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BALANCE IN DESIGNED EXPERIMENTS WITH ORTHOGONAL
BLOCK STRUCTURE

By A. M. HouTMAN AND T. P. SPEED
A. C. Nielsen and CSIRO

The notion of general balance due to Nelder is discussed in relation to
the eigenvectors of an information matrix, combinatorial balance and the
simple combinability of information from uncorrelated sources in an experi-
ment.

1. Introduction. This paper is about the notion of general balance (GB) introduced
by Nelder (1965) in two papers on designed experiments with orthogonal block structure.
Nelder defined (GB) as a relationship between the block structure or dispersion model for
the data and the treatment structure or model for the expeécted value of the data. It
embodies and unifies three important and apparently unrelated ideas concerning designed
experiments: the usefulness of eigenvectors of the associated information matrices, the
combinatorial and statistical notions of balance, and the simple combinability of infor-
mation from different, uncorrelated, sources in the experiment. These ideas have been
discussed independently by a number of authors including Yates (1936, 1939, 1940), Sprott
(1956), Morley Jones (1959), Pearce (1963), Martin and Zyskind (1966), Corsten (1976)
and many others. We will review the work of these authors in Section 3 and relate it to
Nelder’s (1965) work.

Nelder (1965, 1968) has shown how a simple and unified approach may be adopted to
the analysis of multistratum designed experiments satisfying (GB), including the estima-
tion of stratum variances and the combination of information across strata. We summarise
these facts in Section 4 and also prove a useful supplementary result: that (GB) is not
only a sufficient but also a necessary condition (assuming known stratum variances) for
the simple recovery of all information on every contrast from every stratum in which it is
estimable. Our definition of (GB) is slightly different from Nelder’s in that we accommo-
date unequal treatment replications, but it has all the same consequences, and the broad
scope of the notion so defined is underlined by the fact that all block designs with equal
block size are then generally balanced (assuming the standard dispersion model). It will
be seen from our examples and the associated discussion that essentially all designs with
orthogonal block structure which have ever been recommended for use satisfy (GB). It
also provides a convenient basis for the classification of designs, one which is connected
with the simple and directly interpretable analysis.

Section 5 below is devoted to examples, beginning with the balanced incomplete block
design (BIBD) which is the prototype of all designs satisfying (GB). Instead of going on
to prove directly‘that partially balanced incomplete block designs (PBIBDs) all satisfy
(GB), we obtain the same conclusion for their natural generalisations to more general
block structures. Following a brief discussion of some further examples, we close the paper
with a row-column design not satisfying (GB).

2. Basic framework.

9.1. Treatment structure. Our data will be viewed as a random array y = (¥:)ia
indexed by a set I of n = |I| unit labels and taking values in the vector space & = R'
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which has the inner product (¢ |d) = ¥ c;d; and squared norm | ¢ |2 = (¢ | ¢). The models
we consider for 7 = Ey, termed the treatment structure, will all be linear, i.e. of the form

2.1) EyE 7

where 7 C 2 is a linear subspace of Z In the theory of designed experiments
this usually arises as follows: we have a set 2 of v =| 2 | treatment labels, a design map
x:1 - Z which assigns a treatment to each unit, and a design matrix X satisfying
XGu=1ifx@)=u,i €I, u € Z, and = 0 otherwise. In this case 9 = Z(X), the
range of X, and 7 = X« for some o € R%. However none of the general discussion which
follows assumes that 7 arises in this way. The (unweighted) orthogonal projection of &
onto 7 will be denoted by T'; if 7 = #(X) then T = X(X'X)'X".

A vector ¢ = (¢;) € & of constants satisfying ¥, ¢; = 0 is said to define (or be) a contrast;
if ¢ € 7, then c defines (or is) a treatment contrast. This usage arises because least-
squares estimation concentrates on the estimation of linear functions (¢t|7) of r = Ey (¢
€ 7) based upon linear functions (c| y) of the data. Thus the term contrast refers in
each case to the coefficients of these linear functions. In many analyses interest focuses
on treatment contrasts (t|7) defined by elements ¢ of specific subspaces of 7 ; for
examples, we refer to Section 5 below. When 7 = 2(X) we say that simple treatment
contrasts are those elements t,, € 7 for which (¢,,| 7) is proportional to o, — a,, 4, v €
Z , where Xa = 1.

