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OPTIMAL FIXED SIZE CONFIDENCE PROCEDURES FOR A
RESTRICTED PARAMETER SPACE!

MEHMET ZEYTINOGLU AND MAX MINTZ

University of Pennsylvania

Optimal fixed size confidence procedures are derived for the mean of a
normal random variable with known variance, when the mean is restricted to
a compact interval. These confidence procedures are, in turn, based on the

- solution of a related minimax decision problem which is characterized by a
zero-one loss function and a compact interval parameter space. The minimax
rules obtained are nonrandomized, admissible, Bayes procedures. The deci-
sion-theoretic results are extended in two ways: (i) structurally similar (ad-
missible) Bayes minimax rules are also obtained when the sampling distri-
bution has a density function which is unimodal, symmetric about the location
parameter and possesses a (strictly) monotone likelihood ratio; (ii) structurally
similar minimax rules (minimax within the class of nonrandomized, odd,
monotone procedures) are again obtained when the assumption of a monotone
likelihood ratio is relaxed.

Introduction. We begin with the following minimax location parameter
estimation problem: Let Z denote a single observation of a scalar random variable,
where Z € N (6, 1). Assume that § is an unknown element of the given compact
interval @ = [—d, d]. Let o/ denote the action space of the statistician. Here,
o/ =[—d, d]. Let L(a, 8) denote the zero-one loss function defined on &/ X Q:

L(a,0) =0, |la—0| <e;

1
1) L(a,0) =1, |a—10| >e;

where e > 0, is given. Based on these previous definitions and assumptions, we
wish to determine a minimax estimate 6*(Z) for 6. In this paper, we obtain
minimax admissible Bayes estimates for 6.

The interesting connection between the minimax rule 6* and an optimal fixed
size confidence procedure is obtained by noting that C*(Z) = [6*(Z) — e, 6*(Z)
+ €] can be interpreted as a confidence procedure of size 2e which has the highest
confidence coefficient, inf, P, [0 € C*(Z)].

In viewing our present decision problem, in the context of the previous
literature on minimax decision theory, we note that Wolfowitz (1950) solved the
infinite interval version of the present problem. In particular, Wolfowitz showed
that when Q = E', the equalizer rule 6*(Z) = Z, is minimax. A challenging aspect
of this present problem is the compactness of Q. Recent papers by Bickel (1981),
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946 ZEYTINOGLU AND MINTZ

and Casella and Strawderman (1981) have explored the implications of a compact
interval parameter space for minimax estimation problems under quadratic loss.
Earlier research on minimax estimation theory dealing with compact parameter
spaces has appeared in papers by Nelson (1966) and Ghosh (1964). The “blind”
version of our present problem, i.e., the limiting case where the statistician makes
no observation, has been considered by Egerland (1979). In this extreme case,
the minimax strategy is a randomized procedure, which is characterized by a
discrete distribution with a finite number of atoms in [—d, d].

Preliminary observations.

OBSERVATION 1. We can restrict our attention to nonrandomized monotone
decision rules. This follows by noting that the underlying decision problem is a
monotone estimation problem in the sense of Karlin and Rubin (1956). (See also
Brown, 1976, and Berger, 1980.) In particular, we note that:

(a) L(a*, 6) attains its minimum, as a function of a*, at a point a* = ¢(6), where
¢ is a nondecreasing function of 6;

(b) L(a*, 0), considered as a function of a*, is nondecreasing as a* moves away
from q(6);

(¢) <7 and Q are closed intervals in E?;
(d) the conditional distribution of Z given 6 is nonatomic;
(e) the distribution of Z has a monotone likelihood ratio.

Conditions (a)-(e) above are sufficient to insure that the class of nonrandomized
monotone decision rules is essentially complete.

OBSERVATION 2. We can further restrict our attention to the subclass of
nonrandomized decision rules for which 6(Z) = —6(—Z) for all Z. This follows
by noting that the underlying decision problem has a symmetric loss function,
and that the sampling density is symmetric about its location parameter. (See
Berger, 1980, and Brown, 1976.)

