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APPROXIMATE LIKELIHOOD AND PROBABILITY
CALCULATIONS BASED ON TRANSFORMS'

By ROLLIN BRANT

University of Minnesota

Probability distributions, especially in applications, are generally speci-
fied via density functions; alternative representations, including the charac-
teristic function, moment generating function, and sequence of moments, are
most commonly encountered in theoretical settings. These alternative means
of specification do, however, give rise to the construction of certain approxi-
mations that can facilitate the implementation of likelihood methods or the
calculation of probabilities, even when the density is not available in closed
form. The feasibility of a unified treatment of this topic stems from a number
of properties shared by probability transforms in general.

1. Introduction. In applied settings, probability distributions are almost
always specified by density or distribution functions. Occasionally, however,
distributions arise which are only conveniently represented by transforms, such
as the characteristic function or moment generating function. The absence of
closed form expressions for the relevant densities complicates the implementation
of standard methods of inference in even the simple case considered here, where
we assume replicated observations on x, a real valued random variable with
distribution Py, specified up to some unknown, real valued parameter 6. Like-
lihood methods, for example, require the evaluation of the density (p(x; 6)) based
forms, Z(x; 0) = log p(x; 8), S(x; 6) = (3 log p(x; 0))/d0, and _Z (0) = var{S(x; 0)}.
In this paper we shall explore certain transform-based approximations to these
forms which facilitate likelihood estimation, and the associated asymptotic
methods, when p(x; 6) is unavailable or intractable. Also, we shall consider the
use of the exponential transformation of the approximation to Z(x; 6) as an
alternative to more familiar density approximations, such as the Edgeworth and
Gram-Charlier expansions.

Approaches taken in earlier investigations have relied on either numerical
inversion of the transform representations (Dumouchel, 1975; Feuerverger and
McDunnough, 1981c) or on nonstandard estimation schemes based on the em-
pirical version of the relevant transform (Brockwell and Brown, 1982; Bryant
and Paulson, 1979; Chambers and Heathcote, 1981). The first approach leads to
considerable computational complexity, while the second produces estimates with
suboptimal properties. Feuerverger and McDunnough (1981a, 1981b, 1982) intro-
duced methods which are statistically and computationally efficient. The methods
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proposed here extend their work and establish links with more familiar modes of
inference. A unified approach to the problem is possible based on certain general
properties of transforms, outlined below.

2. Probability transforms. A probability transform, v(t), corresponding
to a real valued random variable, x, is defined through an underlying class of real
valued functions, G = {g(t, x), t € T}, the kernel class, by v(t) = E{g(t, x)}. The
important transforms include the characteristic function (c.f.), the moment
generating function (m.g.f.), and the sequence of moments, with kernel classes
Gy = {sin tx, cos tx, t E R'}, Ge = {exp tx, t ER'}, and Gyy = {x5,t =0,1,2 - - -}
respectively, though others (e.g. the fractional moments) exist. Note that some
transforms do not always completely characterize the underlying distribution, P,
though we shall generally restrict ourselves to situations when this is the case.
The common property of these kernel classes that facilitates the subsequent
investigation is their closure under multiplication, which implies that v yields
the joint moment structure of G, in an explicit manner, so that the following
approach to the construction of approximations is often available.

Suppose h(x) is a function of interest which is not conveniently obtainable in
closed form. The best linear approximation (predictor) of h(x) in terms of the set
of kernel functions indexed by t = (¢, - - -, tx)7, is defined to be the form h,(x) =

%, d;g(t;, x) minimizing the mean square error [rt [h,(x) — h(x)]* dP. For
convenience, we shall define the vector-valued function, g(x), given by g(x) =
g(t, x) = (g(t1, x), - - -, &(tx, x))7, so that h, may be written as d”g(x), where d =
(di, -+, dp)". Thus h, is the projection (regression) of h on span{g(x)} in the
Hilbert space, Ly(dP), induced by the measure P. The coefficients of h, are easily
seen to be given by d, = I'''y, where I' = E{g(x) - g(x)7} and n = E{h(x) - g(x)}.
We shall adopt the notation, h,(x) = E*{h(x) | g(x)}, motivated by the formal
similarity to conditional expectation.

