The Annals of Statistics
1990, Vol. 18, No. 1, 281-302

NONPARAMETRIC ESTIMATION OF OPTIMAL
PERFORMANCE CRITERIA IN QUALITY ENGINEERING
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Box and Leon, Shoemaker and Kackar have discussed the problem of
closeness to target in quality engineering. If the mean response f(x, z)
depends on (x, z), the variance function is a PERMIA if it is g(2), i.e,
depends only on z. The goal is to find (x,, 2,) which minimizes variance
while achieving a target mean value. We pose and answer the question: For
given smoothness assumptions about f and g, how accurately can we esti-
mate x, and 2,? As part of the investigation, we also find optimal rates of
convergence for estimating f, g and their derivatives.

1. Introduction. We investigate estimation of optimal policies in what Box
(1988) calls the problem of “closeness to target” in quality engineering; see also
Leon, Shoemaker and Kackar (1988) and Taguchi and Wu (1985). System
variability is governed by a control factor z, so that observations have variance
function g(z). System mean is governed not only by the control factor z but also
by a signal factor x, so that observations have mean function f(x, z). In the
terminology of Leon, Shoemaker and Kackar (1988), the variance function g(z)
is a PERMIA. As in Box (1988), the goal is to find the control setting z, which
minimizes g and to find the signal setting x, for which f(x,, 2,) = 7,, where 7,
is a prespecified target value.

For example, consider a production line producing extruded plastic parts,
whose mean length should equal 7,. Actual mean length f(x, z) is influenced by
the length x into which the hot parts are cut and by the temperature z (or any
quantity, such as viscosity, which is a monotone function of temperature) of the
parts when they are cut. We would like to choose the pair (x, z) such that mean
length equals 7, and variance of length is minimized. Assuming that variance of
length depends only on temperature, we choose z = z, to minimize the variance
g(z) and then select x = x, to solve f(x,z,) = 7,. We assume that g has a
unique minimum and that f(-, z) has a unique minimum for each fixed z.

In practice, f and g would usually be unknown, and so we sample a variety of
signal factors and control factors to produce estimators f and g of f and
&, respectively. Choose 2, to minimize g, and given 2, choose %, so that
f (%4, 20) = 7,. Interest in this paper focuses on the case where f and g cannot be
specified parametrically. We pose and answer the question: For given smoothness
assumptions about f and g, how accurately can we estimate x, and z,?

Practical interest usually does centre on estimation of x, and z,, because the
production line will be operated for an indefinite (or at least, unspecified) period

Received September 1987; revised November 1988.

AMS 1980 subject classifications. Primary 62G05; secondary 62G20.

Key words and phrases. Nonparametric regression, performance measure, PERMIA, quality
control, Taguchi’s method, variance function estimation.

281

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%y%
The Annals of Statistics. IINGIE ®

www.jstor.org



282 R.J. CARROLL AND P. HALL

of time with specific settings of these parameters. Nevertheless one can envisage
alternative prescriptions for optimality. For example, if we were to focus on the
loss associated with a given choice (£, 2), we might wish to choose them to
minimize

E{{(%,2) — )" or E|f(£2) -1l or P{f(%,2) -1 >c}.

Some insight into the problem may be obtained by simple Taylor expansion,
as follows. Assume f and g have one and two continuous derivatives, respec-
tively. Then it is reasonable to suppose f and g to satisfy those smoothness
conditions. Since g'(z,) = 8'(4,) = 0, then

0=2'(%) =8(z) + (% - Zo)g’”(ég) =8'(20) — &'(20) + (%, — Zo)é”(z’\g),
where 2] lies between z, and 2,. Therefore,

(1.1) Zy— 2= —{8&'(2) - g'(zo)}/é?"(ég)-
Likewise, since f(x,, z,) = f(fo, 2,) = 7y, then

To = fA(J'C\o’ 2y) = f(xo’ o) + (£, — xo)f(l’o)(f(’)'" 2p)

=17t f(xo, zg) = f(x9,2) + (25— Zo)f(o’l)(xo’ 25)
+(£ - xo)f(l'o)(x’\()f’ 2),

where £} lies between x, and %, and £} lies between z, and 2. Therefore,
£o—Xxg= — {f(xo’ 2) — f(x, Zo)}/f(L’O)(-’eS" 2,)

(% — Zo)f(o’l)(xo’ 2 )/f(l’o)(xAJ’ 2o)-

From equations (1.1) and (1.2) we conclude that (i) if g®(z,) is nonzero, then z,
can be estimated with the same accuracy as g®(z,), and (ii) if f®9(x,, 2,),
f©D(x,, z,) and gP(z,) are nonzero, then x, can be estimated with the worst of
the accuracies with which f(x,, z,) and g®(z,) can be estimated. In the
pathological event that one or other of these functions should be zero, higher-
order Taylor expansions must be investigated.

Thus, estimation of x, and z, reduces to estimation of f, g and derivatives of
those functions. Inference about the mean f is a classic nonparametric regression
problem, but not so inference about the variance g. There, interest centres on the
effect which not knowing f has on our ability to estimate g. The problem of
variance function estimation in the presence of an unknown f would be one of
semiparametric inference if we had a parametric model for f.

We now discuss convergence rates obtainable from (1.1) and (1.2). Suppose f
has v, derivatives and g has », derivatives. We allow », and », to be arbitrary
positive numbers, since fractional derivatives may be expressed in terms of
Lipschitz conditions. (See the second paragraph of Section 2 for definitions.) The
argument leading to (1.1) and (1.2) requires at least one derivative of f and two
derivatives of g, and so we assume here that »; > 1 and », > 2. In Sections 2 and
4 we shall use (1.1) and (1.2) to show that kernel-type estimators achieve

(1.2)
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convergence rates
(1.3) |on - xol = Op{max(N*v/z(v,H), N*(V2Al)/(2v2+1))} ,
(1.4) 120 — 2ol = OP(N—(VQ—I)/(2V2+ D),

where N denotes the number of pairs of signal factors and control factors in our
sample. The first contribution to the right-hand side of (1.3) is due to the
possible effect of not knowing f. When »; > 1 and », > 2, not knowing f has no
effect on the accuracy with which we can estimate z,, but does influence the
accuracy with which we can estimate x,. Of course, x, is defined in terms of f,
and so this fact occasions no surprise. A necessary and sufficient condition for the
right-hand side of (1.3) to equal O,(N~2~D/®"2*1) and so for there to be no
penalty in not knowing f, is »; > (2/3)(vy — 1).

