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UNIQUENESS AND FRECHET DIFFERENTIABILITY OF
FUNCTIONAL SOLUTIONS TO MAXIMUM LIKELIHOOD TYPE
EQUATIONS

BY BRENTON R. CLARKE

Royal Holloway College

Solutions of simultaneous equations of the maximum likelihood type or
M-estimators can be represented as functionals. Existence and uniqueness of
a root in a local region of the parameter space are proved under conditions
that are easy to check. If only one root of the equations exists, the resulting
statistical functional is Fréchet differentiable and robust. When several so-
lutions exist, conditions on the loss criterion used to select the root for the
statistic ensure Fréchet differentiability. An interesting example of a Fréchet
differentiable functional is the solution of the maximum likelihood equations
for location and scale parameters in a Cauchy distribution. The estimator is
robust and asymptotically efficient.

1. Introduction. The usefulness of writing an estimator as a statistical functional
of the empirical distribution in order to make systematic descriptions of it was first
deliberately exploited by Von Mises (1947). Authors who have considered the application
of Fréchet differentiability of a statistical functional to proofs of asymptotic normality
include Kallianpur and Rao (1955) and Boos and Serfling (1980). In another context
Hampel (1968, 1971) has emphasized weak continuity and, to a lesser extent, Fréechet
differentiability of an estimating functional at a parametric distribution F,. Such proper-
ties are relevant to the robustness of a statistical functional against the extraneous
observation, rounding errors, and slight misspecification of the parametric distribution. A
good description of the implications of Fréchet differentiability is given by Huber (1981).

However, as with much robustness theory, few results exist in the case of parameters
other than location. A key feature of results in this paper is their applicability when the
parameter space 0 is an open subset of Euclidean r-space and when more than one solution
of a set of general estimating equations is known. That is, not only existence of a root
which is differentiable is shown, but differentiability of a well defined statistical estimator
is possible. The equations are assumed to be of a form

(L.1) ~ S WXy ) = 0

where X, - - -, X, are independent, identically distributed random variables taking values
in a separable metrizable space R, and ¢ is an r X 1 vector function with domain R X ©
which has a continuous partial derivative. Estimators that are solutions of (1.1) are
generally termed M-estimators and include ‘maximum likelihood estimators and some
minimum distance estimators.

A single functional root of equations (1.1) may be written T[y, F.] where F, is
the empirical distribution function that attributes atomic mass n™! to each of the points
X, -+ -, X,.. More generally T[¥, G] can be defined as a functional root of equations

(1.2) Kg(1) = J’:'I/(x, 7) dG(x) = 0,
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Ty, G] = + = if no root exists, where G € ¥ which is the space of all probability
distributions on R. In the event of several roots of (1.1) a distance criterion p, is employed
to select the estimator from them. Usually the roots correspond to extrema of the distance
but it is not assumed so here. Specifically the general functional Ty, po, -] is defined as
the solution to

(1.3) infoI(w.G)Po(G, 7) = po(G, T[Y, po, G])

where

J;!I/(x, 7)dG(x) =0, 17 € 9},

I, G) = {T

if a solution exists. Otherwise T[y, po, G] = ®. For example the mle is the functional
TIY, po, -] with ¢ given by the efficient score and

(1.4) po(G, 7) = — J’: log f,(x) dG(x)

where f, is the density function which corresponds to the parametric distribution F, € &

Rao (1957) showed the mle of a univariate parameter in a multinomial distribution to
be Fréchet differentiable using the Kolmogorov. metric after Kallianpur and Rao (1955)
had demonstrated that the class of Fisher consistent estimators that are Fréchet differ-
entiable have asymptotic variances greater than or equal to n _#(6)~! where _7(0) is Fisher
information. But Kallianpur (1963) reported that in general neither author could under
any reasonable set of assumptions (on the density functions in the continuous, and the
probability function in the infinite discrete case) prove Fréchet differentiability of the
mle. It transpires from the discussion of conditions in Section 6 that a bounded ¥ function
is necessary which is not true generally for the mle. An example of a Fréchet differentiable
maximum likelihood functional is the root of the equations for location and scale of a
Cauchy distribution, described in Section 7.

