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PROPERTIES OF BIASED COIN DESIGNS IN SEQUENTIAL
CLINICAL TRIALS

BY RICHARD L. SMITH

Imperial College, London

Martingale methods and the martingale invariance principle are used to
derive central limit theorems and related results for biased coin designs of the
kind previously studied by Efron, Wei and many others. The results are

“applied to the study of selection bias. The method is developed for the simplest
two-treatment case and then extended, first to the case of several treatments,
and secondly to the case of two treatments with prognostic factors.

1. Introduction. In conducting a clinical trial it is necessary to have some
rule for allocating patients to the different treatments under test. It is desirable
that the trial should be balanced, not only with respect to the overall assignment
of patients to treatments but also with respect to the various prognostic factors,
such as age, sex and major indicators of clinical condition, which are always
taken into account in conducting such a trial. On the other hand, randomisation
is desirable for a number of reasons including the selection bias which may arise
if the person in charge of selecting patients for the trial has advance knowledge
of the treatment assignments.

Blackwell and Hodges (1957) established a procedure to minimise the selection
bias under the constraint of perfect balance between two treatments, assuming
the total number of patients is known in advance and ignoring prognostic factors.
In practice, prognostic factors might be incorporated by dividing the patients
into several strata, according to the prognostic factors, and applying the Black-
well-Hodges procedure to each. However the total number of patients in each
stratum is rarely known in advance, nor is it clear that the constraint of perfect
overall balance is necessary, as it may be sufficient for the trial to be nearly
balanced in some sense.

Efron (1971) proposed a biased coin design in which the patients are allocated
to two treatments according to the following rule. Suppose the first n patients
are divided between two treatments T; and T, so that n; are on treatment
T; (i = 1, 2). If n, > n, then patient n + 1 is allocated to T, with probability p
and T, with probability 1 — p, where p = 2. If n; < n, the assignment probabilities
are reversed, and if n, = n, then patient n + 1 is assigned to either treatment
with equal probabilities. As a specific example, Efron proposed taking p = 2. In
his paper Efron discussed how to measure the imbalance and selection bias in
such a design, and also considered the accidental bias arising from unknown
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disturbances to the experiment, and the possibility of randomisation inference
based on permutation tests.

In recent years a number of alternative procedures have been proposed; we
mention in particular the procedure analysed by Wei (1978a). An extension to
R > 2 treatments was proposed by Wei (1978b). Procedures incorporating
prognostic factors were proposed by Pocock and Simon (1975), Begg and Iglewitz
(1980) and Efron (1980), and a general procedure applicable to any number of
treatments and prognostic factors has been put forward by Atkinson (1982).

Our purpose here is to show how martingale methods may be used to study
the procedure of Wei (1978a) and a number of generalisations of it. The results
are applicable to a large class of designs; for example, they are used to obtain a
number of properties of Atkinson’s class of designs. The results are presented in
the next three sections, Section 2 on two treatments with no prognostic factors,
Section 3 on a generalisation to an arbitrary number of R treatments with no
prognostic factors, and Section 4 on a procedure for two treatments which
includes an arbitrary number of prognostic factors. The key to all our results is
the martingale invariance principle, which is discussed in detail in the recent
monograph of Hall and Heyde (1980).

2. Two treatments. Let 6, be +1 or —1 according as the nth patient is
assigned to T, or T,. Let Dy = 0, D, = Y.<, 6x. Wei (1978a) studied the class of
treatment assignment rules of the form

(2.1) P{6,+1 = 1| D,} = p(Dn/n)

where p(x) is a nonincreasing function on —1 < x < 1 with p(x) + p(—x) = 1.
The rule of Efron corresponds to making p constant on [—1, 0) and on (0, 1].
Wei considered the case of a continuous function p and proved a number of
properties. There are a number of arguments for using a continuous function p,
including the fact that mean selection bias and mean accidental bias then tend
to zero asymptotically. This is also consistent with the procedure proposed by
Atkinson (1982). Under Atkinson’s procedure, if one is interested in the mean
responses of both treatments then T, is selected with probability n,/n, while if
one is only interested in mean treatment difference then T, is selected with
probability n3/(n? + n3). Here n, and n, are the numbers of patients on T; and
T, respectively. It is natural to consider the general class of rules

P{6n+1 = 1 I nl’ n2} = né/(nll) + né’), 14 > O’
which corresponds (since D, = n, — n,) to (2.1) with
(2.2) px) =0 - x)"/{Q1 + x)" + (1 — x)*}.