That there should be some sort of “smoothness threshold” at which not
knowing f begins to worsen performance, is not altogether surprising. If f is
sufficiently smooth, then by working with high-order differences of data points,
the influence of f on variance estimates can be rendered negligible. However, it
seems difficult to give a simple, cogent argument describing why the threshold
takes the value which it does.

We shall prove in Section 3 that the rates of convergence described by (1.3)
and (1.4) are optimal, in the sense that under the stated smoothness assump-
tions, no nonparametric estimator can achieve faster rates.

Result (1.2), which leads to rates of convergence for estimates of z,, requires
only v, > 2 and », > 0. We shall show that in this general circumstance, the best
achievable rate of convergence of any estimator of z, is

(15) |20 — ZOl = Op{max(N‘(Vz_l)/(Z"z"'l), N_"l("z“‘l)/{("l"'l)%))} X

For small »,, this rate is inferior to that described by (1.4) unless »,(v, — 1)/
{(vy + vy} = (v — 1)/(2p, + 1); that is, unless »; > »,/(v, + 1). Of course, the
latter inequality is always satisfied when »; > 1, and in that case (1.4) and (1.5)
are identical.

In some respects the problem of estimating z, is a little like that of estimating
the mode of a density function. See Parzen (1962), Eddy (1980) and Miiller (1984)
for an account of the latter problem. However, aside from the common feature
that the turning point of a nonparametrically determined function is sought in
both cases, there are several important dissimilarities. Not least of these is the
way in which the variance estimator is defined, in terms of squared residuals
which themselves involve a nonparametric curve estimator. There does not seem
to be any hope of simplifying our argument by appealing to results on mode
estimation.

Most of our attention will be devoted to the case of an experiment of fixed
design, defined by model (2.1) in Section 2. Fixed design is more realistic than
random design in most control contexts and is amenable to complete asymptotic
analysis. Section 4 will outline analogous results in the random design case. Some
of this work has a counterpart in heteroscedastic, nonparametric regression and
will be discussed elsewhere in that context.
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In some applications, our model (2.1) applies only after a data transformation
of the response variable. Our discussion still applies for the closeness-to-target
problem, by using approximations suggested by Box (1987) [see his equation
(15)].

There has recently been work done on variance estimation in nonparametric
regression, although unrelated to the problem of variance function minimization.
It includes Gasser, Sroka and Jenner (1986), Buckley, Eagleson and Silverman
(1988) and Hall and Carroll (1989).

2. Fixed design case. In the fixed design case our model is

(2.1) Y,; = f(i/n, j/n) + g(j/n) %, 1<i, j<n,

where the ¢;;’s are independent with zero means, unit variances and uniformly
bounded fourth moments. We observe the data set {Y;;, 1 < i, j < n}, and wish
to estimate f, g and their derivatives. Note that there are N = n? observations,
not n; this is important when comparing our results with those in classical
nonparametric regression problems.

Let v > 0, and write (v) for the largest integer strictly less than ». A
univariate function g is said to be r-smooth if it has (») bounded derivatives

and if g satisfies a Lipschitz condition of order » — (»):
lg I (x) — g (y) < Clx — "~
for all x, y € (0,1). A bivariate function f is said to be »-smooth if f & /)(x, y)
exists and is bounded for all i > 0, j > 0 satisfying ¢ + j < (»v) and if
I (s 0) = FEN (2, y)I < Clu = 2" + o = 5"~ )

for all u, v, x, y € (0,1) and all i > 0, j > O satisfying i + j = (»). We assume
that in model (2.1), the bivariate mean function f is »,-smooth and the univari-
ate variance function g is v,-smooth.

Our estimates of f and g are based on fixed-design analogues of kernel
sequences which may be defined as follows. Given 0 < h,;, h, < 1 and nonnega-
tive integers r, s and ¢, let {a,(h,), —00 <k < o0}, {by(h)), —0 <k < 0}
and {cy(h,), — < k < oo} be sequences of constants satisfying

lagl < CRI*Y,  |byl < Ch{*Y,  |ci| < ChE'Y,
a,=b,=0 if k| >Ch{!, ¢,=0 ifl|k| > Chyl,
; rt ifi=r, ‘
Ek:kak={0 if0<i<(vyandi#+r,
(2.2)
o sl ifi=s,
Ek:kbk_{o if0<i<(v;)andi#s,

Lot iti=t,
chk_{O if0 < i< (v)andi# ¢t
k

The constant C does not depend on A, or h,.
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To construct {a,}, for example, let K be a compactly supported, real-valued,
r-times continuously differentiable function satisfying [u‘K(u)du =1 if i =0
and =0 if 1 <i<(»). Put L(u)=(-1YK(u). Then [u'L(u)du =r! if
i=rand =0if 0<i<(»,) and i+ r. A slight adjustment of L, taking
account of errors in series approximations to integrals and giving the function
L,, say, ensures that a, = h{*'L (h,k) has the desired properties.

Our estimator of f® is
(2.3) Fo (i/n, j/n) =n"* Z ZakblYi+k,j+l’

ko1
where Y;; is defined to be zero if one or other of i, j is less than 1 or greater than
n. Basic properties of (™% are described by the following theorem.

THEOREM 2.1. Assume f is v;-smooth, v, > r + s, g is bounded,
sup E(e?j) < o0 and h, = hy(n) satisfies h, - 0 and nh, > . Then, for each
0<8<y,

(24)  sup  |Ef"9(i/n, j/n) = [ O(i/n, j/n) = O{(nhy) 77,

dn<i, j<(1-8)n

(2.5) sup var{f"*)(i/n, j/n)} = Of(nh,)*" "2}

1<i,j<n

REMARK 2.1. Given any (x, y) € (0,1)%, we may define " *)(x, y) by linear
interpolation among the four vertices of the integer square containing (x, y). It
is easily shown that analogues of (2.4) and (2.5) hold for this ‘“more general”
estimator:

sup |Ef"(x,2) — f"(x,2)| = 0{(nh1)—("‘_r_s)},

d<x,2<1-8

sup var{f(x,2)} = 0{(nh1)2(r+s)hf}.