In Section 3 existence and uniqueness of a solution of equations (1.1) in a region of the
parameter space for small enough neighbourhoods of F, is shown. This local argument
complemented in Section 4 by global conditions on p, ensures continuity of the functional
solution of (1.3). Fréchet differentiability subsequently follows easily from a two term
Taylor expansion in Section 4.

2. Preliminaries. We will mean by a neighbourhood of a distribution G a subset of
¥ for which the ordering property 0 < ¢; < e, => n(e;, G) C n(e,, G) holds. Neighbourhoods
may typically be formed by writing n(e, G) = {F € ¥ | d(F, G) < ¢} for metric distances
on ¥ . The Kolmogorov metric distance between distributions on the real line is d.(F, G)
= sup,ek | F (x) — G(x)|. On the more general space (R, %) where & are the Borel sets
of the metric space R, the Prokhorov distance is defined as d,(F, G) = inf{6 > 0| F{A} <
G{A% + 6, G{A} < F{A® + ¢, for all A € 2}, where A’ is the closed §-neighbourhood of
A. The Lévy distance defined on the real line is obtained by restricting sets A to (— o, x],
xE€E.

CONDITIONS A.
AO: T[\py P, Fﬂ] = 0,

A;: ¥ is an r X 1 vector function on R X © and has continuous partial derivatives on
R X D where D C 0 is some nondegenerate compact interval containing 6 in its
interior,
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A,: {¥(x, 7)| 7 € D}, {8/07)¥(x, )| r € D} are bounded above in Euclidean norm (|| A || =
{trace (A’A)}/?) by some function g that is integrable with respect to all G € n(e, F;)
for some ¢ > 0,

A;: The matrix

9d
M(6) = J;{b_o ¥(x, 0)} dFy(x),

A4 Given 6 > 0 there exists an ¢ > 0 such that for all G € n(e, F,)

is nonsingular,

J;tl/(x, 7) dG(x) — J;\b(x, 7) dFy(x) <, and

Sup-ep

Sup.ep < 4.

[ 2460 a6 - [ 2960 amr
R O R OT

REMARK 2.1. Fisher consistency presumes A, for all 6 € 0.

REMARK 2.2. A consequence of assumption A; is that families of vector functions
{¥(x, 7)| 7 € D} and matrix functions {(8/d7)¥(x, 7)| * € D} exist and are equicontinuous
on R. See Graves (1946, page 20, Theorem 23).

REMARK 2.3. Aj;is often stated as an assumption of positive definiteness. The study
of infinitesimal behaviour requires only that M (6) be nonsingular.

To consider the notion of Fréchet derivative in a useful manner for statistical function-
als, restrictions must be put on the domain of the functional and therefore also on the
derivative. Let the linear space spanned by differences F — G of members of &< be denoted
by Z. The real vector functional T'is defined on &< and d is a metric on . The statistical
functional is said to be Fréchet differentiable at G € ¥ with respect to the pair (¥, d)
when it can be approximated by a linear functional T';(-) defined on &, such that

ITIF] = TIG] = T&(F — G)|| = o(d(F, G))
asd(F,G)—>0,F€ ¥.

3. Uniqueness of functional solutions to equations.

LEMMA 3.1. Let conditions A hold for some ¥, p. Then there is a 6 > 0 and an ¢ > 0
such that for every v € U, (0) the open ball of radius 8 and center 6, and every
G € n(ey, F,) the matrix

M@m=fiwnﬂwm
R 0T
is nonsingular.