2.2. Block structure. Following Nelder (1965) we use the term block structure to mean
the model for the dispersion matrix V = Dy, and all our models for V will have the form

(2.2) Dy € ¥

where 27 is a suitably parameterized set of positive semi-definite (p.s.d.) matrices. We
will say that we have orthogonal block structure (OBS) when 2/ consists of all p.s.d.
matrices V(¢) = Y. £.S., where £, = 0 for all «, and the {S,} are a family of known
pairwise orthogonal projectors summing to the identity matrix, i.e. S, = S/ = S%, S.Ss =
SsS. =0if o # B, and 3., S, = I, the identity matrix. We call this representation of V()
its spectral form. In the theory of designed experiments such models usually arise in the
following way: there is a system {A.} of association matrices defined over the set I of unit
labels, and the dispersion matrix V = Dy has the form V = ¥, v,A, where {v,} is a set of
covariances varying freely subject only to the constraints ensuring that V is p.s.d. If the
matrices {A,} satisfy the requirements of an association scheme then there always exist
matrices P = (p..) and @ = (q..) of coefficients such that S, = (1/n) Y. q..A. satisfies the
properties listed above, and £, = Y. P.aY« cOnstitutes an invertible linear reparametrization;
see MacWilliams and Sloane (1978, Chapter 21, especially Section 2) for definitions and
the results cited. Once more we remark that the general results which follow do not assume
that our orthogonal block structure arose in this way although in practice the vast majority
(block, row-column, split-plot designs etc.) do so. For example, any model 2 whose
elements have the form V = Y ; 6;C,, where the {C;} are known symmetric idempotent
matrices which commute, will be a submodel of a model of the form (OBS) above as the
{C;} are simultaneously diagonalizable, but in general there will be more £s than 6s.

Summarising, we will be supposing that our data y is modeled by (2.1) and (2.2) where
7 is a linear subspace of & and 2 satisfies (OBS). The subspaces % = 2(S,) are
termed the strata of the dispersion model, the {S.} are strata projectors and the {£.} the
strata variances (for it is easy to see that DS,y = £.S.). Multi-strata designs are those
with two or more strata variances in the dispersion model.

2.3. Examples.

ExaMPLE 1. The data y from an experiment consisting of v treatments applied across
b blocks of k plots each are usually analysed under the mixed model
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(2.3) y=Xa+ Zy+e,

where X and Z are the n X v and n X b treatment and block incidence matrices, respectively,
ais a v X 1 vector of treatment parameters, and v is a b X 1 vector of zero-mean block
effects having dispersion matrix o3I, uncorrelated with the n X 1 vector ¢ of errors which
have dispersion matrix o[,..

The dispersion matrix associated with such a model is V = ¢3ZZ’ + ¢°I,, and its
spectral form is

(2.4) V==§6G+ &(B - G) + &(1, — B)

where G = n™'11’ is the grand mean averaging operator (1 is the n X 1 vector of ones), B
= k™'ZZ’ is the block averaging operator, & = & = ko} + o and & = o2 Note that here
we have the constraint & = £, = £ > 0.

A randomisation model for y, see Nelder (1954), would generate a dispersion matrix of
the form (2.4). *

In order to include both types of model, we will assume when analysing data from block
designs with equal block size (which are the only sort we consider) that So =G, S, = B —
G and S, = I — B defines our block structure satisfying (QBS). It will be simpler, and
necessary for most results, to assume & > 0, £, > 0 and & > 0 as well. 0

EXAMPLE 2. The data y from an experiment in which v treatments are allocated to
the n = rc plots of a row-column design consisting of r rows and ¢ columns are usually
analysed under the mixed model

(2.5) y=Xa+Ziyi+2Zyy:+e¢

where X, Z, and Z, are the treatment, row and column incidence matrices, respectively,
and 71, 72 and ¢ are uncorrelated zero-mean vectors having dispersion matrices ¢21,, I,
and ¢21,, respectively.

This time the dispersion matrix of y is V = ¢2Z,Z{ + 62Z,Z3 + oI, and its spectral
form is

(2.6) V=6G+LH(R-G) +&£C-G)+&(1-R-C+G)

where G = (r¢)™ 11", R =c¢"'Z,Z{ and C = r"'Z,Z35, &y = co? + ra? + 0%, &1 =co? + 6% &
=rol + o and & = o2 Again we have constraints: &, = £ >0, 6= & >0and &= &, +
52 - £3-

A randomisation model for y would also generate a dispersion matrix of the form (2.6).
Accordingly we will analyse row-column designs below with Sy =G, S;=R -G, Se=C —
Gand S; =1 — R — C + G, a block structure satisfying (OBS). Again we will usually
assume that £ >0, £ >0, & >0and £ > 0.0

2.4. Designed experiments. The design of an experiment, i.e. the actual allocation of
treatments to units, affects the least-squares analysis (under our model) of the data
generated through the relationships it determines between the treatment subspace 7 and
the strata subspaces {.%}. For example, it is known that if T' commutes with all the {S,},
then the analysis is easy; such designs are known as orthogonal designs, a class which
includes completely randomised, randomised block, latin square and split-plot designs.
For other designs, such as the balanced incomplete block designs (BIBDs), this commu-
tativity fails, and a more elaborate analysis is required. Nelder’s (1965) notion of general
balance (GB) describes a relationship between T and the {S,} which generalises, but in a
sense is no more difficult than, that which arises with a BIBD, and as a consequence we
find that essentially all designed experiments may be analysed in a manner almost identical
to that of a BIBD. Note that the {C;} of Nelder (1965) correspond to our }S,}. Before
giving any further details of these ideas, we devote the next section to reviewing the
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antecedents of general balance and clarifying its connections with similar notions which
have appeared since 1965. See also Bailey (1981) for a related discussion.