0<x,z<1

. REMARK 2.2. It follows from Theorem 2.1 that the mean squared error of
f® s

E{f9(i/n, j/n) = fi/n, j/n)}*
= Of(ah) 0 ¢ (b Y0 OR),

uniformly in 8n < i, j < (1 — §)n. The order of magnitude of the right-hand
side is minimized at O(n~2"1~7=5/(1+ Dy = Q(N~(1~7=9)/t*D) by taking h, =
n~"/¢1+D By modifying techniques of Stone (1980) we may show that the rate
O(N~1~r=9/(m+D) i5 optimal in a minimax sense, where the maximum is over
the class of »;-smooth functions having a given constant C in the Lipschitz
condition and in bounds on derivatives. .

If we knew f, we could form the “true” residuals r;; = Y;; — f(i/n, j/n) =
&(j/n)" %, ; and construct an estimator &” of g as follows:

(2.7) &9(j/n) =nt! i Yepr ik

i=1 k

(2.6)
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Here r;; is defined to be zero if j <1 or j > n, and {c,)} is as in (2.2). An
argument similar to that employed to prove Theorem 2.1 may be used to
establish:

THEOREM 2.2. Assume g is vy-smooth, v, > t, E(e;‘j) is uniformly bounded

and h, = hy(n) satisfies h, - 0 and nh, — 0. Then for each 0 < 8§ < 1,

sup |EEO(j/n) — g®P(j/n)| = O{(nh2)‘(”2‘“}

Sn<j<(1-8)n

sup var{g9(j/n)} = O{(nh2)2t_1h§}.

1<j<n

REMARK 2.3. It follows from Theorem 2.2 that the mean squared error of
£® satisfies

(2.8)  E{g9(j/n) - g9(j/n)}" = O{(nhy) > + (nh,)* 'h3).

The right-hand side here is minimized by taking h, = n=®*2~D/@»*D giying a
mean square error of O(n~4*2=0/@n+D) = Q(N~%2~8/@2+ D) Again, this rate
is optimal if f is known. However, we pay a penalty for not knowing f, as
Theorem 2.3 shows. A

Replace the true residual r;; by its estimate 7, = Y, — f(i/n, j/n), giving
rise to the following practical estimator of g(¥:

(2.9) 89(j/n)=nt"1 Yy chf'fﬂk-

i=1 k

THEOREM 2.3. Assume f is v,-smooth, g is vy-smooth, v, > t, E(g})) is
uniformly bounded and h; = h,(n) satisfies h; > 0 and nh; > « for i = 1,2.
Then for each 0 < § < 4,

sup  E{g0(j/n) - g9(j/n)}’

Sn<j<(1-8)n

(2.10) 2

= O[{(nhz)_w?_” + (nh,)*7'RE} + (nhy)*{(nhy) ™™ + B2} ]
REMARK 2.4. The order of the mean squared error of (9 is that of the mean

squared error of &), plus (nh,)** times the square of the mean squared error of

f; compare (2.8) and (2.10), noting result (2.6) for r = s = 0. The additional term

represents the penalty in not knowing f when estimating g(®.

REMARK 2.5. The value of A, which minimizes the order of the second term
on the right-hand side of (2.10) is &, = A} = n="/"*D, Using this value of A,
we find that )

E{g®(j/n) - gP(j/n))?

(2.11) _ —2(vg—t) 2t—14 9 2t —4p /(n+1)
= 0[{(nh,) + (nhy)™ ' h3) + (nhy) =t/ e ]
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The value of h, which minimizes the order of A(h,) = (nh,) 2279 +
(nh2)2‘_1h§ is h2 — h;‘ = pn-@n-D/@n+D) g4 A(h;‘) = Qpn 42— )/t Ryr.
thermore, (nh$)?n~*/"*D < A(h¥) if and only if

(2.12) v, > v,/(vy + 1).

Therefore, when (2.12) is true, the term involving A, on the right-hand side of
(2.10) does not influence the convergence rate of the optimally constructed
version of 89, and for h, = h* and h, = h¥,

E{£(j/n) - g9(i/n)}" = O(n~4C+=0/@n D),
This is the same as the best rate of convergence of §(; see Remark 2.3.
REMARK 2.6. If (2.12) fails, then there is a cost to estimating f. An optimal
balance among terms on the right-hand side of (2.11) is achieved by making

(nhy)~2%2~9 the same size as (nh,)*'n~*/¢1*D  This is, take h, = h}* =
n(Z =it D0+ Dn) i which case

E{8®(j/n) - g“’(j/n)}z = O(n= 42~/ ((r+Dm))

REMARK 2.7. Note that A}* [the optimal version of 2, when (2.12) fails] is
different from A [the optimal A, when (2.12) holds]. Also, none of A}, A and
h}* depends on t.

REMARK 2.8. We may summarize the main points made during Remarks 2.5
and 2.6 by stating that if g” is constructed using h, = h;* and h, = h¥ [if
(2.12) holds] or A, = A}* [if (2.12) fails], then

. . 2
E{(g9(j/n) - g“(j/n)}

= O{max(n_4("2_t)/(2V2+1)’ n_4"1(”2—t)/{("1+1)"2})} .

(2.13)

The term involving only », dominates the right-hand side here if (2.12) holds,
while the other term dominates if (2.12) fails. We shall show in Section 3 that the
rate of convergence described by (2.13) is optimal in a minimax sense.

To solve the first part of our control problem, we need to estimate that value
2z, which minimizes g. If g has a continuous derivative, then this amounts to
estimating the solution z, of the equation g®™(z) = 0. A potential estimator
8D(2) of gM(2) may be obtained by interpolating among values of g®(j/n),
defined at (2.9). However, this approach results in a very rough estimator,
without even a single continuous derivative. There are several ways of deriving a
smoother estimator. One is to derive g®(z) by linearly interpolating among
values of §®(j/n), and then estimate g by integrating £®. This we do below.

Define gV(j/n) and g@(j/n) as at (2.9), construct £@(z) by linearly
interpolating among points §®(j/n) and, for an arbitrary j, satisfying j, ~ na
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for some 0 < a < 1, put

2

g(z) =8%y/m) + [ ¥ da,  0<z<1.

Jo,

This will be our estimator of g®(z). It is continuously differentiable, with
derivative (g)(2) = §@(2), and is a quadratic interpolation of an estimator
“like” g™, It shares the mean squared error properties of g%, as follows.

THEOREM 2.4. Assume the conditions of Theorem 2.3, with t = 1. Then for
each 0 < § < 1,
sup  E(gV(z) - g(2))’

(2.14) 8<z<1-96

= 0[{(nh2)_2(”2_1) + nhg} + (nhz,)z{(nhl)_z"1 + hf}Z].