PROOF. By continuity of a determinant as a function of the elements of a matrix
choose 7 > 0 such that |A — M(0)| < » implies | det{A}| > Y2 |det{M(6)}| foranr X r
matrix A. Assumptions A,, A, imply M(7, F,) is continuous in 7 € D. So choose §, > 0
such that 7 € U;,(8) C D implies | M(r, F5) — M(6)| < n/2. By A4 let & > 0 be so that
G € n(e1, Fy) implies | M(7, G) — M (7, F,)|| < n/2. The lemma is proved by the triangle
inequality of norms.
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THEOREM 3.1. (Inverse function theorem). Suppose f is a mapping from © into E’, the
partial derivatives of f exist and are continuous on 0, and the matrix of derivatives f’(6*)
has inverse f ' (0*)~* for some 0* € ©. Write A = 1/(4 ] f'(6*)7*|). Use the continuity of the
elements of f ' () to fix a neighbourhood U;(0*) of sufficiently small radius 6 > 0 to ensure
that || f'(r) — f'(0*) || < 2\, whenever + € U;(6*). Then

(a) for every 7, T2 € Us(0*)
I f() = fa)ll = 2X |71 = 725
and
(b) the image set f(U;(6*)) contains the open neighbourhood with radius \é about f(6*).

Conclusion (a) ensures that f is one-to-one on U;(6*) and that f ! is well defined on the
image set f(U;(6%)).

REMARK 3.1. The || A can also be interpreted as the least upper bound of all numbers
| Ay || where y ranges over all vectors in E” with | y || < 1; c.f. Foutz (1977).

In what follows the selection functional p(G, 7) = || 7 — 6| is employed. It is emphasized
that T[¢, p, G] is then an auxiliary functional used to discover the properties of
T, po, G] for suitably chosen p,, although its properties are immediately applicable if
only one solution to the equations exists so that T[y, p, -] = T[Y, -].

THEOREM 3.2. Let p(G, 7) = |7 — 0| and suppose conditions A hold. Then given
k > 0 there exists an ¢ > 0 such that G € n(e, F,) implies T[y, p, G] exists and is an element
of U,(0). Further for this ¢ there is a «* > 0 such that

(3-1) I(‘/” G) N Ux"(o) = T[‘l/’ P, G]’

and M(r, G) is nonsingular for 1 € U,»(8). For any null sequence of positive numbers {e;}
let {G,} be an arbitrary sequence for which G, € n(ex, Fy). Then

(3'2) limkawT[‘l/’ Py Gk] = T["’: P Fa‘?] = 0.

REMARK 3.2. Theorem 3.2 demonstrates the uniqueness of a solution of equations
(1.2) in a region U,«(#) by (3.1) and the continuity of the functional by (3.2).

PROOF OF THEOREM 3.2. Write A = 1/(4 || M(0)™||). By continuity of M(r, F,) in 7
choose 0 < «* < min(é,, ) such that r € U,-(0) implies | M(+, F;) — M(8)|| < \/2. Here
01, &, are given by Lemma 3.1. For G € n(e,, F,) define \(G) = 1/(4 | M (08, G)7'||). Choose
0 < ¢* < ¢ sothat

[ M(z, G) = M, G)|| = | M(r, G) — M(z, F)|| + | M(6, G) — M(®)|
+ | M(z, Fy) — M(0)|
= A< 2X(G) whenever G € n(e*, Fy)

for all 7 € U,+(#). Note A,, A, imply Ks(7) has continuous partial derivatives M (r, G).
Properties (a) and (b) ensure Ks(-) is a one-to-one function from U,+(8) onto Kg(U,+(0))
and that the image set contains the open ball of radius A«*/2 about Ks(6). Now choose 0
< ¢’ = ¢* such that

| Ka(8) — 0] < Ac*/2.

Then it is clear that 0 € Ks(U,»(8)) for all G € n(e*, F,) and that the image set contains
the open ball of radius A«*/2 about Ks(#). Consider the inverse function.

Kg' Kg(U»(0)) > Us(0) for G € n(¢, Fy).
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It is well defined whenever K¢(7) is one-to-one. Since 0 € K(U,-(0)) for G € n(e’, F,),
we conclude that with ¢’ = ¢ there exists a unique root of equations (1.2) in U,-(8) whenever
G € n(e, F,). That is, (3.1) holds.