OBSERVATION 3. The range space of the decision rules can be restricted to
the interval I = [— (d — e), (d — e)]. This follows by noting that L(d-e, 6) = 0,
for 6 € [d — e, d], with a corresponding result for negative arguments.

We denote the risk function of 6 by R (6, 6).

OBSERVATION 4. In the present decision problem, R (4, 6) is given by:
(2) R(5,0) = Py[6(Z) >0+ e] + Py[6(Z) <0 —e].
Since ¢ is monotone, R (4§, ) can be expressed by:
(3) R(5,0) =F(—supfz:6(z) =0 +e}+0)+ F(inf{z: 6(z) = 0 — e} — 0),
where F is the CDF of the standard normal.
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A minimax decision rule *, when d is an integer multiple of e. In
this section, we construct a minimax rule 6*, for the case when d is an integer
multiple of e. Let d = (2n + 1)e + ¢, where n =1, 2, . .., and the parameter c
equals zero (e) if d is an odd (even) multiple of e. Our construction of §* is based
on a sequence of observations and lemmas which we develop in this section. Due
to the existing symmetry in this problem setting, function definitions may be
stated for nonnegative arguments.

Let A denote the following parameterized family of decision rules 6:

(d — e, c+a,+2ne=<2;

Z = a, cta+2e<Z<c+ay+ 4e;

(4) 0(Z) =4 2e+ec, ct+a+2e=<Z<c+a,+ 2¢
Z — a,, ctay=Z<c+ a + 2¢
c, c<Z<c+ a;
\ Z, 0=Z<c
where: 0 < a; <a; < ... < a, <. The selection of the parameters a, as, - - -, a,

will be described in the sequel.
Let A denote the following parameterized family of probability distributions
A, with density functions f(8), defined on Q:

(5 f(0) = T RilU(9 + (2i — De + ¢) — U —(2i — 1)e — ¢)];

where: U(t) =1if t = 0; U(t) = 0if t < 0; and the parameters {k;} are nonnegative
normalizing constants.

LEMMA 1. Each 6 € A (4) is Bayes with respect to a prior density function,
f € A, for some choice of parameters {k;}.

PROOF. See Appendix 1.

OBSERVATION 5. The risk function of each 6 € A is given by:

rF(a"—e), d—2e<0=<d;
F(a,_, — e), 0 =d— 2e;
F(-a, — e) + F(a,., — e), d—4de<b0<d-— 2e

(6) RG,0) =1 - '

F(-a, —e) + F (a, — e), c+e<f<c+ 3e
F(—a, — e) + (¢c/e)F(—e) + (1 — c/e)F(—a, —e), 0 =c + ¢;
F(—a, —e) + (c/e)F(—e) + (1 — c/e)F(—a, —e), 0<60<c+e;

L 2F(—a, — e), 0 =0.

We observe that R (3, 6) is piecewise constant over the sets of a finite partition
of Q. We note specifically that R(4, 0) is piecewise constant over n + 1 nonde-
generate subintervals of [0, d], where a nondegenerate interval is an interval
which consists of more than a single point.

Based on this latter observation, we define an (n + 1)-dimensional vector
J(a), with components equal to R (8, 8), over the n + 1 nondegenerate partition
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intervals of [0, d]:
J(a) = [(F(-a, — e) + (c/e)F(—e) + (1 — c/e)F(—a: — e)),
(F(—a; —e) + F(a, — e)),
(7)

(F(a, — e)]",
wherea= (a, @, -+, 0,) 7€ 2 CE", suchthat0<ag; <a, < .-- <a, <.

OBSERVATION 6. For each § € A, the max R(é, §) occurs at one or more of
the nondegenerate subintervals in (6).

LEMMA 2. The parameter vector a € I, can be chosen to equalize the
components of J (a) to a common value M, where M < 2F (— e).

