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KOLMOGOROV’S CONTRIBUTIONS TO
MATHEMATICAL STATISTICS!

By ANDREW L. RUKHIN

University of Massachusetts

In this paper Kolmogorov’s work in mathematical statistics is re-
viewed. The main areas under discussion are: the idea of sufficiency, linear
models and unbiased estimators. The relationship of Kolmogorov’s contri-
butions with modern statistical theory, in particular, with Bayesian analy-
sis, is analyzed.

1. Introduction. Andrei Nikolaevitch Kolmogorov was keenly interested
in statistical theory and its applications all of his life. He remained the director
of the Statistical Laboratory at Moscow State University until his last days
and was known to lament about insufficient development of statistical methods
in the USSR. His first statistical paper, ‘“Method of Median in the Theory of
Errors” was published in 1931; the last paper in this area on estimation of
parameters of a complex stationary Gaussian Markov process appeared in
1962.

In this review I concentrate on the following three areas of Kolmogorov’s
interests and contributions: the sufficiency concept and Bayesian approach,
estimation theory, in particular, unbiased estimation and linear statistical
models.

2. Sufficiency and confidence intervals: was Kolmogorov a closet
Bayesian? One of the most important contributions by Kolmogorov to
theoretical statistics is his article ‘“Determination of Dispersion Center and of
Accuracy Measure from a Finite Number of Observations’ published in presti-
gious and highly mathematically oriented Izvestia Akademii Nauk SSSR in
1942. Inexplicably, this landmark paper is missing in the volume of
Kolmogorov’s collected works in probability theory and mathematical statistics
which appear in 1986 (Nauka Publishing House). One should note that in 1942
the Soviet Union was in the midst of World War II, during which Kolmogorov
was heavily involved in defense projects. He explicitly states that one of the
reasons for this article was his intention ‘“to explain to artillerists some results
of Student and Fisher related to small samples.”

For methodological reasons Kolmogorov restricts his attention to random
samples coming from one- or two-parameter normal distributions. In Section
1, which he calls “The Classical Approach,” posterior densities for the parame-
ter(s) unknown are discussed. Kolmogorov states that these formulae can
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hardly be used in practice because prior densities in them are typically
unknown. This is of course a conclusion shared by most modern statisticians.
However it took quite some time before this fact was recognized in western
literature [cf. discussion in Chapter 3 in Berger (1985b)]. More importantly,
Kolmogorov writes: ‘“One has to realize that the assumption of the existence
of a particular prior distribution of the mean a and the precision % can be
justified only in some rather restricted cases. For instance, it is meaningful to
speak about probability distributions for precision in rifle shooting under fixed
conditions for a marksman chosen at random from a given troop. However it
does not make any sense to discuss a prior probability distribution of precision
for missiles’ discharge in general (under all possible conditions and by using
any firing devices of the past and the future).” Apparently Kolmogorov takes a
pragmatic point of view here that a prior distribution above which can be
interpreted as a mixture of existing priors, cannot be tractable.

Despite this remark, in the next section Kolmogorov gives a Bayesian
definition of sufficient statistic: A statistic T is called sufficient if the posterior
distribution of the unknown parameter depends only on the prior distribution
of this parameter and the value of T'.

This is a departure from the classical sufficiency definition of Fisher (1922).
Kolmogorov was well aware of Fisher’s definition and apparently believed that
these two definitions are equivalent. This is indeed true under some regularity
assumptions, see Heyer (1972), (1982). However, Blackwell and Ramamoorthi
(1982) constructed an example of a Bayesian sufficient statistic which is not
sufficient in Fisher’s sense. (Fisher’s sufficiency implies Bayesian sufficiency).

After this definition and some examples of sufficient statistics, Kolmogorov
returns to posterior densities for the normal parameters under the assumption
of noninformative constant prior density, which becomes an object of
Kolmogorov’s criticism. Kolmogorov notices that these formulae can be justi-
fied only as approximate ones when the sample size n is large, and he obtains
limit theorems of the following form.