It is customary to include a constant term in the approximation, and this is
most conveniently accomplished by centering the variables, leading to the form

h,(x) = E*{h(x) | 1, g(x)} = E{h(x)} + AN"Z7'[g(x) — 7],

where N = cov{g(x), h(x)}, = = var{g(x)}, and v = E{g(x)} = v(t). By the foregoing
remarks, v, I', and Z are given explicitly by the transform v(t). We shall encounter
a number of instances where the remaining coefficients in h, are easily deter-
mined, facilitating the approximation of h(x) and related functions (derivatives,
antiderivatives). Note that the approximation, h (x), can be made arbitrarily
close to h(x), in the sense considered, when h(x) is contained in the L, closure of
span {G}. In many cases G is complete, so that any h(x) € Ly(dP) may be so
approximated.

3. The score function and Fisher’s information. As previously men-
tioned, one obvious approach to the approximation of the score function, S(x, 6),
or the information, _7(6), is to proceed by numerically approximating p(x; ),
based on v(t; 8), the corresponding transform. However, the following approach
is more direct.
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Observe that, under mild regularity conditions,
Eo{S(x; 0) - g(x)} = 0E,{g(x)}/06

for any function, g(x). Thus, X = cov,{S(x; 8), g(x)} = 7(9), where y(0) = E,{g(x)}
and ° denotes differentiation (componentwise) with respect to 6. Since
E,{S(x; 8)} = 0, we have that, for any selection of g(x) from G,

S,(x; 0) = E*{S(x; 0) | 1, g(x)} = v(6)"2(6)"[g(x) — v(6)].

Since the expression is linear in g(x), the resulting approximation to the maxi-
mum likelihood equations based on a sample of size n, can be written as

(3.1) YO)ZO)7'[¥ — v(6)] =0,

where ¥ is a vector of observations from y(t) = n™' Y%, g(t, x;), the empirical
transform; cf. Feuerverger and McDunnough (1981a, b, and 1982). Later examples
show that the dimension of g need not be inordinately big for S, to provide a
useful approximation to S.

Observe, as well, that by the orthogonalities implied by the projection opera-
tions,

vare{S(x; 0)} = vary{S, (x; 0)} + vary{S(x; ) — S, (x; 0)}.

Since the latter term can be made arbitrarily small (given the conditions men-
tioned previously), 7, (0) = ¥(8)Z(0)'v(8) = vary{S, (x; 8)} can be regarded as a
simply derived approximation to the Fisher information, _7 () = var,{S(x; 6)};
see Jarrett (1973) and Brockwell and Brown (1982). In addition, standard
arguments yield that the asymptotic variance of a consistent solution to (3.1) is
[n7,(6)]7", which, owing to the relationship of Z.(0) and _7 (), can be made
arbitrarily close to the Cramer-Rao lower bound.

3.1. Location and scale. When x ~ 6 + z, z possessing a continuous distri-
bution P, with density with respect to Lebesgue measure p(z), the relevant
score function has the form S(x; 6) = J(x — ), where J(z) = —9 log p(2)/dz =
—p’(2)/p(2). If the distribution of z is specified via v(t) = E{g(t, )}, then it is
appropriate to consider J,(z) = E*{J(z) | 1, g(2)}. In general, E{J(z)} = 0, and

(8.2) covi{d(2), g(2)} = — f g(2)p’'(2) dz = —p(2)g(z) | Z + f p(2)g’(2) dz,

assuming differentiability of the kernel function g(z). The important kernel
classes consist of differentiable functions, and are such that span{G} is closed
under this operation. Also, g(x) will typically be chosen so that span{g(x)}
possesses the same closure. Since the first term in (3.2) will disappear in most
cases, it follows that, in general, one may express A = cov{g(z), J(z)} as Dv, where
D is a matrix of constants and v = E{g(z)}. Thus it is possible to form JJ +(2), and
take as an approximation to S(x; ), J,(x — 8) = [Dy]"Z[g(x — §) — v], where
2 = var{g(z)}. This form will in fact coincide with that derived from the more
general approach in most cases, since it is generally the case that g(x — 6) =
M(6)g(x), M(6) a k X k matrix, i.e. span{g(z)} is invariant under translations.



992 R. F. BRANT

This “pivotal” form is useful in that the translation invariance of procedures
derived subsequently is made explicit (D, v, and Z being fixed), and since it also
provides an approximation to J(x; ) = dp(x; 0)/dx, a function that is useful in
the more general context. Of course, I, = y"DTZ7' Dy yields an approximation
to the (constant) Fisher information.

When observations are of the form x = 6z, z specified as before, the relevant
score function has the form S(x; 6) = 67'K(x/6), where K(z) = z - J(z) — 1. Again
K,(2) = E*{K(2) | 1, g(2)} is generally available. Note that

_2p'(2) + p(2)

K& ===

)

so that

covig(z), K(2)} = — f [zp’(2) + p(2)]g(2) dz

—2p(2)g(2) | Z= + f 28" (2)p(2) dz.