PrOOF. See Appendix 2.
LEMMA 3. If a € 2, satisfies the equalization condition of Lemma 2, then 6*
is minimax.

ProoF. The proof follows by noting that 6* is a Bayes rule with respect to a
prior distribution A\*, by Lemma 1; and that \* assigns probability one to the
subset of Q on which R(6* 6) attains its maximum value, by Lemma 2 and
Observation 6.

COROLLARY 1. The prior distribution \* referred to in Lemma 3 is a least
favorable prior distribution.

PrROOF. See Ferguson (1967) or Berger (1980).
An example. We illustrate the previous results by means of the following

example: let d = 3e, and e = 0.1. By referring to (4) and (6), the minimax rule §*
and risk function R (6%, 0) are, respectively:

[2e, a+ 2 <17
*(Z)=13Z—-a, a<Z<a+ 2
]O, 0<Z<a;
lF(a—e), e<f < 3e;
R(6*, 0) = {F(—a — e), 0 =e;
]2F(—a—e), 0<6<e;

for some a > 0.
Let J(a) = (2F(— a — e), F(a — e))". Upon equating the two components of
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J (a), one obtains the relation 2F (— a — e) = F(a — e). Solving this last relation
for a, we obtain @ = 0.4. The corresponding minimax risk is 0.62.

By employing equation (A.5) (from Appendix 1), we obtain the corresponding
least favorable prior distribution A*, with density f *:

f*(0) = 0.14[U(6 + e) — U(6 — e)] + 1.62[U(0 + 3e) — U(6 — 3e)].

It is illustrative to compare the minimax risk of 6* with the maximum risk of
the truncated maximum likelihood estimate §7:

I(d —e), (d—e) =<2
or(Z) = 1 Z, —(d—e)=Z=<(d-e)
l—(d —e), Z < —(d—e).

The risk function of 6y is:

_J2F(=e), 0E(—ee);
R(é1, 0) = {F(— e), 0 € [— 3e, — e] U [e, 3e].

Thus, the corresponding maximum risk is 2F (— e) = 0.92.

A minimax decision rule é;;, when d is a noninteger multiple of e. In
this section, we obtain a minimax decision rule &), for the case when d is a
noninteger multiple of e. We first illustrate the main result by examining the
special case when d € (e, 2¢]. The general case is then addressed in the sequel.

Let d € (e, 2¢], and define a decision rule 6, by:

(d—e), (d—e) = Z;
(8) om(Z) =\ Z, —(d—-e)=Z=(d-e)
l—(d —e), Z < —(d-e).

OBSERVATION 7. The decision rule §,, is Bayes with respect to the uniform
distribution on [—d, d]. (See Appendix 1.)
OBSERVATION 8. The risk function R (8, 0) is:
_Jo, 0 € [d— 2e, 2e — dJ;
R(owm,0) = {F(— ), 0€E[-d, d—2)U (2 —d, d].

OBSERVATION 9. The decision rule 6 is Bayes and unique up to equivalence.
Thus, 6, is admissible. (See Ferguson, 1967.)
Define a prior distribution A\* with a density function f*:
£(8) = 0, 0 € [d — 2e, 2¢ — d];
Yi(d — e), 0 €[—d,d— 2e)U (2¢e — d, dl.

OBSERVATION 10. The admissible Bayes decision rule 6, in (8), referred to
in Observation 7, is also Bayes with respect to A\*.
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OBSERVATION 11. The prior distribution \* assigns probability one to the
subset of @ on which R (8, 0) attains its maximum value. (See Observation 8.)

OBSERVATION 12. The decision rule 8, and prior distribution \* are, respec-
tively, a minimax decision rule and a least favorable prior distribution. This
observation is a consequence of Observations 10 and 11.

OBSERVATION 13. If d € (e, 2e), the uniform distribution on [—d, d] is not a
least favorable prior distribution, since the Bayes risk of \* exceeds the Bayes
risk of the uniform distribution on [—d, d].