REMARK 2.9. Note that the right-hand sides of (2.10) (for ¢ = 1) and (2.14)
are identical.

REMARK 2.10. The conditions in Theorem 2.4 do not require the existence of
a second derivative of g, even though g is used in the construction of g®. We
need only assume », > 1; of course, @ is well-defined without any smoothness
assumptions, being given by formula (2.9).

We are now in a position to solve the first part of our control problem. Let 2,
be any solution of the equation g"(2,) = 0, and z, be the unique solution of
g%(z,) = 0. Then

(2.15) 0= g(l)(éo) = g(zo) + (20 - Zo)é(z){zo + 9(20 - 20)},

where 0 < § < 1. Assume g is »,-smooth for some », > 2. Then g® is well-
defined and continuous. Suppose that for an integer [ > 1, 4/th moments of the
errors ¢, ; are uniformly bounded. Then the argument leading to Theorem 2.3
may be generalized to prove that for each 0 < 8§ < 3,

sup  E(g7(j/n) — g®(j/n))" = O(By(hy, hy)'),
Sn<j<(1-8)n ‘

where B,(hy, hy) = {(nhy)" %279 + (nhy)? " hZ} + (nhy)*{(nh,)~*" + h2)}%

Choose h,, h, to minimize the order of B,(A,, h,), as described in Remark 2.8.

Then By(h,, hy) = O(n~%), where b= min[4(y, — 2)/(2v, + 1),4v,(v, — 2)/

{(vy + Dr,}]1 > 0. If I > 1/b, then for each n > 0 and each 0 < § < 3, we have

by Markov’s inequality,

Pl sup  189(j/n) - gP(j/n) > np = O(n ) = o(1),

dn<j<(1-08)n
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so that
(2.16) sup |8P(2) — g@(2)| = 0,(1).

8<z<1-8

Therefore, by (2.15), assuming that g@(z,) # 0,

20— 2= — {1 + Op(l)} {é_'(l)(zo) - g(l)(zo)}/g(z)(zo)-

We conclude that 2, converges to z, at the same rate as g)(z,) converges to
gW(z,); that.is,

(2.17) |2 — 20| = O,{max(n= 22~ D/@2+D p=2(ra= /(G112}y )

This is result (1.5), announced in Section 1, and implies (1.4) when », > 1.

The second part of our control problem consists of estimating the value x,
which satisfies f(x,, 2,) = 7. An estimator of f is f = ©?, defined in (2.3) with
r = s = 0. However, as in the case of our estimator of g, this suffers from being
“too rough.” Therefore we compute f©?, f@9 and f@OD by linearly interpo-
lating among values defined in (2.3), and then derive an estimator f of f by
integration, as follows. Let i,, j, satisfy iy ~ na, j, ~ nB, where 0 < a, B <1,
and put

f(x,2) = f(io/n, do/m) + [ OO u, jo/n)du+ [ fOD(ig/n, v) do
(2 18) io/n Jo/n

x N
+ du| [®Y(u,v)dy, O<x, z<1.
to/n Y j/n

This will be our estimator of f(x, z). It is continuously differentiable in both
variables, satisfying

(8/0x)f(x,2) = f©Ox, j,/n) + f_z fO&Y(x,v) do

Jo/n

and an analogous expression for (d/ 32)f(x, 2). It shares the mean squared error
properties of f©?, as follows.

THEOREM 2.5. Assume the condition of Theorem 2.1, with r = s = 0. Then
for each 0 < 8 < 3,

(2.19) sup E{f(x,z) — f(x, z)}2 = O{(nhl)_:z"1 + hf}

8<z2<1-8

REMARK 2.11. Note that the right-hand sides of (2.14) (for r = s = 0) and
(2.19) are identical.

REMARK 2.12. Theorem 2.5 does not require the existence of any derivative
of f, even though numerical values of /@b, f®&9 and f®D are used in the
construction of f.
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We are now in a position to solve the second part of our control problem.
Suppose f is v,-smooth, where », > 1. Then f @Y and f® are well-defined and
continuous. Assume f@V(x,, z,) # 0 # f ©9(x,, 2,). Define f as at (2.18) and
write f & (x, 2) for (3/dx)(3/92)’f(x, z). Choose h, = n="/®1*D to minimize
the order of (nh,)”~ 2" + hZ. Then by (2.19),

(2.20) |f_(x0, 20) — f(xOr ZO)I = Op(n—n/(vl+1)).

Suppose that for an integer / > 1, 2/th moments of the errors ¢;; are uniformly
bounded. The argument leading to (2.16) may be modified to show that if [ is
sufficiently large, then for each 0 < § < 3,

(2.21) sup |z, 2) — ¢ (x, 2)] = 0,(1)

8<x,2<1-§6

for (i, j) = (0,1) or (1,0). Using the Taylor expansion which produced (1.2) we
may now deduce that

Ro—xg= — {1 + Op(l)} { f_(xo, 20) — f(xo, Zo)}/f ®O(xo, 29)

— {1+ 0,(1) } (2 = 20) f @ (o, 20) /f “ (20, 2)-

We conclude that the rate of convergence of £, to x, is the worst of the rates of
convergence of f(x,, 25) to f(x,, 24) and of 2, to z,. By (2.17) and (2.20), this is

£y — %o| = O,{max(n="/(1+D, p=202=D/@n¥D =202 D/((1+Dra}) )
— O,{max(n="/¢1+D, p=2ra=b/@r D))

the second identity following from the fact that », > 1. This is result (1.3),
announced in Section 1.

Proor oF THEOREM 2.1. We begin with a lemma.