3. Eigenvectors, balance and simple combinability.

3.1. Eigenvectors of information matrices. It has long been known in linear regression
analysis that contrasts which are eigenvectors of the information matrix have special
properties which make inference concerning them particularly straigh. “. ward; the analogy
with principal components analysis explains why this is so. Howev. ' it appears that
Morley Jones (1959) was the first person to examine these ideas in so. e detail in the
context of block experiments, and because of their relevance to general balance we will
summarise his results within the framework introduced in Example 1 of the previous
section.

Morley Jones analysed the data y under the “fixed block effects” model: Ey € 7 + 4,
Dy € 2 where 4 = #(B) and 2 = {¢%I:¢* > 0}, and he concentrated upon the intra-
block analysis, i.e. that using the reduced data By (B = I — B) consisting . f the observations
adjusted by their block means. Clearly EBy € B and DBy € B %/B, and the task of
minimising || By — Br |2 over r € 7 is equivalent to solving the reduced normal equations
(“eliminating blocks”):

TBTr = TBy

for 7 € 7 In this context the eigenvectoré and eigenvalues of the information matrix
TBT are likely to be of interest. (In fact Morley Jones studied a closely-related matrix
with the same eigenvectors but eigenvalues one minus those of TBT.) He made the
following observations: (a) an element ¢t € 7 is an eigenvector of TBT iff there exists a
constant k such that for allu € 7 (u| (B — G)t) = k(u| Bt); (b) if one of two orthogonal
treatment contrasts ¢ and u is an eigenvector of TBT, then their inter-block components
Bt, Bu (resp. intra-block components Bt, Bu) are also orthogonal; (c) the best linear
unbiased estimators (BLUEs) of contrasts (¢|7) defined by eigenvectors of TBT are easy
to compute, as are their precisions, and these are related to the corresponding eigenvalue;
(d) the eigenvalues of TBT are directly related to the Fisher efficiency factors describing
the relative loss of information occurring by restricting attention only to the intrablock
analysis; and (e) normalised contrasts defined by eigenvectors of TBT corresponding to
the same eigenvalue are estimated with the same precision; in particular, all contrasts are
estimated with the same precision in BIBDs.

Although not explicitly referring to eigenvector contrasts, similar ideas can be found
in Kurkjian and Zelen (1963). Their “property A” is equivalent to the spectral decompo-
sition TBT = Y5 \sTs where the {T} are the orthogonal projections decomposing .7 into
subspaces { 9} corresponding to main effects and interactions in a factorial experiment
laid out in blocks. Their conclusions included (c) above, with the BLUE of (t;| ) based
upon By being A\;'(t, | By) for an arbitrary t; € 7, having variance ¢?A3! || t; |2, and they
observed that BLUESs of contrasts defined by elements of the different subspaces { 7;} are
uncorrelated (cf. (b) above). They also applied their results to other types of incomplete
block designs including group divisible and direct product designs. A further paper, Zelen
and Federer (1964) extended the same ideas to row-column designs, but still only in the
context of the lowest stratum analysis, i.e. that based upon (I — R — C + G)y; cf. Example
2 above.

In Pearce, Calinski and Marshall (1974) the eigenvectors of TBT are called “basic
contrasts”, and these authors note that those with eigenvalue 1 can be estimated with full
efficiency in the intra-block analysis, those with eigenvalue 0 are “totally confounded”
with blocks, whilst the remainder are “partially confounded”. They recommend that the
spectral decomposition of TBT be used by experimenters to ensure that the design permits
contrasts of particular interest to be estimated with maximum efficiency in the intra-
block analysis.
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Corsten’s (1976) canonical analysis is also equivalent to the spectral analysis of TBT.
He calls the eigenvectors (with non-zero eigenvalues) “identifiable contrasts” and views
the corresponding eigenvalues as the squared cosines of the canonical angles between the
subspaces 7 and %" the orthogonal complement of %; the same geometric approach is
used by James and Wilkinson (1971).

3.2. Balance. BIBDs were introduced by Yates (1935) as incomplete block designs
with equal block sizes, equal replications, and having the combinatorial property that
every pair of distinct treatments appeared together in a block the same number of times.
It followed that simple treatment contrasts were all estimated with the same precision,
and as a consequence, that normalised treatment contrasts were also estimated with the
same precision. Thus combinatorial balance was related to the property of sets of contrasts
being estimated with the same precison.

Generalised forms of these ideas appeared soon afterwards: PBIBDs were introduced
by Bose and Nair (1939); designs with unequally replicated treatments having a restricted
form of balance were studied by Nair and Rao (1942); designs with supplemented balance
by Hoblyn, Pearce and Freeman (1954), and Pearce (1960, 1963). Morley Jones (1959)
continued this line of development.