Thus, we have demonstrated the existence of a minimax admissible Bayes
rule, which is Bayes with respect to a prior distribution which is not least
favorable. This interesting result is a common characteristic of this class of
minimax decision problems when d is not an integer multiple of e.

Next, we address the general case.

Here, weletd = (2n+ 1)e + ¢ —co,n =1, 2, - - -, where the parameters ¢ and
¢o are chosen such that:

* c€[0,e]and ¢, € [0, e);

* ¢ =co= 0, when d is an odd integer multiple of e;

* ¢ =g, and ¢, = 0, when d is an even integer multiple of e;
¢ ¢ =0, whenever ¢y > 0;

* ¢o = 0, whenever ¢ > 0.

We generalize the definition of the decision rule 6, by:

r

d—e, c—co+a,+ 2ne<2Z;
JZ—GQ, c—c0+az+2esZ<c—co+a2+4e;
9) owm(Z2) = 2e + ¢ — ¢y, c—cota+2e=<Z<c—co+ a + 2¢;
Z — a, c+ta<Z<c—co+a + 2
c, c=<Z<c+ay
L Z, 0=Z<cg
where: 0 <a,<a; < ... < a, < » as before.

For any d value which is a noninteger multiple of e, the parameter vector a is
selected to equal a’, where a’ denotes the parameter vector corresponding to the
minimax decision rule 6* associated with Q' = [—-d’, d’], where d’ is the smallest
integer multiple of e such that d’ > d.

OBSERVATION 14. Let M denote the maximum value of the risk function
R(6*, 8). Define S; = [—e, —(e — co)] U [(e — co), €] and S; = [—(e — ¢), (e — ¢)].
The risk function corresponding to 4, defined by (9) exhibits the following
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features: If c = 0 (co = 0) and ¢y > 0 (¢ > 0), then

R(opm,0) =M, 6€Q—-S, (6€Q—-8y);
and

R(m,0) <M, 6€S, (6 € 8,).

OBSERVATION 15. The decision rule 6, is Bayes with respect to a prior
density of the form:

f8) =k[U@B +e+¢c)— U@ —e— c)]
(10) + 3 R[UWB + (2i — 1)e + ¢ —¢co) — U@ — (2i — 1)e — ¢ + co)].

Further, 6, is unique up to equivalence. Thus d,, is admissible.
LEMMA 4. The decision rule 6 (9) is a minimax rule.
Proor.

Casel. (0<co<e).

Let d = (2n + 1)e — co, and let A’ denote the following parameterized family
of prior distributions A’ with density functions f’:

(11) f/(05 ki, - -y Rnir) = Tia-ro(0) (05 k1, - -+, knia),
where:
e Ty=UL {[—(2i—1)e — co, —(2i — 1)e + ¢o)
U[(2i—1)e —co, (21 — 1)e + co]};
¢ 1,(6) denotes the indicator function of the set A;
e f(0;ky -, Rny1) is defined by (10);

¢ the nonnegative parameters {&;} are selected to normalize f’.

OBSERVATION 16. The admissible Bayes decision rule 6, in (9) is also Bayes
with respect to f * € A’ for some choice. of {k;}.

OBSERVATION 17. This prior distribution A\* (Observation 16) assigns prob-
ability one to the subset Q — S,, where S; is defined in Observation 14. Further,
R(6pm,0) = M on Q — S, except on a finite point set. Thus, \* assigns probability
one to the subset of Q on which R(8y, 6) attains its maximum value..

OBSERVATION 18. The decision rule 6, and prior distribution A\* are, respec-
tively, a minimax decision rule and a least favorable prior distribution.
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Case2. (0<c<e).

