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OPTIMALITY OF BALANCED UNIFORM REPEATED
MEASUREMENTS DESIGNS

By JoacHIM KUNERT!

Abteilung Statistik der Universitdt Dortmund

This paper continues the work of Hedayat and Afsarinejad (1978) and of
Cheng and Wu (1980) on the optimality of balanced uniform repeated meas-
urements designs. In addition to their well known optimality results over the

“class of designs which have no pairs of consecutive identical treatments, we
compare the balanced uniform designs to all possible designs. Instances are
given where they fail and where they succeed in being optimum.

1. Introduction. In repeated measurements designs, experimental units
are exposed to a sequence of different or identical treatments. The experiment is
based on ¢ treatments, n experimental units and p periods, each unit being given
one treatment during each period. The treatment applied to unit u during period
k is determined by the repeated measurements design d and is called d(k, u). The
set of all such d is called Q,,,. We measure the effect of the treatments by a
random variable y. It is assumed that each measurement is influenced by an
additive first-order residual effect of the treatment to which the unit under
consideration has been exposed in the period before. (For details see Hedayat
and Afsarinejad, 1975 and 1978.)

This paper deals with the optimality properties of balanced uniform designs.
Hedayat and Afsarinejad (1978) and Cheng and Wu (1980) have shown that
those designs are universally optimal over subclasses of Q; ,, containing only
designs d without pairs of consecutive identical treatments. Cheng and Wu (1980)
have also shown that this restriction is essential. That is, if p > t the optimal
designs over ., have pairs of identical treatments.

We deal with the situation where t = p. We show that, for the estimation of
direct effects, balanced uniform designs d* are universally optimal over Q, , , if
n=tor 2t If nis sufficiently large they are no longer optimal. For the estimation
of residual effects, d* can never be universally optimal over €, s, and cannot be
universally optimal over Q, .., provided special other designs exist.

Formally, a repeated measurements design is a function d from {1, ---, p} X
{1, ..., n} to {1, .- -, t}. The observations are assumed to be uncorrelated with
common variance and

E(yir) = + ar + Bu + Tatkuw + pak-1,u)

withd(0,u) =0and po=0,1 <k <p, 1 < u < n. The unknown parameters have
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the following meanings (Cheng and Wu, 1980):

u is the overall effect, a, is the kth period effect, 8, is the uth unit effect, 74(x..)
is the direct effect of treatment d(k, u) and pg-1.) is the residual effect of
treatment d(k — 1, u).

In vector notation we have
(1.1) E(Y)) =1,u+Pa+ UB+ Tar + Fup

(Kunert, 1983a) for the np observations Y,. 1,, is the np-dimensional vector of
ones. Given a matrix M, we write M’ for the transpose and M~ for a generalized
inverse and pr(M) = M(M’'M)~M’ for the projection matrix onto the column
span of M. I, gives the identity matrix of order x and pr*(M) = I, — pr(M), for
appropriate x.

An important property of projection matrices is that, for any partitioned
matrix [A | B],

(1.2) pr([A | B]) = pr(4) + pr(pr(4)B).
The information matrix for the estimation of direct effects,
Zq=Tipr*(P|U| Fa]) Ta,
and the information matrix for the estimation of residual effects,
55:1 = Fapr*([P| Ta)) Fa,

both have row- and column-sums zero. This means that, in order to find optimal
designs, we can use the tool introduced by Kiefer (1975).
A design d* with the properties

(i) the information matrix of d* for the estimation of direct (resp. residual)
effects is completely symmetric (i.e. all diagonal elements are the same
and all off-diagonal elements are identical),

(ii) this information matrix has maximal trace over Q, , p,

is universally optimal over ., , for the estimation of direct (resp. residual)
effects. The criterion of “universal optimality” includes the commonly applied
criteria of D-, A-, and E-optimality (Kiefer, 1975).