If we let {«¥}7, be a null sequence for which 0 < «} < «* i = 1, there exists a
corresponding sequence of {e/}. Since {e,} is null there is some j(i) for which ¢ < ¢/,
whence Gji;) € n(ef, Fy), i = 1. Hence

T[‘l/, P, Gk] = KE: (0) n Ux’(0)7 k > inflsi<OOj(i)7
and
limi T[Y, p, Gi] = TIY, p, Fy] = 6.

4. Continuity of the functional. We may now separate the argument for continuity
of the functional T[y, po, -] into local and global parts as follows:

THEOREM 4.1. Assume conditions A hold for the functi(;nal o(G,7)=|7—0|.Suppose
po(G, 7) is a selection functional such that for every neighbourhood N of 0

(4.1) inf.enpo(Fy, 7) — po(Fy, 0) > 0,

and for every n > 0 there exists an ¢ > 0 such that G € n(e, F,) implies po(G, 7) is continuous
in 7 € 0 and satisfies

(4.2) sup,co| po(G, 7) — po(Fg, 7} < n.

Then for every k > 0 there exists an e, such that G € n(e, Fy) implies T[Y, po, G] exists, is
unique, and lies in U,(0).

Proor. From Theorem 3.2 there is 0 < «* < « and ¢ > 0 such that G € n(e, F,) implies
(3.1) holds. Denote

(4.3) 8(«*) = inf{po(Fy, 7) — po(Fy, 8)| 7 € @ — U(6)}.
Choose 0 < k' < «* so that 7 € U,-(8) implies
| po(Fo, 7) — po(Fy, 0)] < 6(x*)/2.
For «’ > 0 choose 0 < ¢, < ¢ so that G € n(eo, F,) implies T[¥, p, G] € U,.(8) and
sup.ee| p(G, 7) — p(Fy, 7)| < 8(x*)/4.
Note that (3.1) remains true for G € n(eo, Fy). Then
po(G, TY, p, G]) < po(Fo, T[Y, 0, G]) + 6(x*)/4
‘ < po(Fy, 0) + 35(x*)/4
< po(Fy, 7) — 6(x*)/4 uniformly in 7 € 0 — U,-(9)
< po(@G, 7) uniformly in 7 € @ — U«(6).
Hence
inf,er.0p0(G, 7) = po(G, T[Y, p, G]); and
TWY, po, G] = TIY, p, G] € U (8) C U(0).

REMARK 4.1. The assumption of (4.1) is standard to minimum distance theory.

REMARK 4.2. The assumption (4.2) is a sufficient condition for this continuity result.
It may not be necessary. Consider a Fréchet space R and set f(G) to be [ || x || dG(x) if
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this integral is finite. Otherwise put f(G) = 0. Clearly, using the selection functional
po(G, 7) of Theorem 4.1 is equivalent to using p:(G, 7) = po(G, 7) + f(G), but the latter
need not satisfy (4.2).

REMARK 4.3. Weak continuity of the functional follows whenever the neighbourhoods
are defined either by d;, or d,.

5. Fréchet differentiability.

THEOREM 5.1. Let p(G, 7) = |7 — 0| and assume conditions A hold with respect to
this functional and neighbourhoods generated by the metric d on & . Suppose for all G € &

(5.1) J;\P(x, 0) d(G — Fy)(x) = O(d(G, Fy)).

Then T, p, -] is Fréchet differentiable at F, with respect to ( ¥, d), and has derivative
Ti(G — Fy) = —=M(6)™! J;\P(x, 0) d(G — F,)(x).

PROOF. Abbreviate Ty, p, -] = T[] and let «*, ¢ be given by Theorem 3.2. Let {e}
be so that ¢, | 0" as K — » and let {G,} be any sequence such that G € n(ex, F;). Note
that n(ex, F;) is the set of distributions within distance ¢, of F,. It is sufficient to show

I T(Gk] — TIFol — T#(Gx — Fo)ll = olex).