LEMMA. Let m > 0. Suppose the bivariate function f has continuous deriva-
tives f ), for i>0, j>0 and i +j < m, on the square [0,1]% There exist

numbers 0,,, 0,, satisfying 0 < 6,; < 1, such that

flu, +8,,uy, +8,) = ZE (@{8{/i!j!)f(i'j)(ul, uy)

0<i+j<m-—1

+ 2 (8{8{/i!j!)f(i’ Muy + 0,8, uy + 0,,8,)

i+j=m
whenever u,, uy, u; + 8, u, + 8, € [0,1].
To prove the lemma, write f(u; + 8, uy+ 8,) = {f(u, + 8, u, +8,) —

f(u, uy + 8,)} + f(uy, uy + 8,), and repeatedly apply the univariate version of
Taylor’s theorem with remainder.
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To prove (2.4), put m = (»,) and apply the lemma, obtaining for integer «
and B,

E{f(r,S)(g,E)_f(r,s)(ﬁ,é)}
n'n n' n

k/n)'(l/n)’
=Y Ta,b, TY M
PR i+j=m 1J:
X{f(i,h(a * 0,-1k’ B+ 0"2l) — f(i,j)(ﬁ, E)}
n n n n
— r+s l k i ! ’ k e l o
_ O{n LrTY =) (a2 +]5

— O{ (nhl)r+s—v1} .
To prove (2.5), observe that

vl {2} = ofare o (Ea)(£88)) - of(an)e ).

n

PrOOF OF THEOREM 2.3. Take r = s = 0, in which case we may assume
a, = b, and our estimator of f is

f(i/n, j/n) = Z Zazlalzyiﬂl,ﬁlz'
Lo
Put
A= ;‘ Ya,a,g{(j+1)/n} ey, i,
b

and

Bij = Z Zallalzf{(i +1)/n,(j+ lz)/"} — f(i/n, j/n).

L&

In this notation, 7, =r,.— A,.— B

ij ij i i EY that nl_?(t)(j/n) = nl_tg(t)(j/n) -
2A; + B;, where .

A= > Z(Ai,j+k + Bi,j+k)ri,j+kcka B; = > Xk:(Ai,j+k + Bi,j+k)2ck‘

i=1 k =

Therefore, in view of (2.8), it suffices to prove that
( ) E(Af) = O[(nhg)z{(nhl)‘z”l + hf}2 + hg(t+l)]’
2.22
E(B?) = 0| (nh)*((nhy) > + 12,
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Since A; = LY (A, ;1 p + B; ;1 1,8{((J + k)/n) %, ,,,c;, then

2
%E(Af) < E[Z LA i, jon8{(J + k)/n}1/2ck]
(2.23) Pk 2
+ E[Z Yei, juBi e r8{ (7 + k)/n}l/zck] .
ik
Now,

E(Ail,j+k1£i,,j+k1Ai2,j+k2£i2,j+k2)
4 1/2
=Y Ya, . 14[ [Te{(/+ la)/n}]

il+l,,j+k1+l2£i1,j+k,£i2+13,j+k2+l4£i2,j+k2)
= O{h{ + h}I(i, = iy, by = ky)}.
Hence, the first term on the right-hand side of (2.23) equals

O[Z co SR+ By = iy, by = k) J ALy, IRy < Chgl)}
i, i, Ry, Ry
= O{(nhgfhi1 + nhfhfétﬂ} = O{(nh§)2hi‘ " h%(Hl)}.

Since |B,;| = O{(nh,)” "}, then the second term on the right-hand side of (2.23)
equals

E(el) X XB: . 48((J + k) /n}ci = Of(nh,) "> 'nh2t+1}
ik

= O{(nhé)z(nhl)_‘”l + h%‘””}.

Combining estimates from (2.23) down we get the first part of (2.22). The second
part follows from the fact that |c,| < Ch;"'I(|k| < Ch;"), E(A};) = O(h{) and
|B;;| = O{(nh,)™"}.0

ProOF OF THEOREM 24. If j/n <u < (j+ 1)/n, then
g%(n) = (nu—j)EP((j + 1)/n} + (j + 1 - nu)g®(j/n),
whence
L7 80 w) du= @n) ' [60i/m) + £2(( + 1)/m)].
j/n
Therefore, if j/n <z < (j+1)/nand j>j, + 2,
j-1
g(z) = &8Vp/n) +n7t X gP(i/n) + T, + T
i=jp+1

= 2%i/m) + £°O((j = V/n) = 8"O(in/n) + T, + T,
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where

é*(l)(j/n) = Z E _]+k’ d,= Z Ch+1s
k

i=1

Ty= [ 4O(u)du, T,=(2n) " {8P00/n) + £2(j/n)}.

Jj/n

If {c,} satisfies condition (2.2) with ¢ = 2, then {d,} satisfies the same condition
(stated there for {c,}) with ¢ = 1. Therefore, Theorem 2.4 will follow from
Theorem 2.3 if we prove that, for i = 1 and 2,

(2.24) E(T? O[(nh )22V 4 nhd + (nhy)*{(nh) 7" + A2 ]

(The case of j values with j < j, + 1 may be treated similarly. Note that we
may not, and do not, assume existence of g®.)
Observe that

E(T?) <n? sup E{g‘(2)(u)2} <2n7? , max 1E{g(2)(l/n)2}.
=) J+

J/ngus(j+1)/n

Let A;, B; be as in the Proof of Theorem 2.3, this time with ¢ = 2. Then
g(2)(l/n) g(2)(l/n) + n(B, — 2A,) and (as shown during our proof of Theorem
5.3) E(A2) + E(B?) = O[(nh})¥{(nhy)~* + K2} + hS]. Also,

n2E{g®(1/n)?} < 16[nE{g®(I/n)’} + E(A}) + E(B})],
and, since §2(1/n) = nL,X,c,8{((l + k)/n}e? ,,, then
E{g®(i/n)*} = var(g®(i/n)} + {EZ®(l/n)}’

= O[na}:cz +|n
%

= O{n®hg + (nhy)*®7"?}.

Combining all these estimates we conclude that, for i = 1 and 2,

E(T?) = O[nh§ + (nhy) > k3 + (nh3)*{(nh)) > + k)
from which follows (2.24). O

3. Optimal rates of convergence. In this section we show that the conver-
gence rates derived in Section 2 for kernel-type estimators cannot be improved
upon by other estimators. Our optimality results will be in the form of “worst
possible” rates computed over function classes. It is a trivial matter to obtain the
same rates for our kernel-type estimators by extending arguments in Section 2.
In the next paragraph we define the function classes and state the extended
results.