We adopt the following notation from Cheng and Wu (1980). For any design
d € Q,,, the symbols Zx, N4, R, and my; are, respectively, the number of
appearances of treatment i in period &, on unit u, on the first p — 1 periods of
unit u, and preceded by treatment j(1 <= u=<n,l1<k=<p,1=<1ij=<t). Observe
that Zik, Naiv, Raw. and mgy; are the elements of T P, TqU, F ;U and T,F,,
respectively. The symbol 4., also gives the (i, k)th element of F jP(2 <k < p,
1 < i =<t). The first column of F /P consists of zeroes. The diagonal elements r;
(resp. Fq;) of T4T 4 (resp. FiFy) are the total numbers of appearances of treatment
iin d (in the first p — 1 periods of d). Consider ¢ and n such that n/t is integral.
Then a design d € 2, ,,, is

a) uniform on the units, if ng,,=1(1<i<t 1=<u<n),
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b) uniform on the periods, if 4, = n/t(1 < i,k <t),

¢) uniform, if d is uniform on the periods as well as on the units. A uniform
design d € Q.. is also called a Latin square.

d) If all mg;(i # j) are equal to n/t and all my; = 0 then d € Q,,, is called
balanced.

Some of the main technical problems of this paper are now briefly outlined. The
information matrices can be split up as follows:

(i) A %a = Tipr~([P|UDTs — Tapr*([P | UDF.,
-(Fipr*([P| U)Fq) Fipr*([P| U)Ta.
= Zun — % Lar2 Lan
(i1) Lo = Liazo Gy €1 s (see Cheng and Wu, 1980).

Unfortunately, £y 1s dependent of d and no general form of % 2, can be found.
This makes it impossible to write tr( &) in terms of ra;, Fu, Zdir, Ndiv, Raiw and
mg;;. A solution is to search for an upper bound of %;2,. One such bound is F3F,
and thus

tr( %) < tr(Bun — Lae(FiFq)™ Lan),

which can be computed for every d. Although the balanced uniform designs do
not attain this bound, we can use it to prove their optimality in Theorems 2.1
and 2.2.

Another possibility is to use £, from the uniform design d*, and to restrict
the competing designs to those having %y, as an upper bound of %,. This was
done by Cheng and Wu (1980, 1983) in their Theorem 4.3 and is done in
Proposition 2.5 of this paper. For the estimation of residual effects we compute

t1'(50201) = tr( Lo — L1 a1 Barz)
< tr( L — a1 (TaTa)™ Cana).

This upper bound is attained by the balanced uniform design d*. That makes
the computation for the residual effects a lot easier, although the results will turn
out to be much less satisfying.

EXAMPLE 1.3. Assume that ¢t = p = 2 and n is even. This case can be solved
entirely and therefore was chosen to start our computation. Without loss of
generality, any design d € Q,, is of the form

1 11 1 2 2 2 2
d = .. .. .. .. .
1«1 2«2 11 22

w X y z

(Rows will indicate periods and columns units throughout this paper.) Here w,
x,y,2€14{0,1,--- ,njandw+x+y+z=n.
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Let E, = I, — x '1,1/, for every x € N. One easily computes
(i) Tapr*((P|UNTs= (x +y — (x — y)*/n)E;

(ii) Fipr*([P|UNFs= (w+ x)(y + 2)/n E,

(iii) Tépr*([P|UNFs=— (x(y +2) + y(w + x))/n E».

PART A. For the computation of %, we distinguish among three situations.

SITUATION 1. Neither w + x nor y + z equals zero. Then

%=E2( wx + yz )
w+x y+z

SITUATION 2. w+x=0

2
)

SITUATION 3. y+2=0

2
s nle-2)-n(c2)
n x+w

It follows that tr( %;) < n/4, with equality holding iff w = x and y = 2.
Thus the optimal designs for the estimation of direct effects are of the form

1 1 1 1 2 2 2 2
d1= .. .. .. .. )
1—1 2«2 1-~1 2-—2

a a b b

1 1 1 1
dy = .. .. .
1 «—1 2 -« 2

n/2 n/2

which includes

PNAR'I‘ B. For the computation of £ 4, we use the fact that Fipr*([P| U))F,
= %4, with equality holding iff T'jpr ([P | U))F; = 0.