By Theorem 3.2, T[G;] exists and is unique in U«() for & > ko where ¢, < ¢. By A, see
that

(5.2) | M(z, G,) — M(r, F,)|| »¢—~= 0 uniformly in 7 € D.
Consider the two term Taylor expansion,
(5.3) 0 = K (T[G:])) = Kg,(8) + M (7, Ge)(T[Gi] — 0),

where || 7, — 0| < || T[G:] — 0| which tends to zero as k — ® by Theorem 3.2, and 7, is
evaluated at different points for each component function expansion (i.e. takes different
values in each row of M). See from (5.3) that

I T[G:] — 81l = O(Ka,(8)) = Ofex)..
Also,
(54)  T[G] — 0 = —M(0)'Kqg,(0) + M(8){M(7s, G) — M(0)}(T[Gr] — 9).
By continuity of M (7, F,) in 7 and (5.2),
I M (7%, Gx) — M(6)] = o(1).

So,
| T[Ge] — 6 — T, (Gr — F)|| = 0(1)O(d(Gy, Fy)) = o(ex).

COROLLARY 5.1.  If conditions of Theorem 5.1 hold and p, satisfies conditions of Theorem
4.1, then the functional T, po, -] is Fréchet differentiable at F, with respect to (¥, d).

Apart from the implications of Fréchet differentiability of the multivariate functional
T with respect to the metrics dy, d, to robustness of the functional 7' is the consequence
of asymptotic normality of the statistic Vr(T[F,] — T[Fs]) that follows from differentia-
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bility with respect to d,. This is shown in the same manner as Lemma 1.1 of Boos and
Serfling (1980) whereupon the asymptotic variance, assumed finite, is given by

+00
o*(T, F,) = M(6)™" f V(x, 0)¥(x, 0)" dF,(x);{M(8)"}
where the integration is carried out componentwise.

6. Meeting the conditions. Conditions A can be met for large classes of y-functions
when neighbourhoods are generated by distance metrics dy, di, and d,.

LEMMA 6.1. Let A € & be a continuity set of F, and x > 0 be given. Then there exists
an ¢ > 0 such that forany GE &,
d,(G, Fy) <e implies |G{A} — Fi{A}| <«.
PROOF. Since A is a continuity set there is some ¢ >b for which Fp{A} < F,{A} +
k/2. Choose &; < /2. Then if d,(G, F) < ¢,
‘ GlA} < F){A%) + & < Fy{A} + «.
Similarly, since R — A shares the same boundary of A, there is some ¢, for which
Fo{A=) = Fy){R — (R — A)3) > FyA} — ¢/2.
Choose ¢, < k/2 and suppose d,(G, Fy) < ;. Then
G{A} > Fy{A™2} — e > Fy{A} — «.
The lemma follows by setting ¢ = min(e,, ;).
THEOREM 6.1. Let o7 be a class of continuous functions on separable metrizable space
R possessing the following two properties: (1) o7 is uniformly bounded, that is, there exists

a constant H such that |f(x)| = H < « for all f € o/ and x € R; and (2) &7 is
equicontinuous. Let F, € < be given. Then,

for every & > 0 there is an ¢ > 0 such that

J;fdG—J;de,,'<6.

PROOF. Since R is separable and complete there exists a compact set C such that
F{R — C} < 6/(16.H), which further can be chosen to be a continuity set of F,. For
arbitrary > 0, by Lemma 3.1 of Rao (1962) there exists a finite number of sets {4;}%,,
where n = n(y), such that (a) U%-; A; = C; (b) A;N A; =D for j # j’; (c) for each j, A; is
a continuity set for Fy; (d) for any x, y € A;and f € o7, | f(x) — f(y)| <+#, for each j =1,
--+, n. Let n = 6/4 and choose {y;}}-; arbitrarily in {A4;}", respectively and let F’} be the
possibly improper measure attributing weight Fy{A;} to the point y;, foreachj =1, ...,
n. Then for each f € &/

Ldeﬂ—Ldef
Ldeo—lde;

Similarly, given G € & let G* be that measure attributing weight G{4,} to y; for each j =

(6.1) o
d,(Fy, G) < ¢ implies supse.,

=X J; |f(x) = f(;)] dFs < 6/4.