Let d = (2n + 1)e + ¢, and let A’ denote the following parameterized family
of prior distributions A’ with density functions f ’:

(12) [/(0; By, -y Rpaa) = Ir(0)f(0; Ry - -+, Rnaa),

where:

s I'=UL{[-2i—-1De—c,—(2i—1e+c]U[(2i—1e—c, (2i— 1)e+c]};
¢ the remaining notation and conventions are identical to those of Case 1.

For Case 2, we obtain the analogous results—that 8, and a specific \* are,
respectively, minimax and least favorable—by restating Observations 16-18 with
S, replaced by S,, where S, is defined in Observation 14.

REMARK. Although 4, is Bayes with respect to A*, 6, is generally not unique
up to equivalence (with respect to A*). Thus, A* does not provide a direct means
to establish the admissibility of 6,. The admissibility of 8 is, instead, a
consequence of Observation 15. However, when d is a noninteger multiple of e,
no prior density of the form (10) is least favorable.

Extensions. Although this location parameter estimation problem was
posed initially with a normal sampling distribution, the (admissible) Bayes
minimax estimates and least favorable prior distributions obtained in this paper
remain valid when the sampling distribution has a density function which is
unimodal, symmetric about the location parameter, and possesses a (strictly)
monotone likelihood ratio. If the sampling distribution is normal, then the
problem of N i.i.d. observations can be reduced to a problem in the format of the
previous analysis by making use of the sufficiency and distributional properties
of the sample mean. Further, a standard translation can be employed when Q is
asymmetric.

Finally, we address the question of relaxing the assumption of a monotone
likelihood ratio: Let % denote the class of nonrandomized, odd, monotone
(nondecreasing) decision rules with range space I = [—(d — e), (d — e)].

LEMMA 5. If the sampling distribution has a density function which is uni-
modal and symmetric about the location parameter, then 6y in (9) is Z-minimax.

PrROOF. See Appendix 3.

APPENDIX 1

LEMMA 1. Each 6 € A (4) is Bayes with respect to a prior density function
f € A (5), for some choice of parameters {k;}.

ProoF. It is sufficient to prove that if the sampling CDF F(Z — ) has a
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density which is unimodal, symmetric about 6, and possesses a (strictly) monotone
likelihood ratio, then each § € A (4) is Bayes (and unique up to equivalence) with
respect to a prior density function f € A (5), for some choice of parameters {k;}.
We restrict our attention to the case when d is an integer multiple of e, since
it illustrates all the essential steps of a general proof.
Let X denote a prior distribution with corresponding density (5), or equivalently
for6 =0,

K., c+2n—-1e<f=<c+ 2n+ 1e;
- K], c+ (2n—3e<f=<c+ (2n — 1e;
(A.1) f(o) = :
K1, 0<f0<c+e;
where:
K/ =Yk, i=1,2,---,n+ 1.
NOTATION. The posterior density f(8 | Z) which corresponds to the posterior
distribution A(6 | Z) is denoted by
(A.2) f(012) = G(Z)f(Z — 0)f(0),
where f,(Z — 0) denotes the sampling density, and G(Z) denotes a normalizing

factor.

OBSERVATION Al. A decision rule 6(Z) is Bayes with respect to the prior
distribution A, if and only if it minimizes the posterior risk. Hence, for each Z, a
Bayes rule must maximize:

i+e

(A.3) AB,Z2)= | F0]2) ds.

OBSERVATION A2. The maximization of A(6, Z) over f € [0, (d — e)] for fixed
Z = 0 is obtained as follows:

(i) Consider a generic segment of 6(Z) (4) on the interval
[c + an1 + 2m — 2)e, ¢ + aps1 + (2m)e], for fixedm, 1 <=m <n,
where:
2 =0 and a,4; = .
(ii) Define the contiguous subintervals:
L=[c+any+ 2m—2)e,c+a,+ 2m— 2)e);
I,=[c+an+ 2m — 2)e, ¢ + a, + (2m)e];