Balance in block designs was first linked to the spectral properties of the intra-block
information matrix (or a closely related matrix) by V. R. Rao (1958) and Morley Jones
(1959). The latter proved that a block design is balanced with respect to a set of treatment
contrasts iff those contrasts span a subspace of an eigenspace of TBT. The combinatorial
aspects of balance are reviewed in Raghavarao (1971), although we will see that the
approach through general balance is more relevant to the problem of analysing data from
an experiment with a design exhibiting the given type of balance.

3.3. Simple combinability. The term recovery of interblock information has come to
mean the double task of estimating the relevant strata variances and the calculation of
weighted combinations of the inter- and intra-block estimates (where this is appropriate)
of a given treatment contrast. Following earlier work with cubic lattice designs, Yates
(1939), Yates (1940) showed that the overall (weighted least squares) BLUE of any
treatment contrast in a BIBD was the linear combination of its BLUE calculated using
the intra-block data (I — B)y and that calculated using the inter-block data (B — G)y,
each weighted inversely according to its variance. We shall call this result, which assumes
that the strata variances are known, the property of simple combinability, which is valid
for all contrasts in a BIBD. Yates also gave a method of estimating the usually unknown
strata variances from the anova table.

Conditions on a design which ensure the simple combinability in PBIBDs of certain
sets of treatment contrasts were described by Sprott (1956) in a paper which gave great
insight into the relation between combinability and combinatorial balance. In particular
Sprott showed that the property of simple combinability holds for all contrasts in a PBIBD
only if the design is actually a BIBD. This and other results along the same lines are
special cases of a general theorem proved in the next section.

A link between the spectral properties of TBT and simple combinability in an incom-
plete block design was established by Zyskind and Martin (1966), who showed that a
treatment contrast is simply combinable iff it is an eigenvector of TBT. Thus these three
topics: the eigenspaces of TBT, balance, in either the combinatorial sense or in the
statistical sense of contrasts being estimable with the same precision, and simple combin-
ability are all seen to be intimately related. With this introduction to general balance we
now turn to its definition and study.

4. General balance. As we have explained in Section 2 above, our model for the
data y = (y;)ie1 associated with our designed experiment is given by (2.1) Ey € 7 and
(2.2) Dy € 2 where 9 C & is a linear subspace and 2 = {V(£):V(§) = 3. &.5.,
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& > 0 for all o} is a dispersion model satisfying (OBS). General balance is a structural
property relating 7 and the strata { &}.

4.1. Definition of (GB). We say that a design with (OBS) defined by {S.} and
treatment structure 7 is generally balanced with respect to the decomposition 7 =
®; 7 or just generally balanced if there exists a matrix (\,s) of numbers such that for
all o

(GB) TSaT = Eﬂ Aang,

where the {T};} are the orthogonal projectors onto the subspaces { ;}. It is clear that (GB)
is equivalent to the requirement that the matrices {T'S, T} are simultaneously diagonali-
sible, with the { 7;} as their common eigenspaces. Another equivalent form is the following:
there exists numbers (A,;) such that for all «, 8 and 8’

_ AaﬁTﬂ if B = ﬂ,,
TsS:Ty = {0 otherwise.

Since the {S..} and {T}} are all projectors, we must have 0 < \,; < 1 for all « and 8, and
it follows from Y. S. = I that for all 8, Y. A.s = 1. A statistical interpretation of the A,
as efficiency factors will be explained in Section 4.3 below, and we refer-to Fisher (1935)
for the first use of such a two-way array. Orthogonal designs are just those for which each
AgisOor 1.

4.2. Querall analysis assuming (GB): known strata variances. It is well known that the
BLUE of 7 = Ey based on y is given by the solution + € 7 of the normal equation

(NE) TV 'Tr =TVy;

equivalently, that it is given by 7 = Uy where U = P% is projection of & onto 7
orthogonal with respect to the weighted inner product (c|d)v := (c| V-'d). Yet one
further statement of this (Gauss’s) result is the following: (¢|7) is the unique BLUE of
(t|7)foreveryt € 7

Now TV™'T = ¥4 v;T, under (GB), where we write v = ¥, A,s£2!, and so the unique
matrix inverse of TV™'T on the subspace .7 is Y v5'Ts. Consequently the solution 7 =
Uy of (NE) is given by

4.1) U= Yes Waprs TpSa

where we have written w,s = v3'£:'A\.s. This expression is called the weight for the
treatment term 8 within stratum o, a name which we will shortly justify. Here and later
all summations involving A2} will be restricted only to those & or 8 for which A,z > 0.

