4.9) and (2.3).

LleiAs[ﬂj(s) _ Z Z (s<tn)sleas]ds
j=1k=
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In obtaining (4.16), the two factors that control the rate of convergence are
p and the smoothness of 8(s,t). For f, and f, satisfying (4.10) for some
positive integer p, the smoothness of 6(s, ) should be closely related to the
relative difference between f,(A) and f;(A) for large A. Suppose for a constant
v > %,
. fo(A) — f1(A) . fo(A) — f1(1)
———— AN < ®

0 < liminf ————— A\ < limsup
Ao fO(A) Ao fO(/\)

Then if f, and f; satisfy (4.10) and {T,} satisfies (4.1), I conjecture the
following generalization of (4.16):

M - MT,,,p—l = O(max(n_zp, n_2y+1(]0g n)2g(u)))’

where g(v) = 1 if v is an odd integer and is 0 otherwise. Note that if v < 3,
K, and K, are not compatible.

We next prove Proposition 2. By (1.1), (4.3) guarantees that the correspond-
ing covariance functions are compatible [Ibragimov and Rozanov (1978), page
105]. To obtain an upper bound on |by ,_y(h)|, it is equivalent to find an
upper bound on |E,h* — E,h?| among those & € H(K,) that are uncorrelated
with the p(n + 1) observations and have variance 1 under f,. In the isomor-
phic space Lg(F,), all elements are of the form [Ibragimov and Rozanov,
(1978), page 30]

p—1 ) .
T ¢(i0) + (a+in)” [le(u)e™ du,
j=0 0

where c(u) is a square integrable on [0, 1]. Since (iA) € Ly, ,_;, we can take
¢; = 0 for all j. Furthermore, for m = 0,...,p — 1,

<(a + i)\)pflc(u)ei’“‘ du, (i)\)me”“m>
0 F,
(—a)™

-2 (3 ) =io

¢ .
flnc(u)ea(u—tjn)(tjn _ u)p k ldu
k=0 0

and
2

(a+i0)"["e™e(u) du
0

= 27Tflc(u)2du,
Fy 0

where [|p(V)]|%, = (#(A), (1)) 5. Thus, the elements of H(K,) that are uncor-
related with the observations and have variance 1 under f, correspond to
those functions c(u) satisfying

(4.17) ft’" c(u)e**u*du=0 forj=1,....n;k=0,...,p -1,
t

J—1,n

and 2w /gc(u)®>du = 1. Define C, to be the set of functions c(-) satisfying
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these conditions. We have

2 2

(a + i)t)pflc(u)e”"‘ du
0

(a+ i)\)pflc(u)ei"” du
0

Fy Fo

f:o f1(A;O(_AI;0(A) j:c(u)ei)‘“ du-/;)lc(u)eiA“ dudA

1,1 = fi(A) = Fo(A) ...,
=j;)foc(u)0(v)f_ww‘5—€ ®= d) dudv,

where the order of integration can be changed because of the absolute integra-
bility of the integrand. Now, since the Fourier transform of a positive inte-
grable function is a positive definite function, we have by (4.3)

(M) = fo(A)
0< folfolc(u)c(v){ffm>fm——f( })”O(A];O( )e”‘(“‘”)d)t} du dv

sCflflc(u)c(v){f (1 +)\2)_qe“(”_")d/\} dudv.
070 [ >fo(V)

Making a similar calculation on f;(A) < f((A), we can obtain for ¢ € C,,

2 2

(a + i/\)pflc(u)e“” du
0

(a + i/\)pflc(u)e““ du
0

(4.18) ot Fo
< Cflflr(u —v)e(u)e(v) dudv,
070
where
r(t) = [(1+2) e da

_ome M aTl g0k — 2\ (20"

- 92(g-1) ieo g-1 kB!
For j <k,

ftjn [tk" r(u —v)c(u)e(v) dudv

t—1,n th-1,n

l+m=0

g—1 .
t t
= ) almf’" e “ulc(u) duf " evv™e(v) dv,
tjfl,n tkfl,n

where the «,,,’s are constants independent of n. We can choose constants
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Bjos - -+ Bj 4—1 such that
g—-1
eul = L Bime™u" = 0(45,)
m=0

on(t;_ ,,t;,), where A, =t¢, —t;,_,,,so that by (4.17)

ft’" e “ulc(u) du
t

J=1,n

g—1
(e"‘ul —e Y Bjmu’")c(u) du

m=0

1/2
q-1 /

2
< {/:"ln(e“ul —e*™ ) B; um) duftj""1 nc(u)z du}

m=0

1/2
_ (/tjn c(u)2du) O(A(‘j2'<l]+1)/2)