Given positive numbers »;, v, and B, let ¥, = %(v,, B) be the class of
bivariate functions f on [0,1]? for which sup|f %] < B whenever i > 0, j > 0
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and i +j < (»,), and
If (i,j)(u’ D) — f(i,j)(x’ y)l < B(lu — xl"l‘(”l) + Iv — yl"l*("l))

whenever u,v,x, y €[0,1], i 20, j>0and i +j = (v)). Let €, = €y(»,, B)
be the class of nonnegative univariate functions g on [0, 1] for which sup|g¥| < B
whenever 0 < i < (»,) and

|g(<”z))(x) _ g(("z))(y)l < le - yl”z‘("z)

whenever x, y € [0,1]. Let €, = %,(B) be the class of nonnegative univariate
functions g on [0, 1] such that supg < B. Take "9, §® and 8 to be the
estimators defined at (2.3), (2.7) and (2.9), respectlvely, calculated by linear
interpolation at points which are not integer multiples of n~'. (See Remark 2.1.)
Assume that v, > r + s and », > ¢. For appropriate choices of the smoothing
parameters A, and h,, and for each 0 < 8 < }, there exist positive constants C,,

C, and C, depending on »,, », and B such that

2 2
sup sup  E; (["(x,2) — TN (x,2)} < Cn 2 rm9/0th,)
fe¥,8€% §<x,2<1-8

sup sup E(g9(z) - g(‘)(z)}2 < Cyn~42=8/@n+ D),
8EF, §<z2<1-8

2
sup  sup E; {89(z) - g“(2)}
fe¥,8€% 6§<2<1-8

< Cy max(n =402 0/@nr D) p=n0o=0/ (1 D))

These results, but without the suprema over f and g, were obtained in Remarks
2.2, 2.3 and 2.8 respectively. The methods of proof, smoothing parameters and
convergence rates are exactly the same in the present uniform context.

In this section we show that, for any nonparametric estimators f %), g®
and g2 (not just for our kernel estimators), the above inequalities may be
reversed. Let [ and g be nonparametric estimators of ™ and g®,
respectively, based on model (2.1), and let £ be a nonparametric estimator of
£, based on the true residuals r;; = g(j/n)"/%,;,1 < i, j < n. Assume that the
errors ¢, ; are independent and 1dent1ca11y dlstrlbuted as normal N(0,1) and that
v,>r + s and », > ¢t. We claim that for any fixed (x,, z,) € (0,1)? and arbi-
trary nonparametric estimators ™9, §® and g, there exist positive con-
stants D,, D, and D, such that, for large n,

(3.1) sup B {F(x,, 20) - f(‘r' (o, 20)}2 > Dyn 27T/,
fE€¥, €%
(32) sup E,{£9(2y) — 8(2)}" 2 Dyn~ 000/,
8E%,
2
sup  E; {8(20) — 8(2,)}

fe¥, g€%,

> D3 max(n“‘*(”z*t)/@"z‘*'l)’ n—4vl(v2~t)/{(v1+l)v2))’

(3.3)
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Results (3.1) and (3.2) may be viewed as lower bounds to convergence rates for
estimation of mean functions in nonparametric regression with uniformly
bounded variances. In the case of (3.2), the regression is replicated n times at
each design point. Both results may be derived by modifying arguments of Stone
(1980), who treats lower bounds in nonreplicated regression. Result (3.3) is more
difficult to obtain and is proved in detail later in this section.

Next we turn attention to estimation of z,, the unique element of [0, 1] such
that inf g = g(z,). The rate of convergence for our kernel-based estimator was
described by (2.17). To extend this to a rate uniform over a function class, we
must define a new function class, as follows. Fix »,>2,0<8 < and 0 < ¢
< 3B. Write 2, = 9y(»,, 8, B, c) for the class of nonnegative functions g which
are in %,(»,, B) and which satisfy tc < g®(z) < 2¢ for z € [0,1], gP(2,) = 0
for some 2z, € [§,1 — §]. It follows that each g € 9, is strictly convex, with
minimum attained at its unique turning point z,. Fix », >0 and let ¢, =
%.(v,, B) be the function class defined earlier. Then if 2, is our kernel-based
estimator of z,, and if {a,} is a positive sequence with a, — oo,

sup I)f,g{léo = 2|
(3.4) fe¥, €2,

>a, max(n—z(vl—l)/(zvzﬂ), n—2vl(V2—l)/((v1+1)v2))} >0

as n — oo. (Here v, > 0 and », > 2.) This is a version of (2.17) uniformly over
function classes and is proved in the same manner as (2.17). To state a converse
result, let £, be any nonparametric estimator of z, and {a,} be any positive
sequence. We claim that if (3.4) holds, then a, — . An outline of the proof of
this fact will be given later in this section.

Similar results for estimation of x, require a new class 2, of mean functions
f. Fix d € (0, 3B), v, > 1 and 7, and let 9, = 9(v,, §, 75, B, d) be the class of
functions f which are in %,(»,, B), which satisfy 1d < |f @ (x, 2)|, |f (=, 2)|
< 2d for (x, z) € [0,1]%, and which are such that for each z € [§,1 — §] the
equation f(x, z) = 7, has a unique solution x(z). Then if £, is our kernel-based
estimator of x, = x(2,), and if {a,)} is a positive sequence with a, — oo,

(3.5) sup P {|£, — xo| > @, max(n /0¥ pm2am /@)Y s g
fe2,, g€, ’

as n — . (Here », > 1 and », > 2.) Conversely, if £, is any nonparametric
estimator of x,, if {a,} is a positive sequence and if (3.5) holds, then a, — .

We conclude this section with a detailed proof of (3.3), and sketches of proofs
of the rates of convergence described by (3.4) and (3.5).

Proor or (3.3). It is notationally simpler to assume a regular design on the
square [—1,1]? instead of on [0,1]? and to take x, = 0. There is no loss of
generality in confining attention to this situation, and so we suppose instead of
model (2.1) that Y;; = f(i/n, j/n) + g(j/n)""%,;,, —n <i, j<n, where the
g;;’s are ii.d. N(0,1). Define the function classes %, and %, on [—1,1] instead of
on [0,1].
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In the case v, > v,/(v, + 1), we must prove that for large n,

sup  E, {89(x,) — g<‘>(x0)}2 > Cn~4r2-0/@n+1),
fe ¥, ge%b,

This inequality follows from

(3.6) sup  E; {89(x,) — g9(x,)}° = Cn a0/t
=0,8€%
which is true for all », > ¢t. To prove (3.6), note that when f = 0 our model
entails Y2 = g(j/n) + n,;, where 7,;=g(j/n)(¢?; — 1). This is a replicated
regression model, having mean function g and residuals with uniformly bounded
variance. Techniques of Stone (1980), giving lower bounds to convergence rates
for nonreplicated regression models, are easily modified to produce (3.6).
When v, < »,/(v, + 1), we must show that for large n,

(3.7) sup  E; {80(x,) - g“)(xo)}2 > Cn~ 02— /{01 + )
fe %, g€ %, ’

Our first proof of this inequality is valid for

(3.8) v, <vy/(vy+1), vy,>max(t1),t=0,1,....
The only case of interest not covered by these conditions is
(3.9) v, <vy/(vy + 1), 0<w<1,t=0,

and we shall treat this separately at the end of our main proof.