As we have already observed, the unique BLUE of {¢t|7) for t € 7 is (t|7) and by
(4.1) this is just

(4.2) (E17) = Sap Washah(t | ToSuy)
with variance Y, vg' | Tst || If t = t; € ;, the BLUE simplifies to
(4.3) (ts| 7) = T WapA3p(ts | Say)

with variance v3* | t5| 2%
Finally, the covariance between two BLUEs (¢, | 7) and (¢, | 7) is just

s v5'(Tst1| Tpta),

andift; € 5, t, € ., B # B’, this reduces to zero.
" It is clear from the above that as long as the strata variances are known (up to a
common scalar multiplier) and we can readily effect the projections {S,} and {T}}, the
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weighted least squares analysis of data from a designed experiment with generally balanced
block structure is particularly simple. We will deal with the problem of unknown strata
variances in the next subsection and in Section 4.5 below. On the issue of the ease of
calculation and computation of the projections we can say this: the {S,} are commonly
built up from simple averaging operators such as G and B in Example 1 or R, C and G in
Example 2 above, and rarely give any difficulties. The common decompositions {7}
relative to which designed experiments satisfy (GB) are also of this form, although there
are some that are quite different, and in general the problem is not: “how do we compute
the projections {75}?” but: “how do we discover them?” This is essentially a combinatorial
problem, which needs to be done for each new design or class of designs. The usual
mathematical skills (trial and error, ingenuity, etc.) help, as does the occasional computer-
aided spectral analysis, and it is only the broader classes of block designs for which general
solutions are unavailable; see Section 5.4.

4.3. Within strata analysis assuming (GB). A reduction of the full data y to its strata
projections S,y permits analyses within strata without knowledge of the strata variances,
for ES.y € S.Z and DS,y = £,S.; in particular, the dispersion matrix of S,y is known
up to a scalar, and this is adequate for the usual least-squares analyses.

The least-squares fitted value J, of y in stratum « is y. = Ps_ sy, the unweighted
projection of y onto S, 7, unweighted because the subspace S, .7 is invariant under DS,y
whence unweighted and weighted projectors coincide. The normal equation within &, is

(NE,) TS . Tr =TS,y
and its solution 7, = U,y is given by (cf. Nelder (1965) equation 3.3)
(4.4) Uey = Zs N TsSey

where the sum is only over those 8 for which A,; > 0. We can readily prove that Ps ;=
S.U.. It follows from (4.4) that the unique BLUE of a contrast (¢t | 7) which is estimable
in & (i.e. for which there exists a BLUE based on S, y) is

(4.5) (t] 7o) = Zp s (Tt | Say)
with variance £, X5 M55 || Tst |2 If t = t; € F; the BLUE simplifies to
(4.6) (tg] 7o) = Np{ts| Soy) (provided A > 0)

with variance A ;& || £s]|%, and if A\.,s = O then no contrast (ts|7) is estimable in &,.
Finally, we remark that the covariance between two BLUEs (t,|7.) and (t,|7.) is
£ Yo Mgl Tst1 | Tsto) and if t, € T, t2 € Jr, B # B, this again reduces to zero.

There are a number of points in the formulae above and in the corresponding ones in
the previous sub-section which are worth noting. First, it is clear from both (4.6) and (4.3)
that estimation is especially simple for contrasts which are eigenvectors of all the
information matrices T'S, T, cf. Section 3.1 point (c). Secondly, BLUEs of contrasts from
distinct (common) eigenspaces of the T'S,T are orthogonal, cf. Section 3.1 point (b), and
so the BLUEs of contrasts (t | 7) for arbitrary t € 7 are sums of the uncorrelated BLUEs
of (Tyt|7) which have the simple form. And finally, the overall BLUE (4.3) of (tz|7)
for ts € ; is quite clearly the simple combination of its BLUESs (4.6) in each stratum in
which it is estimable, each weighted inversely according to its variance: (t|7)
= Yo Weslts | 7). This justifies our use of the term weight for w,; introduced following
equation (4.1). Similarly we can compare the variance of (¢;|7.) to that of (t5|7) when
the £, are assumed equal, and see why A, is termed the efficiency factor for treatment
term g in stratum «, cf. point (d) in Section 3.1.

In a sense there is no single analysis of variance table which summarises all aspects of
the least-squares analysis of a designed experiment satisfying (GB), but rather one for
each stratum and one overall. See Table 1, the anova table within stratum «. Examples of
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TABLE 1
Anova table within stratum a

Source d.f. Sum of squares E{Mean square}

Treatment term 9 Aag

. o -1 2 2
(assuming A > 0) dim % Aol TaSay | £+ dm % | Ter
Residual d,:By difference By difference ¢, (ifd.>0)
1 1
may be zero
Total dim ¢, | Sy ||?

.

designs with residual degrees of freedom d, = 0 in some strata are quite common, e.g.
symmetric BIBDs, double, triple, - - - lattice designs, rectangular lattice designs all have
zero residual d.f. in the inter-block stratum, and the best general way to estimate £, is
certainly not via the anova table for stratum «. For further comments on the estimation
of £,, see Section 4.5 below.