71,

for ¢ < p. Thus, under (4.1) and for ¢ € C,,

t

L /m ftkn r(u —v)e(u)e(v) dudv

JER -1, -1,

1/2

(4.19) Ek {f:"lync(u)z cluft:’i"l‘nc(v)2 dv} O(n~a+1)

2

0( n—(2q+1))

1/2

Il

L

c(u)? du}

[

tjfl,

- 0(n"2),
since subject to 27 [jc(u)? du = 1,

il{jj’" c(u)2du}

1/2

o,
is maximized by making all terms in the sum equal. In a neighborhood of the
origin,

q-1

r(t) = X yut®* + y, [t + O(t%q),
k=0

for some constants y,...,y,. It follows that for given j we can choose
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constants ay,...,a,_q,by,...,b,_; and integrable functions g,(-) and g,(-)
such that
p—-1 p—-1
r(u—v) =e™ ) au'g(v) +e® ¥ b'gy(u) + O(u — vj™nw2a-D),
1=0 1=0
for u,v €[¢;_, ,,¢;,] Thus,

j;t’" ,ftt’" r(u —v)ce(u)ce(v) dudv

J—=1,n “y—=1,n

fttf" fttjn ("(u -v) - e“”pilazulg1(v)

=0

J—1l.n %y3—1,n

p—1

—ew Y blvlgz(u))c(u)c(v) du dv
1=0

-1
< {f,t’“ ftt’" ("(u -v) - e‘“‘pz a,u'g(v)

=0

J—1,n %y=1,n
1/2

p-1 2
—e ) b,vlgg(u)) dudv} ft’" c(u)®du
1=0

J—1,n

_ /’tjn c(u)2du % O(Af]p’iln(Zq,p+1))’

tj—l,n

so subject to (4.1), for c € C,,,

— O(n—min(2q,p+1)) .

fttm f;m r(u —v)e(u)e(v) dudv

J—1,n “y-1,n

(4.20) i
j=1

(4.4) then follows from (4.18)-(4.20). It can be generalized to let f,(A) =
?_y(a% + A*)7', where the a;’s are positive constants, which corresponds to
the spectral density of an arbitrary continuous-time AR(p) process.

To prove (4.6), let us make the simplifying assumption that
(4.21) t, xn"1,

although the following argument can be easily extended to include cases where
(4.21) does not hold. Define

cn(u) = ane_auPp*(u/tln)I(u <ty1,)?
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where P*(-) is the shifted Legendre polynominal of order p [Abramowitz and
Stegun (1965) page 774] and «, is chosen so that 27 [lc,(u)? du = 1. Since

P}(-) is orthogonal to all polynomlnals of degree at most p — 1 on [0,1],
c (u) € C,. Using (4.21), we can show a, < n'/% Then

2

(a+i0)” [ e (u)e™ du
0

(a+i)t)p/10n(u)ei)“‘ du -
0 P Fo
> Bftl"ftl"r(u —v)e,(u)e,(v) dudv
0o Jo

(4.22) q-1
= B[ [" T valu = v)** + v Ju = v+ Ou — vf*)
0 70 [k=0

Xe,(u)c,(v) dudv
tln tln — _ _
= Byqfo [0 lu — v* 1C,l(lt)c,l(v) dudv + O(n=2271),

using (4.5), (4.17) and (4.21). Now,

tin (t1n _
Byq/; '/;) lu —v|* e, (u)c,(v) dudv

= a2t?at1y ff[u—vlzq 1P*(u)P*(v)dudv+o(a t2a+l),

Using the fact that (—1)7|¢|>?~! is a generalized covariance function of order
g — 1 [Matheron (1973)], it follows that

(4.23) (—1)‘1j1j1|u — 0|2 1P*(u) P (v) dudv > 0,
since P* is in the space A,_; as defined by Matheron (1973). In fact, us1ng

the spectral representation of the generalized covariance function (— 1)q|t|2q
the left-hand side of (4.23) can be written as

2
© _ 1 .
4];) (472p2) " * OPp*(u)ez’”‘""du dp,

which is clearly positive. Finally, (—1)?y, > 0, so (4.6) follows from (4.22) and
a? t2q+ 1 20