Again the first term disappears in general, and the reader may check that the
latter integral may be given explicitly in terms of v in all the interesting cases.
For example if g(2) = exp tz,

f 28’ (2)p(z) dz =t f zexp(tz) p(z) dz =t f a—[?ﬂ)(t;t#)(—zﬂ dz =t-v'(t),

assuming regularity. Thus A = cov{g(z), K(z)} is generally obtainable, so that
07K, (x/6) = 67*\T="[g(x/0) — ] provides a suitably invariant approximation
to S(x; 0), while the quantity I,(9) = 672ATZ~'\ provides a corresponding
approximation to the information. In general, the algebraic form of K, will
closely follow that of S,; K, and S, represent the projections of S(x; 6) on
g(x/0) and g(x), respectively.

4. Choice of the kernel vector, g. The convergence of the approxima-
tions considered thus far depend on the completeness properties of the kernel
set G in the space Ly(dP), and on the particular choice of g from G. We therefore
consider Gy, Gy and G individually.

In the case of Gy = {x*, t =1, 2, .- -}, uniqueness of the moments is sufficient
to ensure completeness. The choice g(x) = (x, x%, - - -, *)7 is natural, though to
achieve an adequate degree of convergence a fairly large £ may be required. With
regard to stability, it is the numerical difficulty associated with manipulating Z,
which involves theoretical moments up to order 2k, rather than the stochastic
instability of higher order sample moments, that is the most serious issue.

The completeness of Gy = {cos tx, sin tx, t € R} holds under completely
arbitrary assumptions. A convenient choice for g(x) is to take g(x) = (cos 7x,

.+, cos krx, sin 7x, ---, sin krx)T, in which case approximations reduce to
trigonometric polynomials. Since 27/7-periodic functions can be so approxi-
mated, if the domain of interest of the “target” function lies in an interval M +
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L, the choice + = 2n/L is indicated. The approximations considered will
then depend on the characteristic function, ¢(¢t) = E{cos tx} + iE{sin tx}, at the
points, t = jr, j = 1, ..., k. This approach is equivalent to replacing P by a
“wrapped” version, P,, the distribution induced by identifying points on R! on
2w/t spaced grids. The corresponding density p,(x) can be written as p,(x) =
Y p(x + 27j/7), and ¢(j7) can be seen to yield the jth Fourier coefficient of

p-(x),
271_ -1 /T
a = [——] f exp(ijrx)p,(x) dx.
-/

T

If 7 is held fixed and & — o, the forms h, considered thus far will con-
verge to wrapped versions h,. For instance S,(x; ) will tend to S,(x; 6) =
d log p.(x; 8)/38, which can be viewed as the projection of S(x; #) on {exp(ijrx),
Jj = —oo, ... oo} Thus, in general, if 7 can be chosen so that p, represents a
reasonable approximation to P, so that h, approximates h, it is practicable to fix
7, and then choose k to obtain a reasonable degree of convergence. In the
completely general parametric case, the range of interest of S(x; §) may depend
on 0, as in the case of a scale parameter. It is usually desirable to rescale the
random variable x in accordance with 6, as is accomplished through the use of
K, in the scale case. Note that, due to the boundedness of the trigonometric
functions, ill-conditioning problems associated with large k values are less prev-
alent than in the case of the moments.

It must be noted that the general strategy outline for choosing g(x) can in no
way be considered “optimal.” In individual instances, it is not, in fact, the
completeness of G that is of the essence, but how the function of interest h(x)
may be best approximated by elements of G. For example, in the Gaussian
location problem, arbitrarily good approximations to the score S(x; §) = x — 0
are obtained by considering the pair g(x) = (cos 7x, sin 7x)7, as 7 — 0, since

o~ sin(r[x — 6])

= 77'[cos70 sinTx — sin7f cosrx],

for  small. In the case where the techniques considered are of interest, however,
the form of h(x) will be largely unaccessible, so that the general strategy
entertained will be the only one feasible.

With regard to other kernel sets, such as G, yielding the m.g.f., less is known;
numerical issues similar to those affecting G, indicate that G is not a practical
choice. Overall, the author’s experience has been that Gy leads to forms which
are the most numerically reliable.