I, =(c+ a,+ (2m)e, ¢ + an+1 + (2m)e].
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(iii) Evaluate A(§, Z) for Z =0, and § € [e + (2m — 2)e, ¢ + (2m)e]:
A, Z)
c+(2m—1)e 0+e
= G(Z)[K,'n f f(Z —0)do + Kn+ f f(Z —0) dﬂ}

H—e c+(2m—1)e

(A4)

In order for 6 (il) to be Bayes with respect to f(0), it is necessary that A(é, Z)is
maximized at § = Z — a,,, when Z € I,. By solving dA/df = 0, we obtain a
necessary condition for a local maximum at § = Z — a,,:

(A.5) fo(—an + e)/f(—amn — e) = K;./K 41,
which must be satisfied by the parameters K., and K, ;.

(iv) For a given parameter vector a, the parameters {K/} and hence {k;} can
be chosen to simultaneously satisfy (A.5) and normalize f(9).

(v) As a consequence of (A.5),

dA/d§ _fl+e=2) f(—a;+e)
Gf(l—e—Z)Kji fll—e—2) fl—a;—e)

(A.6)

where:
f€(c+(2j—2ec+ (2j)e), and 1=j=n.
Here, the derivative dA/df is undefined when
feQ=1{c+ (@2 —2ej=1,-,n+1}

(vi) If Z € I,, then dA/df = 0 when 6 € (0, ¢ + (2m — 2)e)— Q,
and dA/df =0 when f € (c + (2m — 2)e,d —e) — Q;
If Z € I, then dA/df = 0 when 6 € (0, Z — a,) — Q,
and dA/dé <Owhenf € (Z-and—e)—Q;
If Z € I,, then dA/df = 0 when 6 € (0, ¢ + (2m)e)— Q,
and dA/dé < 0 when 6 € (¢c + (2m)e, d — e)— Q.

REMARK. These inequalities are strict when the likelihood ratio is strictly
monotone.

(vii) It follows from (i-vi) that

I'c + (2m —2)e, ZE€I
0(Z) =12 — an, Z €Iy
1c + (2m)e, Z € I

maximizes A (6, Z), for fixed Z € {I, U I, U Is}.

OBSERVATION A3. Since (vii) holds for m =1, 2, -- -, n, each 6 (4) is Bayes
with respect to a prior density f (5) with normalizing parameters selected to
satisfy (A.5). Further, if the likelihood ratio is strictly monotone, then 6 is unique
up to equivalence.
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OBSERVATION A4. The assumption that F possesses a monotone likelihood
ratio has been employed in the proof of Lemma 1. However, it can be shown that
the existence of a monotone likelihood ratio is not a necessary condition for a
given § € A to be Bayes with respect to some f € A.

APPENDIX 2
LEMMA 2. The parameter vector a € 9, can be chosen to equalize the

components of J (a) to a common value M, where M € (0, 2F (— e)).

PrROOF. We restrict our attention to the case where ¢ = 0. The proof for the
second case, ¢ = e, follows in a similar fashion.

OBSERVATION A5. F(X—e)+ F(—X —e)>2F(—e¢) for X>0.

OBSERVATION A6. F(X — e) (F(—X — e)) is an increasing (decreasing)
function of X.

Step 1. Let Si(a;,) = 2F(—a; — e), and Sy(a;) = F(a, — e) + F(—a; — e),
where a; = 0 is fixed, and a; € [0, a;]. Consider the following sequence of
observations:

¢ Si(a,;) is a decreasing function of a;.

¢ Sy(a@;) is an increasing function of a;.

¢ S1(0) = 2F (—e), and S3(0) = F(—e) + F(—a; — e).

¢ 51(0) > S5(0).

e Si(ay) = 2F(—ay — e), and Ss(az) = F(az — e) + F(—ay — e).
e Si(a;) = Sq(a)) <2F(—e), for 0 < q; < a,.

* a, = gi(ay), where g(t) is a continuous increasing function of ¢ which passes
through the origin.

e Si(a;) = S;(g:1(as)) is a decreasing function of a,.