One of Wei’s results was to show that n~/2D, has asymptotically a normal
distribution with mean zero and variance {1 — 4p’(0)} 7. In the case (2.2), this
variance becomes (1 + 2p)~". In the general case, we define the parameter p to
be —2p’(0); this is of course consistent with (2.2). Our first objective is to prove
a theorem which generalises Wei’s result to obtain weak convergence on a
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function space. The space is C[0, 1], the space of continuous functions on [0, 1],
endowed with the topology generated by the metric

d,(f, 8) = supo<c<1t’| f(¢) — &(¢) |.

We shall denote this space with its topology by C,. Note that the topology is
different from the usual supremum norm topology, which in our notation is Cy.
In later sections we shall generalise the notation to several dimensions; we denote
by C? the space of continuous functions on [0, 1]" with topology being the product
topology generated by the metric d,.

THEOREM 1. Suppose the function p(-) is twice continuously differentiable,
with second derivative uniformly bounded on [—1, 1]. For each n = 1, define a
stochastic process Z,, by

(2.3)  Za(t) = n7Y2(1 + 20)*[Di + (t — k/n)oks1], k/n <t =< (k+1)/n.

Then Z, converges weakly on C, to a limiting process Z, which is a zero-mean
Gaussian process with continuous sample paths and covariance function

E{Z(s)Z(t)} =s'*""t™", O0<s=<t=<1.
PrOOF. First we state the following:
LEMMA 1. E{D2} < n,E|D,| <n'?and D,/n —, 0.

This follows from Lemmas 1-3 of Wei (1978a); Wei also proves convergence
almost surely but convergence in probability suffices for the following.
Let %, denote the sigma algebra generated by {6;, - - - , 6,}. From (2.1),

E{Dn+1| %} = anDn + 671

where a, = 1 — p/n, 8, = 2[p(D./n) — p(0) — p’(0)D,/n]. Let no be some fixed
positive integer with ny > p, and define

A, = mishak’, Bn= it AraBr for n > ne.
Then the process
Mn = A"Dn - Bn, n > nOa

is an %, martingale, i.e. E{M,.,| Z.} = M,. It is readily verified that n™"A,
converges to a positive finite constant, A say, as n — oo, a result we rewrite in
the form

(2.4) A, ~An?, n— o (0 <Ay < x).
The following form of the Martingale invariance principle is due to Brown
(1971) (see also page 99 of Hall and Heyde, 1980).

Martingale invariance principle. Suppose M,, is a square integrable martingale
with martingale differences X, = M, — M,_;(M, = 0). Let s2 = E{M2} =
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Y71 E{X}%}. Define £, to be the random element of C[0, 1] given by

£,(t) = s {My + (she1 — $3) 7t 2 — $B) X1}, SE = tsh < Sk

Suppose that

(2.5) $n” k=1 E{XEI(| Xi| > es,)} = 0 Ve >0,

(2.6) sn? D=1 Xi —p 1

as n — ». Then ¢, converges weakly (in the supremum topology) to a Wiener
process £.

In order to apply this result, we must verify conditions (2.5) and (2.6). First,
for n > ny, we have

Ar_lan = A;I (AnDn - An—an—l - Anﬁn—l)
= 6n + pDn—l/(n - 1) - ﬂn—b

But we know D,,_;/n —, 0 by Lemma 1. Also, since p” is bounded, 3,-,is bounded
by a constant times {D,_,/(n — 1)}? which also tends to 0 in probability. Also 62
= 1. Thus the sequence {A,' X,} is uniformly bounded by some absolute constant
and satisfies

APXE —, 1.
Now
n2 Y, XEi=nT2% Y ANAR X)) P~ nT % Y AR
in probability. (The uniform boundedness is used here.) But as n — o we have
2 1
n”' Yesn (S) ’ - fo x*dx = (14 2p)7%
Hence
n7i7% Yk X —p, (1 + 2p) 'AS.
Moreover
n™'"% Yio1 Xi < constant[l + n' T}_ .| (6 + pDip-1/(k — 1) — Bi-1)
which is uniformly bounded, so the dominated convergence theorem implies also
n1"%s2 1+ 2p) A2,

This proves (2.6). To show (2.5), since s, = O(n'?***) it suffices that
E{(n™*X,)(|n~*X,| > en'?)} — 0. But this follows at once from (2.4) and the
uniform boundedness of A,'X,. Hence the conclusion of the martingale invari-
ance principle holds.

This result is the key to the theorem, but it is still some way from the result
we require. First, note that

S;le ~ n_l/z""(l + 2p)1/2A61 {Aokak + Bk}
which suggests replacing s;* M, with n™2(1 + 2p)/%(k/n)*D, in the definition of
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&,. With this in mind, define
» 2 _ .2 » »
EX(D) = n (1 + 2,,)1/2[@ D, + Zn = sk (k + 1) Diwr — (5) Dk],

Skv1—SE\ n n

st <ts2<s?,,.