5. Examples

5.1. Stable laws. We consider aspects of inference regarding the family of
symmetric stable laws, specified by the c.f.’s, ¢(¢; @) = exp{—(|t|*/2)}, 1 < a <
2. Only two members of this family have closed form density representations,
the Cauchy (« = 1) and the Gaussian (a« = 2). These cases provide convenient
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reference points, since the exact forms can be computed explicitly and compared
with the approximations. This is done for J, and K, with k chosen to illustrate
the rate of convergence. In accordance with the approach in Section 4, the domain
of approximation in the Cauchy case (note nonstandard scale) is taken to be
—3r < x < 3w, leading to the use of 7 = V3; in the Gaussian case we consider
—r < x < m, with 7 = 1. (See Figures 1a — 1d.)

In addition, the forms, J,, are illustrated for intermediate members of the
stable family in Figure 2, based on the conservative choice of £ = 15 and 7 = .3.
The relevant efficiencies, _#*/_Z were calculated, using the essentially exact
results of Dumouchel (1975), and are given in Table 1.
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FiG. 1(a). Gaussian model: J and J, (r = 1; k = 2, 4, 5).
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FiG. 1(b). Cauchy model: J and J, (r = Y5; k = 5, 10, 15).
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FIG. 1(c). Gaussian model: K and K, (r = 1; k = 2, 4, 6).
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Fi1G. 1(d). Cauchy model: Kgnd K, (r = Y; k=5, 10, 15).

5.2. Binomial-Poisson convolution. If x = y + z where y is binomial, with
parameters N and 6, and z is Poisson, with mean A, independent of y, then
the probability distribution function of x is p(x; 8, \) = e*Z,(})67(1 — )N
- (N7/(x — ¥)!), whereas its c.f. has the simpler form

¢(x; 0, \) = [(1 — 8) + 6 exp(it)]"exp{A[exp(it) — 1]}.

The problem of estimation for this family has been considered by Sclove and
Van Ryzin (1969), who note that maximum likelihood is “computationally
intractable.” Sprott (1983), however, points out certain recursive relationships
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FiG. 2. Stable models (a = 1.1(.2)1.9) J, (r = .3, k = 15).
TABLE 1
Asymptotic efficiencies (_7*/ _7) for stable family location estimates
Stable Order of trigonometric
exponent approximation (k)
() 5 10 15
1.1 86225 97722 199158
1.3 96261 99465 99514
1.5 99426 99717 99718
1.7 .99889 199929 .99929
1.9 .99863 .99888 .99889

in the derivatives of p(x; 6, \) that facilitate essentially exact computations of
Py, P, and _F,, the components of the joint information matrix for 6 and A.
Alternatively, the straightforward multiparameter extensions of _7, can be
constructed to yield approximations. Some numerical results are given in Table
2 for various choices of N, 6, and )\, with 7 = 27/(N + X\ + 5)X"2), based on a
conservative bound on the domain of interest for x.

6. Fourier likelihood methods. We have seen that when distributions of
a parametric family are specified by the characteristic function, ¢(¢; 6) =
E,{cos tx} + iE,{sin tx}, the quantities S(x; 6) and _7(#) may be approximated.
In this section we see that Z(x; 8) = log p(x; ) may be similarly approximated
and that, furthermore, the sense of approximation of the above forms may be
strengthened, given regularity conditions. We consider first the approximation
of S(x; 9).

6.1. The score function. If S, (x;0) is to provide a reliable basis for likelihood
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TABLE 2
Information calculations for the binomial Poisson convolution model

Parameters Exact (_7) and approximate (_7*) calculations

N 0 A 7 7, 7 A, I T

20 .50 10 26.64667 27.06326  .06581  .06691  1.30205  1.34342
20 .50 50 7.31844 7.32785  .01816  .01818 .36290 .36336
20 .90 10 37.28053 37.51228  .08471  .08504 1.65376  1.66239
20 .90 50 7.94860 7.95635  .01929  .01931 .38534 .38568
100 . .60 10  286.04950  286.04951  .02878  .02878  2.84876  2.84876
100 .50 50 133.72869  133.72869  .01334  .01334 1.33136  1.33136
100 .90 10  538.563335  538.53335  .06362 .05362 5.156320  5.15320
100 .90 50 172.88912  172.88912 .01696  .01696  1.68880  1.68880

calculations, it is desirable to show some form of uniform convergence. This is
demonstrated below; similar arguments apply to the other forms considered.

THEOREM 6.1. Let P,, § € 0, be a set of distributions on R! with associated
densities p(x; 0) satisfying:

1. p(x; 8) is bounded above and away from 0, on any compact subset of R* X 0.
2. p(x; 0) p(x; 8), and p’(x; 6) = 3%p(x; 0)/0x38 exist, are continuous in x and 0,
and for compact subsets of © satisfy conditions of the form

h(x;0)<A|x|™ for |x|>B
uniformly in 0, with o > 1 and A, B < .