4.4. Simple combinability: a converse to (GB). We now prove a result asserting that
under certain general circumstances, if a set of contrasts spanning 7 is simply combinable,
then the design satisfies (GB). The following lemma has its straightforward proof omitted.
Our framework is that of Section 2.4 without assuming (GB).

LEMMA. If the treatment contrast (t| ) is estimable in stratum a, then there exists a
unique ¢, = c,(t) € @ (S.T) such that Tc, = t. Furthermore, the unique BLUE of (t|7)
based on S,y is then (c.| y).0

PROPOSITION 4.1. Let (t|7) be a treatment contrast such that for each stratum %, it
is either estimable in or orthogonal to <., and suppose that there is a set {w.} of non-
negative weights summing to unity such that

(4.7) (t]7) = Za walealy), (¥ € D)

where {c.|y) is the BLUE of (t| ) based on S,y, if {t| ) is estimable in &, and w, =0
if t is orthogonal to .. Then for all a, t is an eigenvector of TS, T with eigenvalue \, =
an«(Za ana)_l-

PrOOF. : It is not hard to prove that the transpose U’ of U = PY coincides with
V-UV. It follows from equation (4.7) that V'UVt = ¥, w.c, and so

(4.8) UVt = (Ta £S) (T WaCa) = Yo EaWaCa.
Now TU = U and since Tc, =t for all «, (4.8) implies

(4.9) UVt = (¥a Eawa)t.

On the other hand, (4.8) also implieé that S, UVt = £.w.c., and so
(4.10) TS, UVt = £ w.t.

The conclusion now follows from (4.9) and (4.10).0

Now let us suppose that the subspace .7 has a basis consisting of vectors ¢ satisfying
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the hypotheses of Proposition 4.1. Then for each such ¢ there is a set {\.} eigenvalues,
and we can obtain a pairwise orthogonal system { 7;} of subspaces of 7 by grouping
together all ts with a common set of eigenvalues, say {\,s} for each t € 7. It is clear that
the system { 7;} forms a complete set of eigenspaces common to all the matrices {7'S. T}
and also that 7 = @; ;. Thus we can obtain the following converse to (GB) implying
equation (4.1).

PROPOSITION 4.2. If there exists an orthogonal decomposition 7 =®; Jsof 7 and a
set {wks} of weights such that for all V € % the projection U onto 7 orthogonal with
respect to (- | -)vis U= Y5 wiTsS,, where wk, is independent of a, then the design
satisfies (GB) with respect to { F3}.0

The proof will be omitted; it can be found in Houtman (1980). A stronger result can be
obtained when there are only two effective strata, i.e. 2/ is spanned by S, = G, S, Ss; for
this case the hypothesis “for all V € 2/” in Proposition 4.2 is not required, as one suitable
V leads to the same conclusion.

4.5. The estimation of strata variances under (GB). We remarked in Section 4.3 above
that the residual operator R, = S, — Ps_ ., in stratum « may be zero, equivalently, that d,
=tr R, = dim % — ¥ {dim ;:\,s > 0} may be zero. The reason for this is not hard to
see: if 0 < A4 < 1, then treatment term T7 is being fitted and its full d.f. dim .%; removed
not only in stratum «, but also in one or more other strata in which it is estimable. In a
sense we should only remove that fraction w.s(dim %) of the d.f. corresponding to the
amount of information on 7 in %, and the approach of Nelder (1968) amounts to just
this.

More precisely, Nelder’s approach is based upon equating the observed with expected
mean square of the actual residual S.(I — U)y = S.Uy in stratum « rather than doing so
with the apparent residual R,y as is done if only the anova table is consulted. To illustrate
the difference between the two we cite the following without proof:

Lemma () [|S.Oy[* =Ry |* + | (Ps, - — Syl
(i) di=tr(S.U)=d.+ Y5 (1 — w)dim .
(iii) When every treatment term is estimated in one of two strata, a and o’ say, then

” (PS‘,:/ - S«U)y "2 = Zﬁ wa’ﬂxaﬂ ” Aﬁy "2

where Agy = N3 TsS.y — N5 TsS.y is the difference between the estimates of treatment
term B in the two strata, and a similar equation holds with the roles of a and a’ reversed.[]

Now both U and d; involve the weights { W,s} so if we are to make use of the identity
E||S.Uy||? = d.t. in estimating £, an iterative approach must be used. We proceed as
follows: '

(0) Begin with initial estimates {£} or {w %} of the strata variances or weights,
possibly making use of the strata anova tables;

(1) Given a set {£,} and {w.s} of working estimates of the strata variances and weights,
calculate U and d/, and obtain revised estimates {£}} by solving for {£.} in
(4.11) |S.Oyll? = ¢.di, a=0,1, ---.

It is interesting to note that equation (4.11) is in fact the likelihood equation for {£,}
based upon || (I — T')y||? under the assumption that y has a multivariate normal distri-
bution, see Patterson and Thompson (1971) for details. The information matrix corre-
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sponding to these restricted ML estimates {£.} under normality has elements

L {azlog l]r _L Jl[d,, + 3 (1 — wy)?(dim F)] if a=a’

0t | Bk |[Z Wapthars(dim F)] if o al

where the sums are over all 3 for which A,z (or A,s) > 0.