* Since S;(g:(az)) = Sa(g:1(az)), S2(g1(as)) is a decreasing function of a,.

Step 2. Let Ti(az) = F(gi(as) — e) + F(—a, — e), and Tx(as) = F(az — e) +
F(—a; — e), where a; > 0 is fixed, and a; € [0, as].

Proceeding as in Step 1, we determine a, = g2(as), such that T(a,) = Th(as) <
2F (—e).

We continue in this fashion, choosing at each stage, say the ith stage, the
parameter a;, as a function of the next parameter, i.e., a; = g;(a;+;). At the nth
stage, we have Z,(a,) = F(— a, — e) + F(g.-1(a,) — e), and Zs(a,) = F(a, — e).
We observe that there exists an a, € (0, »), such that Z,(a,) = Z,(a,) <
2F (— e). Once a, is thus determined, the other parameters a,, -- -, @,_; can be
uniquely evaluated by using the previously established relations.
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Thus, we have obtained a parameter vector & which equalizes the components
of J(a) to a common value M, M € (0, 2F (- ¢)).

APPENDIX 3

OBSERVATION A7. If the sampling distribution has a density function which
is unimodal and symmetric about the location parameter, then Lemma 2 applies
and the rule 6,/ (9), with maximum risk M, is well-defined.

Let £ denote the class of nonrandomized, odd, monotone (nondecreasing)
decision rules with range space I = [—(d — e), (d — e)].

OBSERVATION A8. Any %-minimax decision rule must attain +(d — e) for
finite values of Z.

LEMMA 5. If the sampling distribution has a density function which is uni-
modal and symmetric about the location parameter, then 6, (9) is %-minimax.

PROOF BY CONTRADICTION. Assume that 8, is not “minimax, i.e., assume
there exists a rule §, € ¥ such that:

sup R (8o, ) < max R(8y, 6) = M.

By invoking monotonicity, it follows that §, is either a continuous mapping of
E' into I, or 8, has at most jump discontinuities.

OBSERVATION (a). In order that R(d¢, d) < R(6y, d) = M, it is necessary
that Zo < Zy, where: Zo = inf{Z: 6¢(Z) = d — e}, and Zy = min{Z: 6,4(Z) =
d — e}. For otherwise, if either Z, is not defined, or Z, = Z,,, then R(8,, d) = M.

OBSERVATION (b). From Observation (a), it follows that 6o(Z) > 6,,(Z), when
Zo<Z< Zy.

OBSERVATION (c). Assume ¢, = 0, and ¢ > 0. In order that R(d,, e) <
R(dm, e) = M, it is necessary that 6o(Z7) < 6,(Z7), where Z, = sup{Z: 6o(Z) <
2e}, and h(t™) [h(t*)] denotes the left-hand [right-hand] limit.

OBSERVATION (d). Assume ¢, = 0, and ¢ = 0. In order that R (8,, 0) < R (6,
0) = M, it is necessary that 6o(Zz) < 6;(Z3), where Z, = sup{Z: 6,(Z) < el.

OBSERVATION (e). From Observations (b), (c), and (d), it follows that there
exist values Z’ and Z” such that 6o(Z’) > 6,(Z’) and 6,(Z") < om(Z"”). Thus,
we can define Z3 = sup{Z: 6¢(Z) < 6(Z)}.

OBSERVATION (f). If 6 = 6)(Z3) + e, where Zj is defined in Observation (e),
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then it follows that:
R(ao, 66) = R(aM’ 06) = M’

which contradicts the assumption that 6, is not %-minimax.

COROLLARY 2. If the sampling density is unimodal and symmetric about 6,
and d € (e, 2¢], then 6,(8) is &-minimax.

PROOF. Ifé € &, then either: R(6,e*) = F(—e), or R(6,e”) = F(— e). Thus,
since R(8y, 0) < F(— e) for all § € [— d, d], it follows immediately that 6, (8) is
%-minimax.
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