Let R. C R! X © be compact. Then, for all ¢ > 0 there exist k and 7 such that for
t= <T) 27') ) kT))

S,(x; 0) = E*{S(x; 0) | 1, sin tx, cos tx}
satisfies
| S,(x;0) — S(x;0)| <e forall (x,0)€R..
PrROOF. The approach to choosing 7 and & described in Section 4 is reflected
in the outline of the proof below. We consider first the “wrapped” version of
S(x; ), S,(x; ), choosing 7 small enough that | S.(x; 8) — S(x; 0) | < /2, (x, 6)

€ R.. To do this we require the following lemma, 6.2, and its corollaries, 6.3 and
6.4 '

LEMMA 6.2 Let h(x) be a continuous, real valued function on R*, and suppose
that there exist A, B < ® and o > 1 such that

(6.1) |h(x)| = A|x|™ for |x|>B.
Define the 2w /7 periodic function

h(x) = Y- h(x + %ﬂ) .
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Then

1. for 1 < w/B, h.(x) is a well defined, continuous function on I, = [—=/r, 7/7];
2. h.(x) converges almost uniformly to h(x) as 7 — 0, in the sense that
lim, _o[sup.e;, | h.(x) — h(x) |] — 0.

PrROOF. For r < n/B and x € _7,, consider the modulus of the partial sum,
| Zijize hlx + 27j/7) | < A Tjji=n | x + 2j/7 |7
<24 Y5k | (/D)2 — 1] ™ < A7°[27 7 X2k J79

for k > 0. This confirms uniform convergence of the sum defining h,(x) and,
hence, its existence and continuity. Setting £ = 1 in the above yields, for x € I,

| h.(x) = h(x) | = AT°[2n™ X5 J7°,

from which conclusion 2 follows directly. (When h is defined and continuous on
R*, similar results apply by considering h,(x) on [r, 7 + 2x/7] as 7 — 0.)

COROLLARY 6.3. If h’ exists and satisfies the conditions of the lemma as well,
then h!(x) = dh.(x)/dx exists, and equals the termwise derivative, i.e.,

hi(x) = 35w B’ (x + 2mj/7),

Justifying the otherwise ambiguous notation.

COROLLARY 6.4. If h(x; ) depends continuously on 6 € O and satisfies
condition (6.1) uniformly in 0, h.(x; 0) exists and is a continuous function on
I, X 0. If h(x; 8) = dh(x; 0)/30 exists and satisfies a similar condition, h,(x; 0)
exists and is well defined.

PROOFS. The results follow by uniform convergence of the series defining
each of the “wrapped” forms.

The following two theorems due to Jackson (1930) relate mean square and
uniform convergence for trigonometric polynomials, and will allow us to construct
S, (x; 8), using the 7 indicated above, so that

| S,(x; 0) — Si(x; 0) | <e/2.

Theorem 6.5 follows directly from Jackson’s Theorem 1, page 2 while Theorem
6.6 is a slight generalization of Theorem Ila, page 84.

THEOREM 6.5. Let h(x) be a differentiable function of period 2w/7, such that
|h'(x)| < A for all x. Then there exists a trigonometric polynomial of degree k,
q(x) = ap + Y%, (aj cos jrx + b; sin jrx), satisfying

sup,egr! | q(x) — h(x) | < KA/kr,

where K is an absolute constant.
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THEOREM 6.6. Let h(x) be continuous, and let r(x) and s(x) be kth degree
trigonometric polynomials in 7x such that
sup.es, | A(x) — r(x) | <&
and

J; | h(x) — s(x)|®>dx < d.

Then
- SUDyer, | h(x) — s(x)| < 4[de]1/2 + 5.

We may now proceed directly to establish Theorem 6.1. We first consider
p-(x; ), the wrapped version of p(x; 6), defined as in Lemma 6.2, as well as its
derivative p,(x; 6), which exists by Corollary 6.4. Without loss of generality, we
assume R, = [-C, C] X O.. Since p,(x; 8) and p,(x; 6) tend uniformly on R, to
p(x; 6) and p(x; 0), by appeal to Lemma 6.2 and its corollaries, and since p(x; )
is bounded below, away from 0, on R,, this implies that

S.(x; 6) = 3 log p,(x; 6)/360 = p.(x; 6)/p,(x; 6)
tends uniformly to S(x; 6) on the same set. Choose 7 < min[x/B, w/C] so that
| S-(x; 0) — S(x;0)| <e¢/2,

for (x, 8) € R..