Hence,

Supfe.-/ = /4.
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J;fdG—J;fdG*
‘J;de:;‘—J;fdG*

By Lemma 6.1 choose ¢ such that G € ¥, d,(G, F,) < §; implies | Fo{A;} — G{A;}|
< 6/(4.n.H). Let & be so that G € ¥, d,(G, F;) < ¢ implies | F,{R — C} — G{R — C}| <
6/(16.H). Set ¢ = min(eo, &1, - -+, &,). Then G € ¥, d,(G, F) < e implies

fRde,,—LfdG \L_Cfdﬁjo—‘f;_éfdG}
+ supe. fcde,,—J;de: J;fdG—J;fdG*
J;de;‘—J;fdG*

< H[F){R — C} + G{R — C}] + %6 + Yo + d <.

1, ..., n. Then,

SUp/e -/ < 6/4.
Now,

< H Y- | FolAj} — GlA;}.

SUpPfe oy = SUpPse/

+ Supse.,

+ supse .

REMARK 6.1. When R is the real line and the decomposition of C = [— ¢, c], say, is of
the form —¢c =ay < a, < .- - < a, = ¢, for continuity points {a;} of F,, Theorem 6.1 holds
for sets A; = (@;-1, @;] i = 1 and {ao}, and d, can be replaced by either d, d.. The proof is
the same.

REMARK 6.2. See from Remark 2.2 and Theorem 6.1 that for neighbourhoods gener-
ated by d,, di, di., assumptions A;, A, imply A, whenever g of A, can be chosen to be
uniformly bounded.

In a sense the class &7 of Theorem 6.1 is the most general. A weaker condition than
(1) is to assume supse ., [r|f| dFy=m <+ o but allow o/ to be unbounded. By choosing
{fn} C o, {y.} so that | f,(y,)| — + o as n — x, consider for any ¢ >0, G, = (1 — &) F, +

ed,,
fde,,—ffdG,,l>e

>e(| falyn)| —m) >+ as n— oo,

This violates (6.1) since d,(Fy, G,) < e. If (2) does not hold, there is a § > 0 and x € R and
a sequence {Y,}, ¥» — x as n — , so that supse | f(x) — f(.)| > 8. Suppose at 0, F, = §,.
Then d,(Fy, G,) — 0 as n — o but supse | [z f dFy — [ f dG,| > 8, contradicting (6.1).

Finally condition (5.1) that is required for Fréchet differentiability at F, is also very
plausible. Suppose ¥/(x, #) is a function of total bounded variation in the observation space
variable and for all G € ¥ integration by parts,

f fa AFs = fo(30)
R

sup,e 4

J;%(x, 0)d(G — Fo)(x) = = [r (G — Fy)(x)dy(x, 6)

is valid. Clearly (5.1) then holds for d.
Relationships between the metrics can be used to show Fréchet differentiability. Since
d, <d, and d, = d,, differentiability with respect to the Lévy metric implies differentiability
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with respect to Kolmogorov and Prokhorov metrics. No relationship exists generally
between d, and d, but in the event of an absolutely continuous distribution F, that has
a density bounded by a constant ¢ so that sup,egFs(x + 6) — Fy(x) < ¢d uniformly in
6> 0, then Fy(x) < G(x + 8) + 6 and G(x) < Fy(x + ) + 6 uniformly in x € E implies
sup.eg| G(x) — F4(x)| < (¢ + 1)6. Hence

(6.2) di(G, Fy) < (c + 1)di(G, Fy) =< (c + 1)dy(G, Fy)

and Fréchet differentiability with respect to d), implies that with respect to d; and d, also.
This is important as the latter two metrics are difficult to work with.

7. Examples and conclusion. Fréchet differentiability of the mle in multipa-
rameter models of the multinomial distribution is possible with Corollary 5.1, extending
results of Rao (1957). Many minimum distance estimators are known to have estimating
equations that can be formulated as in (1.1) with smooth bounded functions . Two
examples include the Cramér-Von Mises distance with weight function Lebesgue measure
in estimation of location and scale of a normal distribution described in Heathcote and
Silvapulle (1981) and the integrated squared error distance of Heathcote (1977). Theorem
5.1 proves existence of a Fréchet differentiable root at Fy, indicating robustness.