We claim that £} also converges weakly to the Wiener process £ as n — o, This
will follow from:

LEMMA 2. sup| £,(t) — £X(t) | —, 0 as n — .

PrOOF. It suffices to show
2.7 SUPk<n| $7 M — VA1 + 2p)Y2(k/n)"Dy| —, 0.

This will be broken up into several steps. Noting that M, = A, D, — B, we show
separately that

SUDk=n | 7' AxDyx — n7V3(1 + 2p)"V%(k/n)*Dy| —, 0,
Sn' SUPk=n| Bi| —>, 0.

The latter statement will follow at once if we can show that B, /A, is bounded in
probability as n — . However

E|B.o/An| < Tken AvAR'E | Beeil
=< constant Y.<, (k/n)°E(D3}/k?)
< constant n™* Y., k!

which is bounded, so the required result follows at once from the Markov
inequality.
Now let us write

2.8) sntAxDy — n7V2(1 + 20)"*(k/n)*D,
. = n""2(1 + 2p)Y2(k/n)*Di[(s;*(1 + 2p) V2Aon ) (AT RTPAL) — 1].

The part in square brackets is uniformly bounded in % and n, and tends to zero
if both £ — 0 and n — «. Let {k,, n > 1} be an arbitrary sequence such that
k, — + ®, k, = o(n1*2)/2+2)) Break up (2.8) into two parts, k < k, and
k > k.. On k < k, we have n™"*(k/n)"D; — 0 uniformly, since | Dy| < k.
On k > k, the part of (2.8) in square brackets tends to zero as n — o uniformly
In &, so it suffices to show that sup,<,n~%(k/n)*D, is bounded in probability as
n — «.This follows from Doob’s inequality applied to M,, together with (2.4)
and the fact (just shown) that B,/A, is bounded in probability as n — o, The
proof of Lemma 2 is complete. A

We now know that £} converges weakly to £. By the result of Wichura (1970),
it is possible to construct the processes {£*} and £ on a common probability space
so that

(2.9) lim,,_..8Upo<;<1 | £X(t) — £(¢) | = 0 a.s.
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Our final transformation is a change of time scale. Define Z,(t) by (2.3), Z(t) =
t™°£(¢t'**). Note that Z satisfies all the conditions in the statement of the theorem.
Now Z,(t) = t™£5(7,(t)) for some function 7, which satisfies 7,(k/n) = (si/sn)?
and is monotonic increasing. However (s/s,)? ~ (k/n)'** so that

sup| 7,(t) — t'**| - a.s. 0.
Then we can write
supt?| Za(t) — Z(t) | = sup,| £X(ra(t)) — £(£1%) |
(2.10) = sup;| £7(7,(t)) — £(7a(2)) |
+ sup,| £(7,()) — £E(t*) | > a.s. 0,

the first term by (2.9) and the second by continuity of sample paths. With this
the proof is complete; we have shown that d,(Z,, Z) — 0 almost surely on this
particular probability space, and that suffices to prove that Z, converges weakly
to Z on the space C,.

2.1 Lack of balance. Using Theorem 1, we are able to study many of the
features of the design which are important for applications. The first of these is
the imbalance in the generated design. Wei (1978a) proposed v, = ni! + n;! as
a measure of the imbalance of the generated design. He pointed out that this is
equivalent to Box and Draper’s (1975) measure of the robustness of a design
against wild observations. It is also proportional to the variance of the estimated
treatment difference. Then

(2.11) ni' + ny' = 4n7Y1 + D%/n* + O(D3/n)}

so that the increase compared with the optimum value when D, = 0 is approxi-
mately 4D2/n? with asymptotic expectation 4/{n%(1 + 2p)}. The consequences
of this are discussed further in Section 4 of Wei’s paper.

2.2 Selection bias. Theorem 1 also enables us to obtain quantitative expres-
sions for selection bias and accidental bias. We consider selection bias first.
Recall that this is the bias which arises as a result of the experimenter’s ability
to guess the sequence of treatment allocations. A reasonable measure of selection
bias is the mean number of correct guesses minus the mean number of incorrect
guesses, assuming the experimenter always guesses the treatment which is more
likely to come next. This measure is then

(2.12) U. =n7" 3321 | 2p(Di/k) — 1.
The asymptotic distribution of U, is given by the following:

THEOREM 2.

1
n'*(1 + 2p)2U, —4 p f
0

where Z is as in Theorem 1.
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PROOF. First define
Uk =n"1 Yl p| Dy/k|.