5. AR(1) process. The spectral density (a® + A2)™? corresponds to a con-
tinuous-time AR(p) process. When p = 1, we can write down the inverse of
the covariance matrix of the observations, which enables us to sharpen the
calculations in the previous section. That is, let V be the (n + 1) X (n + 1)
covariance matrix of the observation set T, under the covariance function
Ky(s,t) = a”'exp{—a|s — t|}, which corresponds to fo(A) = 1/{m(a® + A?)}.
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Setting p; = exp(—aA,;,), Vi ! = (v*) is the tridiagonal matrix defined by

(L-n)", e
e ) A
1 —Piz—lpi2 i=2
(1= pF_1)(1 - p?)
vt = phitl o _gp(1 - P?)_l’

and all other elements 0, which can be verified by direct calculation. Further-

more,

log|VTn| = —(n+1loga+ Y, log(l _pi2)7
i=1

which can be obtained by row reducing V;! to make it upper triangular and

then taking the product of the resulting" diagonal elements. Define p; =

exp(—bA;,) and I (P, P,) to be the Kullback divergence between the two
Gaussian distributions of the random vector (z(¢y,),...,2(¢,,)) with zero
mean and covariance functions K(¢) = a 'e "l and K,(¢) = b~ e %/ re-

spectively. Using the above expressions for VT_,,l and |V |, it follows that

n+1 a b
ITn(Poypl) = —2—(10{;— -1+ Z)

Taking Taylor series, we obtain after lengthy calculations,

1. a (a-b)° b-a
ITn(P01P1) = EIOgZ + +

4a 2a
(5.1) (a2 b2)2
a p— n
- A (1+0(A.)).
It follows that
I(P. P 11 a (a-b? b-a
(Po, 1)—§ogg+ 4a * 2a ’

which is given by Kullback, Keegel and Kullback (1987), page 74.
Let My =M; o and ar =ar ,. From (5.1), we have

B (b-a)’(2+a+b) B (b-a)’(b+a)®

M 3 .
- L b L8004 008,
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so that
(b - a) (b + a)
n 24ab

M- M, = Z A%.(1+0(4;,)),

which is O(n~2) if (4.1) is satisfied, so that (4.16) gives the optimal rate of
convergence for M — M, __, when p = 1. Furthermore, the bound in Propo-
sition 1 on ar (k) is of the optimal rate when Ky(¢) = a 'e™*‘l and K,(t) =
b~ le 0!l Let

hy= Y 2(7;0),

Jj=1

where 7;, = (¢;_, , + ¢;,)/2, in which case,
eo(h,,n) =3 [Z('Tjn) - %sech(%aAj)(z(tj_l’n) + z(tjn))].
j=1

Using Taylor series, it can then be shown that under (4.1),

EO(el(hn7n’) _eO(hn7n))2 n_2
EOeO(hn7 n’)2

so that the bound in (4.2) is sharp when p = 1.

Finally, we consider an application of (5.1) to a problem in the design of
time series experiments. Sacks and Ylvisaker (1966, 1968, 1970) consider the
design problem of finding asymptotically optimal choices for T, in terms of
minimizing the variances of estimates of regression coefficients. For example,
suppose Ez(x) = Bf(x), where f(:) is specified and B is unknown, and
cov(z(x), z(x") is assumed known. Let Z, be the collection of all sets T, =
(tops---»tyy,) satisfying 0 = ¢y, < -+ <t,, = 1. Let o be the variance of
the generalized least squares estimate B based on observing z(-) on T,. If f(-)
is sufficiently smooth, then the variance of the best linear unbiased estimate of
B based on observing z(-) everywhere on [0, 1] is positive, and we will denote
this variance by o2. Then Sacks and Ylvisaker (1966, 1968, 1970) consider
choosing T, so that

X

b

. o2 - 0'T2
lim —; — = 1.
n—w g °— Sup or

Te2,

For discriminating between two possible covariance functions K, and K, for a
Gaussian process z(-), we might analogously consider choosing T, so that

I(Poyp)_IT(P07P1)

5.2) lim z =1.
( n—ow I( Py, P;) — sup I;(P,, P;)
TeZ,

A sequence of designs T,,T,, ... satisfying (5.2) will be called asymptotically
optimal. It is easy to show that letting ¢;, =j/n yields an asymptotically
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optimal design when K,(¢) = a e 2 and K (¢) = b~ 'e !l This can be seen
by first noting that max; A;, — 0 is a necessary and sufficient condition for
I (Py, P,) — I(Py, P,), and that if this condition is satisfied,

i A% (1+0(4;,)) = (1+0(1)) f A3,

Jj=1

The result then follows by observing that A3, + --- +A3

> . is minimized by
making the A, ’s equal.
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