Now consider S,(x; ) and its derivative,
pi(x; 6)p.(x; 6) — p.(x; 0)p/(x; 6)

p.(x; 0)* '

Again, by Lemma 6.2 and its corollaries, the functions in the numerator exist
and are continuous on I, X ©,, and hence bounded on that set. By assumption,
p-(x;0) =p(x;0) =m,>00n I, X0, sothat | S/(x;0)| <A, on I, X0, for some
A, < «, By appeal to Theorem 6.5 then, for each & = 1, 2, 3, ..., there exist
trigonometric polynomials, g.(x; 8), satisfying

| ge(x; 0) — S:(x; 0) | < KA, /kr.

Defining S, (x; 0) as in the statement of the theorem, we let

Si(x; 0) =

du(6) = J; [S,(x; 8) — 8,(x; )] dx

1
m,

=

J; [S,(x; 6) — S.(x; 8))p.(x; 8) dx.

By construction, S, (x, 8) is the best L.(dPj) approximation to S,(x; 6) as a kth
degree trigonometric polynomial, so that the above is

KA]2

= L f [gi(x; 8) — S.(x; 0))p.(x; 0) dx < 1 [
m. I m. kT

T
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Application of Theorem 6.6 yields
sup,eyz, | S:(x; 0) — S, (x; 0) | < (KA,/7)[4(r/m,)"*k™/ + bk7Y),

uniformly in 6 € ©.. Since 7 is fixed in the above, it is clearly possible to choose
k so that | S;(x; 8) — S,(x; ) | < ¢/2, and the proof is complete.

It must be pointed out that the conditions on p(x; §) and its derivatives,
though not stringent, are nonetheless troublesome in that their verification
depends on knowledge of their asymptotic behaviour. (The nonvanishing of
p(x; 6) and its boundedness on compact sets will generally be easy to verify, and
indeed will usually be implicit in the formulation of the model.) Ideally, these
conditions should be restated in terms of ¢(¢; #), since this is what is known.
Some progress in this direction can be made by noting that the Fourier transforms
of p(x; 8), p(x; 8), p’(x; 0), and p’(x; ) are, under regularity conditions ¢(¢; ),
é(t; 0),t - #(t; 0), and t - ¢(t; 8). The following lemma is thus relevant.

LEMMA 6.7. If h(x) is an integrable function with Fourier transform, n(t) =
[ & h(x)exp(itx) dx and n(t) is twice differentiable everywhere, then

h(x) = [J}; [7”(8) | dt]|x|”2~

PROOF.

| 2*h() | = l f | ¥Pexp(—ixt)n(t) dt‘ < fR ) dtl,

by the Fourier inversion formula, and integration by parts. Thus, a strong version
of the order condition, i.e., with & = 2, can be verified easily, in terms of ¢(¢t; ),
é(t; ), et cetera. The condition that ¢(t; §) be twice differentiable implies the
existence of the second moment of x for all . Thus this result may not be applied
in such interesting cases as x being stably distributed.

6.2. The log likelihood function. In the continuous case it is possible to
approximate Z(x; §) = log p(x; 6) via a trigonometric polynomial, Z (x; 6),
facilitating examination of the log likelihood surface. The approximate form
arises from considering J(x; 6) = (3 log p(x; 0))/dx, and J, (x; 0) = E*{J(x; 0) |1,
exp itx}, which may be obtained explicitly since

E,{J(x; 8)exp itx} = fp’(x; 0)exp(itx) dx = itp(t; 0),
integrating by parts. J,(x; 8) can be written as
(6.2) J,(x; 0) = [iD.¢(6)]* Zx(0) " [exp itx — ¢()],

where t = (—k7, ..., —7, 7, - - -, k1), D, = diag(t), ¢(0) = ¢(t; 0) and Z,(9) = I'(9)
— ¢(0)¢(0)*. The switch to complex form is merely notational, since Im(J,) = 0,
whenever t is as above. Note that in the complex domain it is customary to define
coviu, v} = E{ud} — E{u}E{v}, so that T'(#) above has entries I'; = ¢([i — j]r; 9).
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Z .(x; 0) is obtained by integrating the trigonometric terms of JJ «(x; 0), yielding
the intermediate form,

(6.3) 2 (x; 8) = ¢(0)*D,Zx(8) ' D exp(itx),
which approximates #(x; 6) up to a term in 6, which may be approximated by
(6.4) b,(0) = Yellog| Zx(6) | — log| Ze-1(8) | — log(2x/7)}.

The result below pertains to
Z (x; 0) = /*(x; 0) + b,(0).