Now n'2E| U, — U}| < constant n™/2 ¥7_, E(D}/k?) — 0 as n — o, s0 it
suffices to prove the result with U} replacing U,. Rewrite

n'2(1 + 20)2U% = p Ti=l k71| Z,(k/n) |.

If we replace Z, by Z then the right-hand side converges almost surely to
p [l Z(£)/t| dt because Z is almost surely a continuous function. Therefore it
suffices to prove

Yhe1 K7 Zn(k/n) — Z(k/n)| —, 0,
whenever Z,, and Z satisfy (2.10). However it follows immediately that the result
holds provided the sum is restricted to k = ne, for any fixed ¢ > 0, so it suffices

to show that ¢ may be chosen so as to make both Y, k7| Z,(k/n)| and
Yk<nek~'| Z(k/n) | arbitrarily small in probability, uniformly in n. By Lemma 1,

E Yien R Zn(k/n) | = (1 + 20)*n7Y2 $ye. E| Di/E|
< (14 20)20 V2 $ye k7Y% < const. ¢!/2,

This suffices to give the result for Z,, and the same argument also works for Z.
This proves the theorem.

The exact distribution of the limit may be found from Kac’s formula (Ito and
McKean, 1965), after rewriting in terms of £. We note, however, that the mean
is easily calculated, since E | Z(t) | = (2t/7)'/? and hence

1 1/2
o[22 -
0 t T

mean selection bias = 2p{2/(nx(1 + 2p))} V2

Therefore we have

This result improves on that of Wei because it gives an explicit expression for
the bias. In particular, it is possible to evaluate the trade-off between the
imbalance of the design and selection bias, so enabling the experimenter, in
principle at least, to choose p to get the best trade-off.

3. Biased coin designs for R > 2 treatments. Biased coin designs for
an arbitrary number of treatments have been proposed by Wei (1978b) and by
Atkinson (1982). Wei’s procedure is a generalization of his procedure for two
treatments and is based on the assumption that it is desired to balance the
experiment so that each of the R treatments receives a proportion R~ of patients.
Atkinson’s procedure is based on the concept of D4 optimality and allows for the
possibility that the limiting optimal design is asymmetric. Therefore we propose
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a procedure which generalises Wei’s procedure to achieve a limiting design

measure (£, -+, £r), where £, = 0 for 1 = r < R and Y £ = 1. In other words,
the limiting proportion of patients assigned to treatment r is required to be &,.
We assume ({1, - - -, £r) are known at the start of the experiment.

Suppose, after n patients have been allocated, the number of patients on
treatment r is D, ,. Define 8,4+, to be 1 if the (n + 1)st patient is allocated to
treatment r, 0 otherwise. Let %, be the sigma field generated by {D;,, 1 < k <
n, 1 < r < R}. Our allocation rule is of the form

P{6n+1,r = 1 | Zn} = pr(n_an,ly ct n_an,R)-

Define @ = {(y1, - -+, yr): ¥- = 0, ¥ y, = 1} and suppose p = (p1, - -, Pr) is a
function from an open neighborhood of Q into Q satisfying:

Al pis twice continuously differentiable with uniformly bounded second deriv-
atives;

A2 ify, = ¢ thenp,(y) < &.
Let B = (b,,) be the matrix of first order partial derivatives defined by
b.y = (0p/3y,) (&1, -+ -, ER).
Condition A2, which says that the design always works towards the desired

limiting proportions &, - - -, £r, imposes quite strong restrictions on the matrix
B. First, it is obvious that b,.< 0 and that Y, b,,= 0 for all g. Secondly,
pr(‘fl + 6) 52 - 6y E3’ MR ‘ER) = {:r + 6br1 - 6br2 + 0(62)

By A2 this is at most £, if r > 2, irrespective of the sign of é. Hence b,; = b, for
r > 2. By extension, for each r we have b,, equal to a constant, say ¢, = 0, for
q # r. It follows next that b,.= ¢, — X, ¢;. Denote Y, ¢ by p; it will soon be seen
that this p has the same interpretation as in the two-treatment problem. Finally

we have
bry = {c” r*a
cr—p, r=4gq.

Note that B has two distinct eigenvalues, namely 0 with multiplicity 1 and —p
with multiplicity R — 1. Any vector u = (u,) such that ¥ c,u, = 0 is a left
eigenvector with eigenvalue —p. The constant ¢, may be thought of as a weighting
factor which measures how strongly it is desired to balance the rth treatment.
This interpretation, however, is misleading to some extent, as it will be seen that
the limiting properties of the design depend only on p.