Assume condition (3.8). Let y,, y, be real-valued functions having at least
(vy) + 2 bounded derivatives on (— o0, 00), such that {, vanishes outside [0, 1],
Y, vanishes outside [—1,1], ¢,(3) # 0, ¥5°(0) # 0 and sup|y”| < ;B for0 <i <
(vg) +2 and j=1,2. Fix ¢ >0 and put m, = [en’/"*D], m =
[n!~@/(C1+ D7) /iy | (where [x] denotes the integer part of x), m, = m;m and

; = m,/n fori = 1,2. Let m,be an integer such that mom, < nand m, ~ n/m,.
Since we are assuming », > 1, then »,/(», + 1) < 1»,, and so the hypothesis
vy <y/(vy + 1) entails v, < j»,. This implies m —» 0 as n — oo. Let {I,,
—my<i<my—land —m <j < m — 1} be a sequence of +1’s, put A(x, y) =
d11(x/8,)¥1(y/8,), and define f = f(-|{I;;}) by

f(x’ y) =IijA(x_n71m1i:y_nilmlj) if(x’ y) Eji
f(x,y) =0 if(x,y) & Ujij,
y

J?

where £, = [n"'mji, n"'m(i + 1)) X [n7'm,j, n7'm,j, n7'my(j + 1)) for
—my<i<m,—1land —m <j < m — 1, and where U, ; denotes the union over
these values of i, j. Write % for the class of all such fs. Let G(x) = §21y,(x/8,),
& =1 g=(0-G)"' and 9= (g, g,). For large n, FC %, and 9C %,,
provided B > 1. (The latter restriction may be removed at the cost of notational
complexity.)

Let £®(0) be any nonparametric estimator of g(¥(0). It suffices to show that

lim inf p#"¢2=0/(C1*0%)  sup B, {20(0) — g¥(0)}" > 0.
k2

n—o feF, ge
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This result will follow if we prove that
(3.10) lim inf n#1C2~ /(01 D72 sup EX{ 80(0) — g9(0))” > 0
n— o0 gy

where EJ denotes expectation under the model

Y, =f(i/n, j/m{Lg}) + 8(j/n)%e;,  —n<i, j<n,
in which the I,5’s are independent symmetric +1 variables [independent of the
¢;,;’s, which are i.i.d. N(0,1)].
If (3.10) fails, choose a sequence {n,} such that the left-hand side of (3.10)
converges to zero as n — oo through {n,}. Since

|g(()t)(0) gf‘)(O)l ~ 82185 yP(0)| ~ const. n =202 = /{01 + D}

then the decision rule D given by D = 0 if |8®P0) — gP0)] < |8P0) — g9(0)],
D = 1 otherwise, provides asymptotically perfect discrimination between g§?(0)
and g{?(0) as n — oo through {n,}, in the sense that

Px(D=1)+Px(D=0)>o0.

We shall complete our proof by showing that this is impossible, even for the
likelihood ratio (LR) rule. It suffices to show that if the true g is g, then the
chance that the LR rule picks g, is bounded away from zero as n — 0. We may
confine attention to the LR rule based on {Y;;, |i| < mym,; and |j| < mm,}.
(Note that mym, ~ n and that gy(x) = g,(x) for |x| > mm,/n. Therefore, Y;;
with |j| > mm, provides no information for discriminating between g, and g;.)

Let a, b, a, B be integers satisfying ~my<a<my—1, —-m<a<m-—1,
1<b,B<m.Ilfi=am +0band j=am, + B, write Y ;5 and ¢,,,5 for Y;;
and ¢, respectively. For fixed a, a, the likelihood of (Y4, 1 < b, B < m,} is
proportional to

( [ ZZ{ Yopas + A(b/n, ,B/n)} ]

> 5 Bol(lam, + B)/n}

i)

b B gl{(aml+B)/n} n
The chance that the LR rule wrongly picks g,, equals the probability that

exp[ lyyyy o }]{ngl(j)}_"/z

a b «a Bgl{( ml+B)/n

(A(b/n, B/n)” + A(b/7, B/R)Eopag) ]

<I11]1 ”e’“’[_@% (G, B)/n]

IV

ool - LEE I [1 s o] 22 (o[22

n

(3 D] ]
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(Here we have used symmetry of the Normal distribution, which implies that

Eqpap a0 I 5€,,,, have the same distribution.) Equivalently, since G = 1 — g{'},
it equals the chance that

ool ol 7] vl -of3)

|

n

+ 2222(82,,,,,,—1)0{M})
a b a B

-2
b 2 b
x(l +exp[—2ZE{A(—,E) +A(—,E)8aw}]) } > 1.
) n'n n’'n
Denote the left-hand side of this inequality by B and put
b 2 2
3 R I
» g \n 1

B

b 2
Naa = d1_1/2 Z ZA(;, ;)eabaﬂ = N(O, 1).
b B

Noting that 8, ~ my! ~ cn V™ *D and §, ~ n=22/{1* D7) we see that

a2
40, {n za(%)}

+{1 + 0,(1)}4Y. Yexp{ -2(d, + di*N,,)}

2
log B

-{1+ o(l)}%n z:: G(%

% [1 + exp{—2(d1 + dll/QNaa)}] ’l(dl + d11/2Na,1)G( 0‘:1)

1 294v 2 2v,-1
-{1+ op(l)}gn 5 162f¢2 + {1+ 0,(1)}8m 8717 18,5
= p{r2=nr2+D}/{(n+1ry) 2”1‘_2 ! 4v 2
=n 8¢ 2% — 3¢ fz,l/2+op(1) ,

where s = ([¢,)E(exp{2(d + d*/?N)} + 1]"}(d + d'/?N)), N 2 N(0,1) and ¢
is chosen so that the expectation is nonzero. Choose y/, to be either nonnegative
or nonpositive, the sign being selected so that s > 0, and choose |{,| so small
that 8c¢?17%s — 1c*1fy2 > 0. Then B - + o in probability, implying that the
chance that the LR rule picks g, when g, is the true variance function converges
to one as n — oo. This completes our proof in the presence of condition (3.8).
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The proof when (3.9) holds is simpler. Adopt the same notation as before,
except that m is redefined as m, (~ n/m,), Y, = 1, and m, and §, are no longer
needed. Pursue the same argument. O

We next sketch a proof of the fact that if (3.4) holds for a nonparametric
estimator 2, of z,, then a, — c0. We treat only the case », < v,/(v, + 1), which
is the context of the major part of our proof of (3.3). The case », > »,/(v, + 1) is
similar. Our argument is almost identical to that employed to derive (3.3).