STEP (i).
,oL (w+ x)(y + 2) n
Fipr([P|U)Fq = — E, =< n E,;
equality holds for w + x =y + z = n/2.

STEP (ii). If w + x =y + z = n/2 then Tipr*([P| U)F, = 0 if and only if
x+y=0.
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Altogether it follows that £, < (n/4)E, and equality holds iff w = z = n/2 and
y = x = 0, for which d is of the form

1 1 2 2
d= .. ..

1~1 2 - 2

n/2 n/2

REMARKS.
(i) Example 1.3 already indicates one main problem of this paper: the optimal
designs for the estimation of direct and of residual effects are not the same.

(ii) Both classes of optimal designs use pairs of identical treatments and are
not uniform. The uniform design usually applied (Grizzle, 1965) allows no
estimation of the contrast of the direct effects in model (1.1). This explains the
bad performance of the design in Grizzle’s paper.

(iii) Example 1.3 indicates that balanced uniform designs will not in general
be optimal even when p = t, if designs with pairs of identical treatments are
competing.

2. Optimality for direct effects. It is well known (Hedayat and Afsari-
nejad, 1978) that the information matrix for the estimation of direct effects,
%, of every balanced uniform design is completely symmetric. Cheng and Wu
(1980) have shown that d* maximizes tr %, over a subset of Q,,,. We now show
that tr %, is maximum over the remaining designs. The idea is to use a more
tractable upper bound of tr %;. We use two different upper bounds, both of
which are not attained by d*. It thus remains to show that, for every remaining
design, at least one of the bounds is smaller than tr Z.

To maximize the two upper bounds over the competing designs, we can use
Cheng and Wu’s (1980) methods. However, one important point in their proofs
is that mg; = 0. This is not true for our designs but fortunately we can make use
of limits for the my; instead.

In this section we will summarize the optimality results for the estimation of
direct effects and leave the proofs to Section 4.

THEOREM 2.1. Ift=n=p# 2 and if a balanced Latin square d* € Q,,,exists,
this d* is universally optimal for the estimation of direct effects over Q;, ;.

The result of Theorem 2.1 is not surprising, since in a balanced uniform design
in Q,,, the m,;are as nearly equal as possible. In a balanced uniform design with
more than ¢ units, this is no longer true. We have, however, almost the same
strong result in the situation of practical interest where n = 2 t.

THEOREM 2.2. Assume that t = 6. A balanced uniform design d* € Q, ., is
universally optimal for the estimation of direct effects over Q..

If the number of units is very large, then there are designs which are universally
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better than the balanced uniform designs. The following class of designs helps to
construct them.

DEFINITION 2.3. Assume n = t(¢ — 1). Construct a balanced uniform design
d € Q, ., with the property that every ordered pair of distinct treatments appears
exactly once between the last and second to last period. Then construct a design
f € Q. consisting of the first t — 1 periods of d and a last period equal to the
second to last. We call f an orthogonal residual effects design. An example of such

a design is
123123
f=1231312|.
231312

Although not all my; are equal in an orthogonal residual effects design, residual
and direct effects are orthogonal, i.e. %2 = 0. These designs are not optimal for
the estimation of direct effects, but will be shown to be optimal for residual
effects in Section 3.

PROPOSITION 2.4. Take t = p > 2 and n = \t, with an integer
>ttt — 1)%/2.
Assume there is a design g € Q, ., with the following properties.

(i) The first (t — 1)t units of g are an orthogonal residual effects design
fe Qt,t(t—l),t'
(ii) The other n — t(t — 1) units of g are a balanced uniform design d € Q¢ pn—t1-1),t-

Then g is universally better than any balanced uniform design d* € Q. ,, for the
estimation of direct effects.