REMARK. It is essential that p be defined on an open neighbourhood of €,
and has values in @ throughout that neighbourhood, for these relations on the
partial derivatives to be correct. I am grateful to Profs. L. J. Wei and R. T.
Smythe for correspondence on this point.
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We now state the main result:

THEOREM 3. Defineforn=1,1<r<R,0=<t=<1,
D_n,r = Dn,r - ngr’
Zpr(t) = n7V2(1 + 2p)*[Dy, — (t = B/n)(Spsrr — &)], k/n<t<(k+1)/n.

Then {(Z,1(t), -+, Zor(t)), 0 < t < 1} converges weakly on CF to a limiting
process {(Z,(t), - -- , Zg(t)), 0 =t < 1} which is a zero mean Gaussian process with
continuous sample paths and covariance function

(& — &)™, r=gq

(3.1) E{Z,(s)Z,(t)} = {_ EE5E0, r#g

whenever 0 <s<t=<1.

ProOF. Let u” = (uy, - - - , ug) be an arbitrary R-dimensional vector. We shall
show that Z u,Z, .(t) converges to a zero mean Gaussian process with continuous
sample paths and the same covariance function as X u,Z,.(t). This is sufficient,
since u is arbitrary.

We begin with two lemmas. We use the notation x, = max(x, 0).

LEMMA 3. Given xy, -+, xp with Y, x, =0,
Yxr<RY (x)i.

PRrOOF. Suppose x;, >0, -+, %, >0, %41 <0, ---,xp <0, wherel =m =<
R—1If 3% (x,)2 = Y7 x2 = ¢ then 37 x, < (mc)¥% So — T8, x, < (mc)'?,
Y21 x2 < me. Thus 3F x2 < (m + 1)c < Re.

LEMMA 4. 3, E{D?%.} < R*n.

ProOF. We start with the identity,
D%i1r = D7} + 2Dp(Snsrr — &) + (Bnirr — &)
Then, by considering separately the cases D, , = 0, D, , < 0 it follows that
(Dns1,))3 < (D)3 + 2(Dn)s (Bpsr,r = &) + (Bnarr — £)%

Take expected values, noting that (8,+1,, — £)? < 1 while E{(8,41., — &) (Dynr)+}
< 0 by A2. Hence E{(D,1,)%} < E{(D,,)%} + 1 and so E{(D,,)%} < n. The
result now follows from Lemma 3.

From Lemma 4, it follows at once that

3. E|D,,| = 0(n"?)

and that n™'D, ,—, 0 for each r.
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From now on let Y, = ¥, u.D, ,. Then
E{You| Fo) = Yo + E{Z, urBperr — &) | Tl
=Y, + 3 u{p(n Dy, - -+, N7 Dng) — &)
=Y, + X u X, byn"'Dpy
+ 3, uAp(n Dy, -+, P Dng) = & — X begn Dy g}
=a,Y, + Bn \

where @, = 1 — p/n and E|B,]| is uniformly O(n™"'), by the boundedness of
second derivatives and Lemma 3.
The proof now follows closely that of Theorem 1. For n > no > p, let

A, =TIz, @k’ Bn= Xitn, Ars1Br, M, =AY, — B,.
Then (M,, &,) is a martingale. If X, = M,, — M,_,, then
A7 Xy =3 (b — &) + pYar/(n = 1) = Ba
=2 U(nr— &) + e
where ¢, is uniformly bounded and tends to zero in probability. Then
APXE = 30 B Urltg(8n,r — £)(8ng — £g) + &n
=3, Uldn, + Xr Dg Urltg(£r8q — 2E,:0n,9) + en.

Thus E{A;2 X2} — ¥, ut, — (X, u.t.)* = 4 (say). We may now write

n 1 Y X3 =" Then AR U+ 077 T ARARPXE — Q).
Since A, ~ Agk” the first term converges to A5(1 + 2p)~'a. The second term is

N7 Pien AR, uZ@rr — &) — 2 B Tg Urltg€r(Org — £q) + erl-

We claim that this tends to zero both in mean and in probability. First, we know
en —p 0 and by the dominated convergence theorem E|¢,| — 0 also. Hence
n~271 Y.<, AZE | &x| — 0. For the rest, it will suffice to show

n_zﬂ_lEl stn A%(ak,r - ‘Er)l — 0.
But
stn A%(Bk,r - Er) = EksmAz(ﬁk,r - Dk—u)

= A2D,, — Yl Dy (AZ+ — AR).
We know already that n™>"* A2E| D, ,| — 0, and it is easily verified that A},
— A% = 0(k*™) so that
n~2"1 221 (A}, — A}) E| Dy, | < constant n™27! Y32} k2 71kY2
—0 as n—o .