M-estimators of location are frequently defined as the root closest to the median.
Robustness of this selection functional follows from the next lemma.

LEMMA 7.1. Assume F to be an absolutely continuous distribution with support on E.
Let neighbourhoods be defined by one of the metrics d,, d, or d, and let t be fixed. Then for
all ¢ > 0 there exists a neighborhood n; for which

Supgen, | F71(t) — G} (t)| = ¢ where G7\(t) = infly|G(y) = t}.

PROOF. Define a = F(F7X(t) — Yo ¢) < t, b = F(F7(t) + % ¢) > t. Consider
neighbourhoods defined by d,. Let 6 = Yamin(b — ¢, t — a). Then

SUPGen, | G(F 7(t) — Yee) —a| < %(t — a) = G(F7'(t) — %e) < t;
SUPGen, | G(F 7' (t) + Yee) — b| < % (¢t — b) = G(F7'(t) + Yee) > t.

Hence F~I(t) — Yee < G7Y(t) < F~X(t) + ¢/2 which proves the result for d,. Since F is
absolutely continuous, the result holds for d;,, d, by (6.2).

With the selection functional po(G, 7) = |G™'(%) — 7| the M-estimator of location
defined by ¥(x, 7) = (x — 7){1 — (x — 7)%/c?} for | x — 7| < ¢ and zero otherwise (Beaton
and Tukey, 1974) is Fréchet differentiable at the normal distribution for metrics dx, d.,
d,. Here p, satisfies (4.1), (4.2). Estimating scale of an absolutely continuous distribution
F, the equivalent selection functional is then po(G, 7) = [{G™'(%) — G (%)} X {F (%) —
F (%)} — 7 }. For location and scale parameters = (7;, 75) estimated simultaneously,
a useful selection functional to distinguish the robust estimator from multiple roots of
equations (1.1) is then

po(G; 71, 72) = (G (%) — m)* + [{GT(%) — G (WHF 7' (%) — F 7' (%)™ — ol

The existence of multiple roots in the estimating equation, that gives also the solution
maximizing the likelihood, has given rise to much discussion in the particular context of
the location parameter of a Cauchy distribution with known scale, the density of which is
o[x{o? + (x — u)?}]™". Several papers referred to by Johnson and Kotz (1970, pages 164—
165) are mainly concerned about methods for attaining a solution. As the efficient score
function in this instance is uniformly bounded and continuous, it follows from the above
discussion that the functional defined as the root closest to the median is Fréchet
differentiable. Moreover, the functional estimator is asymptotically efficient. While the
functional is not known invariably to coincide with the solution maximizing the likelihood
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for all samples, it can be expected in virtue of the almost uniform high relative efficiency
of the median relative to the mle, as noted by Barnett (1966, page 163), that this estimator
will be efficient in small samples as well as robust. Moreover the search for a root is
simplified to searching for the root nearest the median. Asymptotically, consistency of the
median deems that the two estimators coincide with increasing probability as sample size
increases.

When both location and scale parameters are unknown, the mle is a solution of (1.1)
with

X— 7 2(x — 71)2
x; == 7, x’ = 1 _—
Valx; 7) 5+ (x — 71)? Vil 7) 3+ (x — 71)?
Restricting the parameter space © = {—o < 7, < 0, n < 7, < ®} for some small positive 7

ensures ¥ and its partial derivatives are uniformly bounded. Conditions A;, As, A; hold.
By Remark 6.2, A, holds. Then by Theorem 5.1 there exists a Fréchet differentiable root
at the Cauchy distribution. It is noted by Copas (1975) that the Cauchy joint likelihood
for both location and scale parameters is unimodal with only one stationary point. Hence
the mle corresponds to the Fréchet differentiable functional evaluated at F, and is therefore
both robust and asymptotically efficient in the sense of Kallianpur and Rao (1955).

Acknowledgement. The author wishes to thank an editor for a suggestion leading
to a more complete discussion in Section 7.
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