Assume that estimation takes place on [ —1,1]% Use the same class of f’s but
change g,, g, from 1, (1 — G) ! respectively to H, H + G, respectively, where
G is as before and H is a positive, strictly convex function with unique minimum
interior to [ —1,1]. For definiteness we shall take H(z) = (1 + z%)B,, where our
selection of the positive constant B, depends on the value of B. Let 240 (= 0)
and z,, be the values which minimize g, and g,, respectively. Now,

8{(z) = 2Byz + 87185 W3(2/5,),

which equals zero when z = 2. Thus, by appropriate choice of Y, we may
ensure that zy, and z, are distant apart an amount which is asymptotic to
const.82"18, . The argument given during our proof of (3.3) shows that it is
impossible to discriminate between z,, and z,,, and so it is also impossible to
discriminate between zy, and 2. Therefore no nonparametric estimator of z,
can converge to z, more rapidly than 8218, 1, and the latter is asymptotic to a
constant multiple of

n—2vl(v2—1)/((v1+1)v2) = max(n—Z(uz—l)/(2u2+l)’ n—2vl(v271)/((v1+1)v2)),

the above identity holding since », < »,/(», + 1). It follows that if (3.4) holds,
then a, — oo.

A proof of the fact that (3.5) entails a,, — oo is similar. It uses the same g,
(= H) and g, (= H + G) as above, but has the class of f’s changed from % to
F'=(F+f: feF), where F is an appropriate bivariate function which is
strictly monotone in both variables. For example, if 7, = 2 and z, is close to zero,
then we may take F(x, z) = (x + 1)2 + (2 + 1)2

4. Random design case. Although the fixed design case is the more impor-
tant, analogues of our results may be obtained if (x;, 2;), 1 <i < N, are random
variables distributed within the square [0,1]? according to density d, rather than
points on a lattice. In the present section we briefly discuss the random design
case. The reader is referred to Prakasa Rao (1983), Section 4.2 for details of
nonparametric regression estimation.

Assume that N observations (x;, Y,, ;) are generated by the model

Y = f(x;,2;) + 8(2,)" % 1<i<N,

i

where f is »,-smooth, g is »y-smooth, the density d of the pairs (x,, z;) is
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max(»,,v,)-smooth and, conditional on the (x;, z;)’s, the ¢,’s are independent
with zero mean and uniformly bounded second moments. A kernel estimator of d
is

(4.1) ci(x, z) = (Nh%)_l Z Kl{(xj - x)/hv(zj - z)/hl},

j=1
where K, isa compactly supported bivariate function as in Theorem 3.1 of Stute
(1984) and such that [x'2/K(x,2)dxdz=1ifi=j=0and =0ifl1 <i+j<
(v,). A kernel estimator of f is

fx,2) = 8(x, 2)/d(x, 2),

N
n -1
§(x,2)=(NRZ)" ¥ YK ((x; - x)/hy, (2, — 2)/h,}.
j=1

Let cii(x, z) and $8,(x, z) be as in (4.1) and (4.2), but with the sums taken only
over j # i, and let f(x,2)=3§,(x,2)/d|(x,2), r;=Y,— f(x;, 2;) (not observ-
able) and ;= Y, — fi(x,, 2;). Fix 0 < 8 < . Analogues of § and g are

(4.2)

&(z) = g rAI(8 <x;<1-8)K,{(z;,— 2)/h,)}

J=1
1

N
/._ I(8 <x;<1-8)K,{(2; — 2)/h,},

™M=

I(6 <x;<1-8)K,{(z,— 2)/h,},

1

~.
I

(4.3)

8(z)= L AU(8 <x;<1-8)K,{(z,—2)/h,}

respectively, where K, is a univariate function satisfying [2'K,(z)dz = 1 for
i=0and =0forl<icx< (»).

Take h, = N~/@1*? and write ay = N™*/*1*Y, By moment calculations
applied to §*) and d™*) for 0 < r + s < »,, using (4.2) we find that for § < x,
z2<1-4,

(4.4) {(F(x,2) = f"x,2))" = O N-r—r=/euiny,
By Theorem 3.1 of Stute (1984),
sup{ltfi(x, z)—d(x,2):1<i<N,8§<x,z2<1-38} = Op{(aN log N)l/z}.

Assuming that d is bounded away from zero on [0,1]% one can show that,
uniformly in § <x, z2<1 -8,

fi=f=(8—fd)/d - (5 - {d,)(d; - d)/d?

(4.5) R y .
+(8,— fd;)(d, - d)"/(d?d,) + O,(aylog N).
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Let Ay, — 0 such that Nh, — co. By moment calculations applied to each
term in g, it follows that, for 0 < ¢ < (»,), § <2 <1 - §,

(46) (89(2) - 89(2))" = O (N3*) " + 0.
Using (4.5), detailed calculations yield
(4.7) {g(‘)(z) —_ g(t)(z)}2 _ Op{(Nhg”l)_l n h%(vz—t) + h2—2lN—2u1/(ul+l)}‘

Equations (4;4), (4.6) and (4.7) are analogues of (2.6), (2.8) and (2.11), respec-
tively.

We may also derive analogues of (1.3), (1.4) and (1.5), by following essentially
the arguments given in Section 1. It is necessary to show that

sup  18%(z) - g®(2) -0, sup  |f(x,2) = fE(x,2) >0
§<z<1-8 d<x,2<1-8

in probability, where (i, j) = (0,1) or (1,0). The trick is to decompose g® and
f@ 7 into a series of terms, each of which is a ratio of two consistent function
estimators. Assuming sufficiently many moments of the errors ¢, and Holder
continuity of derivatives of K; and K,, uniform consistency of these function
estimators may be proved by using the “continuity argument”; see, for example,
Stone [(1984), foot of page 1292] and Hall (1985). The technique is intricate and
laborious, but conceptually straightforward. It gives the same rates of conver-
gence exhibited in (1.3), (1.4) and (1.5), under the same conditions on f and g.
Arguments similar to those in Section 3 may be employed to show that these
rates are optimal.
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