This proves our claim.
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Thus we deduce
R Shen XE—p AL+ 20)70, 07 E{Saen XE > AL + 20) 7.

The remainder of the proof follows that of Theorem 1. We conclude that
Yu,Z,,(t) converges on C, to a zero mean Gaussian process with continuous
sample paths and covariance function as'*"t™*, 0 < s < t < 1. But this is precisely
the covariance function of Yu,Z, when Z,, ..., Z have the covariances (3.1).
With this the proof of Theorem 3 is complete.

EXAMPLE. Atkinson (1982, Appendix) derived an allocation procedure for an
experiment in which it is desired to estimate all contrasts among R treatments.
This procedure corresponds to choosing

p.(y) = (y7' = 1)/Cy:* — R).

We claim this satisfies A1 and A2 with £, = R for all r. It is a little tricky to
show A2 in this case. However, if v, (say) is fixed and y,, - - -, yr allowed to vary
then Yy;'=yi' + (R — 1)%(1 — y;)™* and so

p(y) = (yi' = 1)/(yi' + (R - 1D*1 — y)™" —R).

It may now be checked that the right side is at most R~ whenever y; = R
Consequently A2 is satisfied and the result of Theorem 3 holds with p =
R/(R —1).

REMARK. It seems natural to extend condition A2 to require also P.(y) = &,
when y, < £, but this is false for Atkinson’s procedure. This makes Lemma 4
harder than would otherwise be the case.

3.1 Lack of balance. The quantities {D,,} measure the imbalance in the
design. Theorem 3 shows that their variances are asymptotically proportional to
(1 + 2p)7L. Thus the dependence on p is exactly the same as in the two-treatment
problem.

Specific measures of imbalance can be treated in the same way. Wei (1978b)
takes Y, D, as a measure of imbalance, pointing out that it is equivalent to the
design robustness measure of Box and Draper (1975). The optimal value n™'R?
is obtained when D, , = nR™ for all r (so ¢, = R" here). Now

n¥, Dyi=n3 (nR™" + n*(1 + 2p)"*Z,, (1)}
=R ¥, {1+ nA1 + 2p)"’RZ, (1)}
=R*1+n'1+20)'R Y, Z2%,(1) + o(n™Y)}.
But ¥, Z2 (1) converges to Y, Z2(1) which has mean (R — 1)/R, so
nE{n ¥, D;% — R*} — (1 + 2p)'R*R — 1).

Here, letting p — « gives the limiting case of perfect balance, while p = 0
corresponds to perfect randomisation.



BIASED COIN DESIGNS 1029

3.2 Selection bias. Suppose an experimenter is trying to guess the sequence
of patient assignments. A reasonable measure of selection bias is

n—l ZZ;% maxrpr(k_le,l, ] k—le,R)-

Wei (1978b) shows that for his procedures this quantity tends to its optimum
value R~ as n — «. We shall obtain a stronger result using Theorem 3. It is
implicit in this calculation that §, = ... = ¢ = R7%

Neglecting higher order terms in the Taylor expansion we have

pr‘(n_an,ly Tty n_an,R) = R_l + Zq brqn—lﬁn,q
=R+ ¥, bn 21 + 2p)7V2Z, (1)
=R — n™%p(1 + 2p)"V*Z,,(1).

Hence

E{n'*(max,p,(n"'Dy1, - -+, n7'Dpr) = R™)} — p(1 + 2p) /2 E{max,Z,(1)}.
To evaluate this expression, suppose Ui, - - ., Ug are independent N(0, 1) and
define

V,=R“U,-R'3¥,U,), 1=r=<R.

It is readily verified that (V}, - - -, V) have the same joint distribution as (Z,(1),
- -+, Zr(1)). Consequently

E{max,Z,(1)} = E {max,V,} = R™Y? E{max,U,}.

For the calculation of E{max,U,}, see David (1981), Section 3.2.

The main point of this calculation is that the selection bias, as a function of
p, is proportional to p(1 + 2p)~/% exactly as in the two-treatment problem.

It should be possible to derive the asymptotic distribution of the selection bias,
along the lines of Theorem 2, but we have not attempted this.

4. An additive covariate model for two treatments. In this section we
study the properties of a procedure for two treatments in which explicit allowance
is made for prognostic factors and the need to balance with respect to the
prognostic factors as well as the main treatment effects. The procedure is closely
related to recent proposals of Begg and Iglewicz (1980) and Atkinson (1982).

Consider the linear model

E{yn} = ad, + Zf=1 2n;3;

where « is the treatment effect, 8, is +1 or —1 according as the nth patient is
assigned to the first treatment or the second treatment.