The number of units required in Proposition 2.4 is very large, and increases
much faster than t. This is one reason why Theorem 2.2 could only be shown for
t = 6. The other reason lies in the fact that we used t/(n(t — 1))I, as a lower
bound of (F&pri([P| U])Fs)~, while one true g-inverse is t/(n(t — 1 — 1/t))I,.
The difference decreases for larger ¢.

In the following proposition we consider the optimality properties of balanced
uniform designs d* € Q;,,, for which

2t < n < (t— 1)%%2.

To make the computation easier, we restrict attention to the class of designs d
with the property

Fipr(U)F; = Fppr-(U)F .

Define o7, as the set of all designs d € Q,,, which can be transformed to be
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uniform on the units and on the last period by exchanging the last period. The
orthogonal residual effects designs are elements of <7 ,, .

PROPOSITION 2.5. A balanced uniform design d* € Q, ,,,is universally optimal
for the estimation of direct effects over <, ,,provided n < t(t — 1)/2.

The result of Proposition 2.5 does not imply that, for n not much greater than
t(t — 1)/2, there actually are designs f with tr( %}) > tr( ;).

It is not very useful from a practical viewpoint to determine such designs if
t > 2. The following proposition implies that the d* are highly efficient for every
n and for every optimality criterion.

PROPOSITION 2.6. Assume that a balanced uniform design d* € Q. exists.
Then

tr( L) G Vil (e Vi
SUpgeq,,, (tr(£a)) — (t—1)> = 2(t — 1)t + 72

forany n = At, \ E N.

3. Nonoptimality for residual effects. For the estimation of residual
effects the balanced uniform designs d* do not perform so well. Even if t = n =
D, % 4~ has not, in general, a maximal trace.

PROPOSITION 3.1. Assume t = n = p and a design f € Q. exists with the
following properties:

(i) by exchanging the last period we can transform f to be uniform;
(ii) the last and the second to last period are the same;

(iii) for every treatment i there is exactly one j(i), such that treatment i is never
preceded by treatment j(i), (it follows that i is exactly once preceded by every
other treatment including itself)

(iv) in the one unit in which treatment i appears twice in the last two periods,
treatment j(i) does not appear at all.

Then no balanced Latin square d* € Q.. can be universally optimal for the
estimation of residual effects over Q. i.e.tr E€a<tr Z;.

The proof is straightforward and is therefore omitted. To give Proposition 3.1
any meaning, it is necessary to show that there are such ¢ that a balanced Latin
square d* exists in Q,,, as well as a design f as defined in Proposition 3.1.
Unfortunately the author could only construct such designs for odd values of .

ExAaMPLE 3.2. The smallest balanced Latin square d* with an odd ¢ is in
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Q999and was found by Mertz and Sonneman (1978). We compare it with

(123456789 ]
567891234
345678912
234567891
f=|789123456
456789123
678912345
912345678
| 912345678 |

This f is better than d* even for the E-criterion. We have thus shown that, for
the estimation of residual effects, d* is not D-, A- or E-optimal over Qg g9.

If n = 2t we get, by the construction method of Williams (1949), balanced
uniform designs with the following property: if, in any unit, treatment i appears
in the last period preceded by treatment j, then there is another unit with
treatment j in the last period preceded by treatment i. An obvious generalization
of Proposition 3.1 shows that no balanced uniform design d* € Q.. can be
universally optimal for the estimation of residual effects over Q. (the same can
be shown for any n with n/t even).

We will now show the optimality of orthogonal residual effects designs.

PROPOSITION 3.3. Assume n = t(t — 1). An orthogonal residual effects design
f € Q. is universally optimal for the estimation of residual effects over Q..