4.6. Inferential difficulties under (GB). Even when a designed experiment with or-
thogonal block structure defined by the strata { 4} and treatment structure { 7;} satisfies
(GB), there remain difficulties with estimation and testing the model.

Although the formula (4.1) gives a precise expression for 7 when the strata variances
{¢.} are known, these considerations no longer apply when we use the estimates {£,}
obtained as in Section 4.5. The general problem of combining information on a common
mean when the weights require estimation has a large literature; see Brown and Cohen
(1974) for a general discussion and further references. In some of these papers the problem
of combining information on treatment contrasts in BIBDs is considered and it would be
of interest to extend these conclusions to multi-strata designs with a number of treatment
terms.

A second difficulty arises when the analyst wishes to test the hypothesis Ts7 = 0 for
some B3, say under a normality assumption. This can be done by an F-test in every stratum
«a for which A\, > 0 and the stratum residual d.f. d, > 0, and although such tests would be
independent, there appears to be no accepted procedure for combining the tests into a
single one. On the other hand, an overall test might be sought, fitting to .7 first and then
to the orthogonal complement .7 © %, of Z;in .7 which still satisfies (GB). The problem
here is the fact that the likelihood ratio test for such hypotheses does not appear to have
been studied when information concerning 7 resides in more than one stratum.

Both of these problems would seem to warrant further research. Until straightforward
exact or approximate solutions are found, most analysts will follow Yates (1940) and
others in substituting the estimated weights into (4.1), and testing hypotheses Tsr = 0 in
the stratum « for which A, is largest.

5. Examples.

5.1. BIBDs. The basic notation for block designs was introduced in Section 2.3: b
blocks of k plots each, and the term balanced means that the v = k different treatments
are applied to the plots in such a way that each pair of distinct treatments appears together
in a block the same number of times, A say. The strata projections are G, B — G and I —
B, all derived from simple averaging operators, whilst the treatment decomposition T'= G
+ (T — Q) is similarly straightforward. We readily find that

(5.1) TGT=G, TB-GT=¢&T-0), TU-BT=eT-G)

where e = (1 — k7')/(1 — v™') = 1 — é is the efficiency factor of the design; Yates (1936).
The computation which establishes the (GB) conditions most easily is the checking that
(T — G)B(T - G) = é(T — Q) by applying (T — G)B to a simple contrast t,,; in this form
it is nothing more than checking the balance condition.

The overall BLUE of a treatment contrast (t|7) is given by (t|7) = &7'(é¢7! +
etz!) Wt (B — Q)y) + E7'(eésrt + etz!) X (t| (I — B)y), the correctly weighted linear
combination of the inter- and intra-block BLUEs ¢ *(t| (B — G)y), and e™*{¢t| (I = B)y),
respectively.

When we turn to the estimation of £, and £,, we note that the residual d.f. d;, = (b — 1)
— (v — 1) in the inter-block stratum is usually small and is zero if v = b. Nelder’s iterative
method or its Fisher scoring variant can be used with initial values £§{® = £ = d5' | R,y || 2
ond, =b(k— 1) — (v — 1) d.f. from the intra-block stratum. The only quantities needed
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for this calculation are the residual arrays
Riy=B-Gy-¢'B-GTB- Gy
Ryy = By — e'BTBy
and the array of differences of effects estimated in the two strata:
Ay =é'T(B — G)y — e 'TBy.

The procedure generally converges quickly, and gives estimates which are close, although
not identical, to those given by Yates’ (1940) method based on anova tables, and the
statistical properties of these estimates appear (by simulations) to be very similar to those
of Yates’ estimates.

5.2. A natural generalisation of PBIBDs. PBIBDs were introduced by Bose and Nair
(1939) as generalisations of BIBDs and have been the subject of much study since then,
mostly devoted to combinatorial aspects of the designs because the combinatorial objects
now known as association schemes were first defined in this context, see MacWilliams and
Sloane (1978) and Raghavarao (1971). The standard reference on the analysis of PBIBDs
seems to be Clatworthy (1973). The idea behind PBIBDs is quite simple: where it is not
possible for every pair of distinct treatment to be together in a block the same number A
of times, the pairs are partitioned into association classes forming an association scheme
so that this can hold within classes, and the single number X is replaced by a family A,,
A2, - - - of numbers, one for each association class. Our generalisation carries this idea over
to more general block structures than just blocks and plots such as nested BIBDs; Preece
(1967).

Let us suppose that the orthogonal block structure of our design arises from a dispersion
model based upon an association scheme {A,} over the set I of unit labels as described in
Section 2.2. That is, the strata projections {S.,} are given by S, = (1/n) ¥, ¢..A. where @
= (Qa.) is a matrix of structure constants. The association matrices {A,} are defined in
terms of the strata projections by A, = Y., p..S. where P = (p,,) is the “inverse” matrix
of constants: PQ = QP = nl.