Z, = (2n1, - -+, 22p) T is a p X 1 vector of covariates and 8 = (8, - - -, B,)Tisa
vector of nuisance parameters. The model may be written in matrix notation as

piv =)
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where Y, = (y1, - - -, ¥,) T and X, is the design matrix
Xn = (A,Z,)
where A, = (81, ---, 6,)Tis n X 1 and
z{
Z,o=| -
2l

is the n X p matrix of prognostic factors. Note that there is no overall constant
in this model, but one may be introduced by assuming z,; = 1 for all n. In most
of the discussion we shall assume this to be the case.

We shall assume that both X7 X, and Z7Z,, are invertible. The standard least
squares estimator of « is

1 AZYn - Azzn(zzzn)—lzr’I:Yn
1-ntATZ,.(ZTZ,)7'ZTA,

and its variance, under the assumption of uncorrelated errors with mean zero
and common variance o2, is given by

(4.2) var @ = n"'¢*{1 — n'ATZ.(ZYZ,)'ZTA N

Suppose a new patient arrives with covariate vector z,,;. It may be shown
that the procedure of Atkinson (1982) is equivalent to setting 6,+; = £ 1 with
probabilities proportional to

{1 + ZZ+1(ZZZn)-1ZZAn’2'
Begg and Iglewicz arrive at a rather similar conclusion by a different route. They

assume ZXZ, =~ nl and then base their allocation rule on 27,,ZTA,. More
precisely, their rule (in our notation) is the deterministic rule

5. =11 if zI.ZTA, >0,
ntl +1 if zT,,ZTA,<0.

(4.1) a=n"

An obvious generalization of these procedures is to choose 6,.; = +1 with
probability either

¢zl (ZEZ,)7'ZTA,) or ¢(n'z2lnZTA,)

for some nonincreasing function ¢. (We use ¢ here, rather than p, because we
have used p to denote the number of prognostic factors.)

The procedure we analyze here is a compromise between these. We assume
that {z,, n = 1} are independent, identically distributed random vectors with
E{z,zT} = Q, where Q is nonsingular, and all third moments of z, are finite. The
procedure is:

(43) P{6n+l =1 I Any Znsa, Zn; = ¢(n—lzr7;+1Q—1Zr7;An)

where ¢ is nonincreasing and satisfies ¢(x) + ¢(— x) = 1. We assume ¢ is twice
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continuously differentiable with bounded second derivative and let p = — 2¢’(0).
Define the p X 1 vector D, to be ZTA, = Y7, 2.6,, and let D, ; be the jth
component of D,,. Let

Z,;(t) =n""1 + 2p)"*[Dy; + (t — k/n)(Dgs1,; — Dy;)],
k/in =t < (k+ 1)/n.

THEOREM 4. The process {(Z,1(t), - -+, Z,,(t)), 0 < t < 1} converges weakly
on C{ to a limiting process {(Z(t), - --, Z,(t)), 0 < t < 1} which is a zero mean
Gaussian process with continuous sample paths and covariance function

E{Z(s)Z;(t)} = q;s'*t™, 0=<=s=<t=<1

where q;; (1 =i <p, 1 =<j <p) is the generic element of Q.

PROOF. As usual the proof starts with a lemma which essentially ensures
that eventual balance is achieved.

LEMMA 5. E{D7Q™'D,} < np.
Proor.
E{D} Q' Dy | Any Zn, Zpaa)
=D;Q7'D, + 2D7Q 2,1 {2¢(n'21.,Q7'D,) — 1}
+ 024120 41Q Znir
=DIQ7'D, + 271Q 2,
using the fact that
D/Q7'z,s1 and 2¢(n7'z].,Q7'D,) — 1
are necessarily of opposite sign. Now take expected values, noting that
E{z]Q 72,11} = Eftr 2,,,27,Q7'} = tr QQ! = p.
Thus
E(D7.1Q7'Dysi} < E{DIQ'D,]} + p

from which the result follows.

Note that Lemma 5 effectively means that all the components of D, have
variance of at most a multiple of n. For D7Q'D,, is invariant under orthogonal
transformations of the z’s; there exists an orthogonal transformation with respect
to which Q is diagonal, and E{D7Q™'D,} is just the sum of the variances of the
principal components, which must therefore all be of O(n).

Now we turn to the main part of the proof. Define %, to be the sigma field
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generated by 61, - - -, 6, and zy, - - -, Z,.
E{bni1| Fny Znn} = 2¢(n7'27,,Q7'D,) — 1
= —pn7'z1,Q7'D,
+ {2¢(n7'27,Q7'D,) — 1 — 2¢’(0)n7'27,,Q7'D,}.