PrOOF. The proof can be constructed by the strategy indicated in Example
1.3. It is easy to show that (i) % is completely symmetrlc and has maximal
trace over Q;,.and (ii) %;2= 0. Note that tr Z > tr & for a balanced uniform
design d* € Q,,,,. 0

EXAMPLE 3.4. Take t = 5 and n = 20. Then the orthogonal residual effects
design

51423 34251 52341 13452
12534 23145 24513 41235
f= |45312 45312 35124 35124
23145 12534 41235 24513
23145 12534 41235 24513

is universally optimal for the estimation of residual effects over Qs 205, according
to Proposition 3.3. Note that the first ten units of f form a design f € Q5,05 With
the property

tr(Z7) > tr( £ o)

where d* € Q5,105 is a balanced uniform design.
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4. Proofs of Section 2. As Theorems 2.1 and 2.2 are the main part of the
paper, we will give complete proofs.The proofs of the other propositions are
briefly sketched, except the proof of Proposition 2.4 which is completely omitted,
to save space. For technical details see Kunert (1983b).

The single steps of the proofs are given by Propositions 4.1 to 4.6. The first
proposition introduces the upper bounds already mentioned.

PROPOSITION 4.1. For any t and n and for any d € Q, .;, the following relations
hold. Deﬁne 1/F4;=0if F4j= 0. Then

tr Ey<nt— 3 S0, niu/t
- 25=1 2;=1 (md,‘j - 23=1 ndiuﬁ'dju/t)z/fdj’
tr Ly nt— Y Shey Zkn/n

= Y Yy (may — Yhea unlujp—r/n)*/Faj.

(1)
(ii)

ProoF. We only prove inequality (i). The proof of the second inequality is
analogous. With the help of equation (1.2) we can show that

%a = Tapr*(U)Ta — Tipr*(U)Fa(Fipr-(U)Fy) "Fipr~(U)T..
The fact that we can choose a g-inverse such that
diag(1/74) = (Fapr-(U)Fa)~

completes the proof. 0

PROPOSITION 4.2. Assume that ¥!-, x; = 0 and the x;,(1 < i < t) are integral.
The sum of all positive x; is assumed to equal the integer z. Then the minimum of
Siy x? equals 2z.

PROOF. Let I be the set of all indices i € {1, - - ., t} with x; > 0. Then

Yie1 27 = Yier 27 + Tigr (—2:)® = Tier 2 + Yigr (—x:) = 22. O

PROPOSITION 4.3. Assume that t = p > 2, n/t is integral and d € Q,,,.

Defining x4;, = nagi, — 1 for every (i, u), we assume that the sum of all positive x;,

equals the integer z. If d* € Q, ., is a balanced uniform design, a necessary condition
for tr( &) to be not smaller than tr( %) is that

z2<n/2 + n/(2t).

PROOF. As in Proposition 4.1,
tr(Za) < tr(Tipr(U)Ta) = nt — Yiay Ti=r ndu/t < n(t — 1) — 22/t.
We know from Cheng and Wu (1980) that
tr(%p) =n(t—1)— (t—1-1/t) 't nt - 1).
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Assume
22=n+ n/t.

Then
2z/t = n/t + n/t®? > n/t + nt™2(t — 1 - 1/t)7
=@t—-1-1/t)%tnt—-1)
and tr( %) < tr(%,).0
PROPOSITION 4.4. Consider a design d € Q, ,,such that the sum of all positive
Xdiw = Ngi, — 1 equals z, where 1 < z < t. Then

tr Zi=n(t—1) —n/t— 2zt — 1)/((n + 1)t).

ProOOF. We use bound (i) of Prop. 4.1. Then
tr Za=<n(t—1) — 22/t — Tio1 Yie1 (Maij — D=1 NaiwPaiu/t)?/Faj.

Without loss of generality we assume that for every treatment j in {z + 1, --. ,
t} all ngy, < 1 (which implies mg4j; = 0). Note that {z + 1, .-, t} can be empty.
Now apply the methods of Cheng and Wu (1980) in their Theorem 4.1. It follows
that

=1 Xim1 (Mayj — Yiom1 NawRaiu/t)?/Fa;
= (X3 D=1 NajuBau/t — Y31 ma)%t/((t — 1) Yoy Fgp)
+ (Tj=zt1 D=1 NajuBaiu) 2/t = 1) Tiin Fo).
Define a = ¥}, 7q4;. It can be shown that Y%, my;< z and Y7, Yio) neufeu=a

+ 2, while Z}=z+l Z,ul=l ndjuﬁ'dju = n(t - 1) - a.