Let a be the normal mean and A = 2720~ ! be the normal precision. Then
X =n"'Cix; and 8% = L}(x; — X)? form a sufficient statistic for (a, %) on the
basis of the sample x,,..., x,. For the posterior density ¢(a|x,,...,x,), the
following approximation holds:

bi(alxy,...,x,) ~n2hn1/% exp{—nh?(a — %)?)
and for the posterior density ¢4(a, h|x;,..., x,), one obtains
dola, hlxy, ..., x,) ~ (2n)/2Shw~/2 exp{—nh?*(a — %)* — 25(h — h)?},

where & = (n — 1)/2271/28~1 (Kolmogorov’s notation is somewhat different).
Results of such form have since been extensively studied and are known as
theorems of the von Mises—Bernstein type [cf. for instance De Groot (1970),
Chapter 10 or Johnson (1970) and the references there]. ’

Kolmogorov uses these formulae to obtain approximate credible intervals

for a and h. He also discusses the use of posterior variance as an accuracy
measure of the posterior mean.



KOLMOGOROV’S CONTRIBUTIONS TO STATISTICS 1013

For small sample sites, Kolmogorov basically seems to agree with the
widespread opinion (in the USSR) of S. N. Bernstein that without exact
knowledge of the prior distribution one cannot use credible sets obtained from
the posterior distribution. Kolmogorov’s suggestion is, as a remedy, to use the
idea of confidence intervals from J. Neyman. Kolmogorov discusses in some
detail the form of unbiased confidence intervals for both normal parameters.
His desire to see the practical implementation of these results leads to a table
of percentiles of ¢-distribution and chi-square distribution. (It is worth repeat-
ing that the article was published in a highly theoretical mathematical journal.
Tables like this were uncommon in such journals). Kolmogorov concludes this
trenchant paper with a derivation of unbiased estimators of precision k. His
interest in unbiased estimation lead him to another important paper discussed
in the next section.

3. Unbiased estimators. In this section I shall discuss Kolmogorov’s
article “Unbiased Estimators” which was published in the same Izvestia
Akademii Nauk SSSR in 1950 and which is more well-known than his previous
paper. Kolmogorov starts this paper by proving what is known as the
Rao-Blackwell theorem: conditional expected value of any estimator for a
given value of a sufficient statistic is an estimator with the same expectation
and smaller variance. (This result is sometimes referred to as the
Kolmogorov-Rao-Blackwell theorem in Soviet literature.)

Kolmogorov derives equations determining unbiased estimators both in
discrete and continuous cases. An application of unbiased estimation for
discrete random variables of main interest to Kolmogorov is a quality control
problem of sampling inspection in which hypergeometric or binomial distribu-
tion for the number of defective items X is assumed. The parametric function
of interest is the probability P(X <c), where ¢ is a given constant.
Kolmogorov reproduces a graph of this characteristic obtained by the Statisti-
cal Research Group at Columbia University and makes some practical recom-
mendations for the choice of sample sizes. He also considers the problem of
unbiased estimation of the variance of the unbiased estimator for the propor-
tion of defective items in the sample.

Kolmogorov then goes on to unbiased estimation of a given function f of
the normal mean a for which the sample mean ¥ is a sufficient statistic. The
integral equation defining the unbiased estimator ¢(x) has the form

[ 66 - o, T) d2 = f(a),
where
G(z,t) = (wt) " '/? exp{ —z2/4t} /2
and

T=0%/(2n).
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Kolmogorov observes that this classical inverse heat problem has a unique
solution if it exists, and in this case ¢ can be found from the heat equation
92 d
22’ " @

where ¢t > —T.

As a corollary to this result, Kolmogorov obtains unbiased density and
distribution function estimators. The same estimation problem is of more
practical interest when both normal parameters a and o are unknown, in
which case Kolmogorov uses a very ingenious device to derive the desired
estimators.

Assume that P(x; < a) = ¢((a — £)/a) = 0 is to be estimated on the basis
of a normal random sample x,,...,x,. Then by the Rao-Blackwell theorem,
P(x, <alx,S) =48(x,8S)

is an unbiased estimator of 6.

Kolmogorov knew that the ratio Z = (x; — ¥)/S is independent of (%, S).
This fact easily follows from the Basu lemma according to which a similar
(ancillary) statistic, in our case Z, is independent of a complete sufficient
statistic, in our case (¥, S). Therefore

8(%,8) =P{Z < (a — x)S7 'z, S}
=P{Z<(a-%)S7Y)
= Iw(n/2 - lyn/z - 1)?
where I, denotes the complete beta function and for 0 < w < 1,

= 0.5 - n/%(x - a)[[28(n - 1)"7).

Also 8(x,S)=0if w <0 and 6(x,S) =1 if w > 1. These formulae were
obtained from the distribution of Z. The unbiased estimator of the normal
density at a point can be derived now by differentiation é in a.