The part in brackets is at most a constant times (n"'z7,,Q'D,)%
Let u be an arbitrary p-vector. Then

E{5n+luTzn+1| %’ = _pn_luTE{zn+lzZ+1;Q—an + ﬁn
where
Bn=0u"2,11(n7'21,,Q7'D,)?).

Expanding this expression and using the facts that (i) z,+, is independent of D,,,
(i1) the third moments of z,, are all finite and (iii) the components of D, have
variance of O(n), by the remark following Lemma 5, we conclude that E| 3, | =
O(n™). Defining V, = u”D,, a, = 1 — p/n we then have

E{Vn+1 | -grn} = anVn + ﬂn'
Following the proof of Theorem 1, for n > ny, > p let
An = Z;}noail, Bn = zg;rlto Ak+lﬁk’ Mn = An Vn - Bn, Xn = Mn - Mn—l‘

Then {M,} is a martingale with respect to { #,}, we have A, ~ Aon’, and the
Martingale differences { X} satisfy

A3X, =6,u"z, + pVooi/(n — 1) = By = 8,u”z, + 0,(1).

Thus E{A;?X%} = u"Qu + o(1) and by arguments similar to those in the proof
of Theorem 4 it follows that

n=7 Tren Xk —p AS(1 + 2p)'u’Qu,
n"* ' E{Tr=n X} — A3 + 2p)u'Qu.

The remainder of the proof follows that of Theorem 1, and leads to the following
conclusion. Defining Z, by

Z,(t) = n2(1 + 2p) Vi + (¢t — k/n)dku"zini], k/n <t < (k+1)/n,

Z, converges weakly on C, to a zero-mean Gaussian process Z with continuous
sample paths and covariance function

E{Z(s)Z(t)} = (u"Qu)s'*™t™, 0=<s=<t=<1.

But this is just the covariance function of Yu;Z;(t), where Z,, - .-, Z, are as in
the statement of the theorem. Since the vector u was arbitrary, the result is
proved.

4.1 Lack of balance. These designs are constructed so as to achieve balance
with respect to not only the main treatment effect but also the various prognostic
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factors. There are a number of measures of imbalance. One natural criterion is
to consider the effect of imbalance on the variance of «, given by (4.2). The
variance is increased, compared with the case of “perfect balance” for which
D,=ZTA, =0, by a fraction n™'DX(Z7Z,)'D,. But

E{DI(Z7Z,)"'D,} ~ nT'E{D]Q7'D,} = n”'Eftr D,D7Q™"}
5 tr Q1 + 2p)"" = p(1 + 2p)"L.
Hence
var @ ® n” '¢*{1 + n"p(1 + 2p)7}.

Note the dependence on p as well as on p.

4.2 Selection bias. As in Section 2.2, a suitable measure of selection bias is
U,=n" 32 126(k7'21Q@7'ZAy) — 1 |.
This is asymptotically equivalent to
Ur =n7' i pk7' | 280Q7'Z1A .

We shall only calculate the asymptotic mean of U} and shall not attempt to find
its whole distribution. For large k, conditionally on z..;, the distribution of
z7.1Q'ZF A, is approximately normal with mean zero and variance

E{zl1 Q7 'D.DFQ 7 zps1 | Zor1} = k(1 + 2p) 2111 Q7 24,
Thus
E{| 280 Q7' Z Ax | | 2k} = [2k2]11Q 7 Z4sn/7 (1 + 2p)]V2

Substituting in the formula for U} and performing the summation yields even-
tually:

mean selection bias = 2p{2/(nw(1 + 2p))}'?E{(z"Q™'z)"/3}.

Here z denotes an arbitrary member of the random sequence {z,}. The depen-
dence on p and n are the same as for the situation of Section 2.2. The dependence
on z depends on the distribution of z”Q'z. As an example, suppose z,; = 1 for
all n and the remaining covariates have a normal distribution with mean zero.
By applying a transformation, these covariates may be taken to be independent
with common variance 1 (so that @ = I)."Then 27Q 'z =1 + x2%_, and

E{(27Q7'2)"} = [277V°T ((p — 1)/ f (1 + %)% P92~/ dy.
0

The author is not aware of any simple expression for the right-hand side, but it
is asymptotically (2p)'/? as p — %, which again emphasises the dependence on p.

5. Concluding remarks. The methods of this paper apply to a wide class
of designs, but that does not include Efron’s biased coin design. The analysis of
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Efron (1971) is complete in itself, but the development of corresponding results
for the procedure of Efron (1980) is an open question.

We have concentrated in this paper on the asymptotics rather than on
applications of the results. A fuller discussion of applications and of other aspects
of the procedures is given in Smith (1984).
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