THEOREM 6.8. If p(x; 8) > 0 on R' and is continuous and differentiable in x
for all 0, then

lim,_olimye | 7 ,(x; 0) — Z(x;0)| =0
for all x and 6.

ProoFr. We begin by notlng that J,(x; 0) is a slight generalization of J,(2)
of Section 3.1, and converges in L2(dP0) to J(x; 0) as long as J(x; 0) lies in thls
space. By the arguments of the previous section, J, (x; #) approximates J,(x; 6),
the form corresponding to p.(x; 6). Let us cons1der the convergence of J, more
closely. J,(x; 0) is periodic, with natural domain I, = [-x/r, 7/7] and as such,
possesses an ordinary Fourier expansion given by

J(x; 0) = Yo a;(0)exp(ijrx)

where
a(0) = i j; J.(x; 0)exp(—yrx) dx.

Note that ao(f) = 0, and that the partial sums J,(x; ) = Sk a;(0)exp(ijrx) will
tend in Ly(dx,) (the restriction of Ly(dx) to I,) to J,(x; 6), i.e.

j; [Ji(x; 6) — J.(x; 6)]* dx — 0,

as k — . Now o, (x; 6) is itself of the form J(x; 0) = T _, a(0)exp(ijrx), the
coefficients being given implicitly by (6.2). Since J, (x; 6) tends to J(x; 6) as well,
let us consider the relationship of a;(f) to a;(f) as k — o. If p(x; ) > 0 on
R', and is continuous in x, then p,(x; 8) will be bounded away from 0 in I, =
[=n/7, /7], say p.(x; ) = XN6) > 0. (If p(x; §) has support on (0, o) only,
defining p.(x; 6) on [r, 7 + (27/7)] permits a similar argument). This implies
that

f [J.(x; 8) — J.(x; 0))* dPy = \(0) j; [J,(x; 8) — J(x; 6))° dx,

so that J, tends to J, in Ly(dx,), as well. This fact can be expressed in terms of
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coefficients as
Yk k1a;(0) — ain(0) |2 >0

as k — oo,

Now consider #.(x; ) = log p,(x; 6), whose Fourier coefficients are given
by bj(8) = a;(8)/ijr for j # 0, and bo(6) = (v/27) [; #.(x; 8) dx. Whenever
J.(x; 0) exists and is bounded, the Fourier expansion of #,(x; 8), Zx(x; 0) =
Y1 b(0)exp(ijrx), converges uniformly to £(x; 8) on I,, as well as in the Lo(dx,)
sense. Consider then,

7 (x5 0) = —i Theorjmo (ai(8)/i7)explijrx),
given previously by (6.3). Letting 7 ,(x; 8) = #x(x; 8) — bo(8), we have

i g ,(0) — an(6) |
ET; j;f [£4(x; 0) = £4(x; O)F dx = Fieorjmo la )(k'r;zzk '

< (1/7%) ¥k | ai(8) — a(8) |2,

which tends to 0 as & — oo, 1. €. / «(x; 0) — Z(x; 0) tends to 0 in Ly(dx, ). Since
Zu(x; 0) tends in Ly(dx,) to /# (x 0) = /4(x; 0) — bo(#), by the above, the same
holds for /. «(x;0). Also, for all xin I,

| 7425 8) — Z4lx; 0) | = | Sherjmo [a(0) — ain(8)](exp(ijrx)/jr) |
< (/D[Xkk | ai(0) — an(0) |2 - 2 7Y,

by Cauchy-Schwarz. Since Y%, j 2 converges, and the first sum tends to 0, the
above confirms the pointwise convergence of /. «(x; 0) to Ax; 0) — Z(x; 0) —
bo(#), as B — .

The term bo(f) may be approximated based on the result in Grenander and
Szego (1958, page 45), which yields that

limyl | Z5(8) | /] Ze-1(8) |12 = (2/7)exp(bo(6)).

This establishes the convergence of b, () given in (6.4) to by(f), completing the
proof of the theorem.

Examples considered by the author show that, as in the case of S, (x; 6), k
need not be inordinately big for /,(x; 6) to be virtually indistinguishable from
Z(x; ). Thus 7, (x; 0) is of general utility. For example, if the empirical
characteristic functlon (t) is substltuted for exp(itx) in # (x; 6), the result is a
convenient transform based means of descrlblng the log hkehhood surface. Also,
Z ,(x; 0) may serve as a basis for approximating p(x; 6), a possibility which is
further explored in Section 7, using the version of #, based on the moments.