SITUATION 1. a< (t—1)z.
In thiscase z<tand {z + 1, -- -, t} is not empty. We restrict the summation
tojEf{z+1,...,t}. Thus

tr(%y) = n(t—1) — 2z/t — (n(t — 1) — a)/(t(t — 1))
<n(—-1) — n/t — z/t.
SITUATION 2. a = (¢t — 1)z.
Then the bound is maximized if }?-; mg;= z and

2y snt—1) - 2_la-@-12" nt=1-a

t t(t — 1a tit—1)
— 2
BN 55 3

The fact that a < (n + 1)z completes the proof. 0
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PROPOSITION 4.5. Consider a design d € Q,,, which is uniform on the units
but not on the periods; i.e. the sum of all positive zqy, = Z4,— n/t equals z, where 2
< z. Then

tr Zy<n(t—1) —n/t — z(2t(t — 1) — 4n)/(nt(t — 1)).

ProoOF. We use bound (ii) of Proposition 4.1. As d is uniform on the units,
mg; = 0, for all j. As in Proposition 4.4 we get

2z tXi) Yheo Zajk Zaje—1)?

tr(Z) <=n(t-1)

n¥t — 1)*
Since X1 k- ZZain-1Z (n/t)(n(t — 1)= 22) it follows that
n_z@t—1)—4n) _ 42°
tr Za=n(t—1 -7 nt(t — 1) nt(t — 1)*°

PROPOSITION 4.6. Ift = p > 2 and if a balanced uniform design d* € Q. ,,
exists, this d* is universally optimal for the estimation of the direct effects over the
class of designs d € Q, ,, which are uniform on the units and the last period.

Proposition 4.6 is an immediate consequence of Theorem 4.3 of Cheng and
Wu (1980).

PROOF OF THEOREM 2.1. Assume there is a design f € Q,,,such that tr &;>
tr Ea/d*.

Proposition 4.6 implies that f must be (i) not uniform on the units, or (ii)
uniform on the units but not on the periods. Assume t > 3.

(i) In case (i) Proposition 4.3 and 4.4 imply that tr %; < tr %.
(i1)) In case (ii) Proposition 4.5 implies that

2(t — 3)
tit—1)

No balanced Latin square exists if t = 3 (Hedayat and Afsarinejad, 1978). 0

tr =nt—-1)-1- <tr En.

PROOF OF THEOREM 2.2. The proof is completely analogous to the proof of
Theorem 2.1 when t = 7. For t = 6 in- the case z = 1, a slight variation of
Proposition 4.4 is necessary, taking into account the fact that

Srifguiau=a+3 if z=1 and a=Ffy=2t+ 1. O

PROOF OF PROPOSITION 2.5. It can be shown that, for every competing
design,
2z _ (Z§=1 Yi=1 ndjuﬁdju/ t— Zf'=1 mdjf)2t

tr Za=nt-1) -7 nt— 1t —1=1/)

if the sum of the positive x4, = ngi, — 1 equals z = 0. As in Proposition 4.4 we
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proceed by showing that Ymgj; < ¥ ¥ najufisu./t and thus

tr Zu<n(t—1) —2z/t = (t = )(n —2)*/(ntt — 1 — 1/t))
n(t—1) —n(t— 1)/t —1-1/t))

—2(zt(t — 1) — 2n)/(nt¥(t — 1 — 1/t))
nit—1) —n(t—-1)/tt—-—1-1/t)) =tr Zp O

IA

PRroOF OF PROPOSITION 2.6. Using bound (i) of Proposition 4.1 we find that,
for every design d € Q; .

2z H(The1 Tio1 Napuligu/t — i1 Ma;)®
tr &, < t—1) — — — — .
t Za=nt-1) -3 (t—1) 3 7y

Using the same arguments as in Proposition 2.5, we conclude that

tr £, <n(t—1) — n/t — 2%/(nt)

which completes the proof. [
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