Notice that this estimator vanishes outside the interval | — 0.5| < 0.5 and
& takes extreme values 0 and 1 outside this interval. In particular, neither of
these estimators is an analytic function of w, so it seems that these estimators
cannot be (generalized) Bayes procedures. It turns out however that the
estimator § can be interpreted as a generalized Bayes rule with respect to an
improper prior density of the form exp{a?/(202)} dado. The explanation of
the extreme values 0 and 1 for such a generalized Bayes estimator comes from
the fact that the marginal density of (x, S) under this prior distribution is
finite if and only if |w — 0.5] < 0.5.

After Kolmogorov’s work, a large number of papers have been devoted to
construction of unbiased estimators [cf. Lehmann (1983), Chapter 2 or a
recent Russian monograph by Nikulin and Voinov (1989)]. However, the
realization that unbiased estimators of positive parameters can take negative
values and often have excessively large risk functions, especially in multivari-
ate and nonsymmetric distributions, lead to gradual antiquation of this
principle.
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4. Linear statistical methods. In two papers, “Towards Justification
of the Least Squares Method”’ [Uspekhi Matematiches kikh Nauk (1946)] and
“A Formula of Gauss from the Theory of Least Squares Method”, jointly with
A. A. Petrov and Yu. M. Simirnov [Izvestia Nauk SSSR (1947)], Kolmogorov
considers a general linear statistical model. In the first of these papers he gives
a geometric interpretation of the least squares estimator as a projection of the
corresponding subspace and discusses the problem of replacing the unknown
value of the error variance by its unbiased estimate. He gives a systematic
presentation of the chi-squared distribution and its use for obtaining confi-
dence intervals for the variance. The same confidence estimation problem for
regression coefficients is also carefully explored and a detailed table of quan-
tiles of the ¢-distribution is given. In several places Kolmogorov warns against
using normal percentiles as a substitute for ¢-percentiles for small and moder-
ate sample sizes. Apparently this was a common mistake committed by practi-
cal users of least squares techniques. In fact the exposition of linear statistical
methods in Russia before this paper of Kolmogorov’s was not much different
from the original presentation of Gauss with which Kolmogorov apparently
was very familiar.

Kolmogorov spends some time in finding what properties of the least
squares estimator are due to the normality assumption and what properties
are related to the noncorrelation assumption only.

Kolmogorov was also interested in the problem of the analysis of variance.
At the Second USSR Conference on Mathematical Statistics in 1951, Kol-
mogorov gave a paper, ‘“‘The Real Meaning of the Results of the Analysis of
Variance,” which gave rigorous mathematical analysis of basic formulae of
analysis of variance.

This work of Kolmogorov strongly influenced studies in the least squares
method in the USSR. For instance, the monograph of Yu. V. Linnik, ‘“Method
of Least Squares and Principles of the Theory of Observations,”” whose first
Russian edition appeared in 1952 is partly based on Kolmogorov’s paper.
However this work remained unnoticed in the west and the first geometric
approach to linear statistical models has been given in Scheffé (1959).

In the second of the above-mentioned articles, Kolmogorov returns to a
linear model with independent but not necessarily normal errors. Gauss, in his
“Theoria Combinationis Observationum Erroribus Minimis Obnoxiae” [pub-
lished in (1823)], obtained a formula for the variance of the traditional
variance estimator. This formula involves the kurtosis of error distribution
x = m, — 3m?% and a sum of squares of diagonal elements of a matrix deter-
mined by the design matrix. Kolmogorov and his coauthors used some alge-
braic results to obtain unimprovable bounds on the mentioned sum of squares
which translates into lower and upper bounds for the variance in question
depending on the sign of x.

This paper is another sign of Kolmogorov’s interest in measuring not only
values of unknown parameters but also their degree of accuracy. The problem
of the estimation of unknown variance was extensively studied afterwards.
Improved point estimators of normal variance have been developed by Stein
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(1964) and Brewster and Zidek (1974); confidence intervals have been investi-
gated by Cohen (1972) and Maatta and Casella (1987). Estimation of the
variance in linear models has been studied in Drygas (1982) and Gelfand and
Dey (1988).

A general problem of loss (or accuracy) estimation was posed by Kiefer
(1977) with subsequent work by Berger (1985a) and Rukhin (1988).
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