6.3. Related forms. Other forms which are commonly encountered in connec-
tion with likelihood calculations are the Fisher Information, _7(9), and the
observed information, I,,, defined in terms of

I(x; 8) = —(8°p(x; 6)/36%).
Fundamental to all our results is the fact that 7, (9) = $(0)*2(0)71¢(6) provides
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an approximation to _# (6). Also, it may be noted that the behaviour of
I, = —(38,,/30) | 4=,

where S, = ¥, S,(x; 6), is analogous to that of I,,, and may be regarded as an
approximation to it.
Alternately, it may be noted that

I(x; 6) = —(9°log p(x; 6)/96%) = S(x; 6)* — p(x; 6)/p(x; 6),

which rﬁay be approximated by
S, (x; 0)* — $(6)*Z(6)[exp itx — ¢(0)].
Note that S, (x; 8)? is a trigonometric polynomial, and that we can write
S, (x; 0)2 = ¢(0)*=(0)'exp itx - (exp itx)*=(6)"'d(6),

so that an alternative approximation to the observed information is

I, = ni$(d)*2(0) 8= (6)6(d) — (0)*=(@)'é — ¢(d)]),
where ® has entries,

;= (i - 7 - 7.

7. Probability calculations based on transforms. As noted in Section
6, p,(x) = exp {/,(x)} yields a new approximation to p(x) (in what follows we
shall neglect the parameter 6, which is irrelevant). There 7, was based on the
c.f. ¢(t), whereas here we will consider a version of #, based on the moments y,
= E{x", k=1,2,38, ---, and will compare the resultant D, (x) with the Gram
Charlier Type A series, and the closely related Edgeworth expansion, both of
which provide moment based approximations to p(x). Briefly, the latter expan-
sions arise from best L,(wdx) polynomial approximations to h(x) = p(x)/w(x),
where w(x) is the standard Gaussian density. Minimizing errors of approximation
on the implied scale of measurement does not always yield satisfactory results.
The approximations may fail to converge, or may be deficient in the tails,
assuming negative values for example. The logarithmic scale, by comparison, is
natural in any context where the relative, rather than absolute, error in approx-
imation is relevant. The appearance of J(x) = —p’(x)/p(x) in motivating / , and
D, is not unnatural either, relative to the central role the Gaussian distribution
in density approximation. Hampel (1973) notes of the Gaussian density f that
“f’(x)/f(x) is a linear function, and the simplest function which in turn determines
the normal distribution”.

The possibility of approximating J/(x) by a polynomial arises since

N = COV{J(x)) xk} = k#k—l’

under mild regularity conditions.
Letting n = (1, m2, -+, m)", t =(1,2,3, ---, k), p = E{x*} and T = var(x"),
with entries 2; = u;y; — pip,, we can write J,(x) = 9727 (x — p). Integrating
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termwise, we obtain the improper form

7 (x) = q"ZH(D ™Y — p)
where D = diag(t + 1), where 1 is a k-vector of 1’s. The convergence of # (x)
holds if J(x) lies in Ly(dP), since J, — ¢/ in L, implies the L, result, and since

=17(x) —2(0) — 7,(x) |

‘ f [J(u) — J, (W] - du

= o) |J(x) = J,(x) | p(x) dx

where \(x) = inf{p(u); 0 < u < x}. This rather crude upper bound (A\(x) may be
rather small) is still sufficient, based on the L, convergence noted, to confirm
the pointwise convergence of # L(x) to Z(x) — #(0), as long as A(x) # 0. By taking
D, (x) = c,exp(# .(x)), where c, is the normalizing constant determined by
numerical integration, we achieve an approximation to p(x) that:

1. is easy to compute,

2. is always positive,

3. minimizes the error of approximation on an appropriate scale, and
4

. exactly recovers p(x) when J is a polynomial of order less than or equal to &,
for example when P is exponential or Gaussian. (The Gram Charlier and
Edgeworth expansions recover Gaussian distributions only after an appropri-
ate standardization of the moments).

The approximation is applicable whenever the moments of P exist and
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uniquely characterize P, and are known to sufficient precision to compute
accurately the coefficients determining # .

The following examples give some indication of the quality of approximation
afforded by p,,, in comparison with its competitors. In Figure 3, p,, based on the
least-squares 11th degree polynomial approximation to J(x) (so that #, is 12th
degree) for a Gamma(3) distribution, is compared to the 12th degree Edgeworth
expansion. The corresponding Gram-Charlier expansion fared so poorly that it
could not be plotted on the same scale, and hence was excluded. The plots
indicate the superiority of p, in the extreme regions of the distribution.
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