Similarly we suppose—as is customary with PBIBDs—that there is an association
scheme {B,} defined over the set 2 of treatment labels, see Section 2.2, with corresponding
orthogonal projectors {T';} given by T's = (1/v) 3 GusBs, where @ = (Gss) and P = (pg) are
the appropriate matrices of structure constants.

DEFINITION. A design map x:I — 2 is said to be ({A.}, {Bs})-balanced if for all
association classes a over I and b over 2 and u,, u, € 2 with By(u,, uz) = 1, the number
1{G, j) € I X AL, j) =1, x(I) = w1, x(j) = uz} | depends only on b and not on the pair
u1, U, chosen. If we denote the number (of concurrences) in this definition by ng, then,
recalling the design matrix X introduced in Section 2.1 above, we see that an equivalent
form of the definition is: there exists numbers n,, such that for all a we have

(52) XlAaX = Zb n,,bBb.

In particular if we consider A, and B, where e represents the identity association, we find
that n.. = r defines the common replication number for the treatments of our design.

PROPOSITION 5.1. An experiment with block structure arising from an association
scheme {A,} over the set I of units, and having a design map which is ({A.}, {B,})-balanced
with respect to an association scheme {B,} over the set & of treatments, satisfies (GB). In
notation introduced above, the treatment decomposition is given by {Ts;} where Ty =
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r'XT, X', and the matrix A = (As) of efficiency factors is given by
Aﬁﬂ = (rn)—l Za Zb qaanabﬁﬁb

where n = (ny) is the matrix of concurrences.

PrROOF. We begin by noting that T'= r~'XX’. Then for all «

TS.T=n"1Y, q.TA,T (definition of S,)
= (r’n)! Yo qu X(X'A. X)X’ (definition of T')
= (an)—l Za Zb qaanabXBbX’ (by (5~2))

= (r’n)7" T Tb Bs QualtarPss XTs X’ (definition of T;)
= X {(rn)™! o Bb Qoo Deo} Ts (definition of Tj)

and the assertion is proved. 0

EXAMPLE 1. It is not hard to see that a BIBD is built over an association scheme on
its units with associations which can be labeled e (equality), 1 (same block but different
unit) and 2 (different block), whilst its treatments have the trivial association scheme
with associations e (equality) and 1 (inequality). We readily find that (rn)"'Q'nP’ takes
the form

1 1 1 r 0 1 1 1 0
rm)™ b—1 b-1 -1 0 A ~1 -1l= 0 1-—e
k-1 b ollrr=1 rr=2AJ" 0 e

making use of the relations r(k — 1) = AM(v — 1) and rv = bk = n.

EXAMPLE 2. Kshirsagar (1957) gave the very interesting 6 X 6 row-column design
with 9 treatments A, B, C, D, E, F, G, H, I shown in Table 2. Let us consider the
association scheme defined on the treatments by imposing a row-column pseudo-structure
on them as shown in Table 3. If we let e, 1, 2 and 3 denote the associations of equality,
same row (but unequal), same column (but unequal) and different row and column for
both schemes, then we have what is shown in Table 4, with a similar result holding for
X'’A;X by differencing, since A, + A, + A; = J — I, where o is the matrix of all 1s. These
clearly satisfy our balance condition with matrix n = (n,) of concurrences, shown in
Table 5. With these preliminaries we can readily get P and Q and calculate the matrix A
= (\.4) of efficiency factors; this turns out to be as given in Table 6.

For many further such designs see Preece (1968, 1976) and Cheng (1981a, b).

TABLE 2 : TABLE 3
Treatment allocation to 36 units with a 3 X 3 row-column pseudostructure
6 X 6 row-column block structure on 9 treatments

A B C

BID/H|G[F|C D EF

C|E[G|B|D|I G H I
E|F|C|A|G|H
DI'I|A[H|C|E
FIG|IT|E/A|B
AHB|D|I|F
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TABLé 4
A B C D E F G H I
0 2 2 2 3 3 2 3 3 A
0 2 3 2 3 3 2 3 B
0 3 3 2 3 3 2 C
0 2 2 2 3 3 D
XA X= 0 2 3 2 3 E
by symmetry 0 3 3 2 F
0 2 2 G
0 2 H
0 I
A B C D E F G H I
[ o0 3 3 3 2 2 3 2 2 A
0 3 2 3 2 2 3 2 B
0 2 2 3 2 2 3 C
0 3 3 3 2 2 D
X'A X = 0 3 2 3 2 E
by symmetry 0 2 2 3 F
0 3 3 G
0 3 H
0 I
TABLE 5
e 1 2 3
4 0 0 O e
ac| 002 2 3] 1
0 3 3 2 2
12 11 11 11 ] 38
TABLE 6
Treatment pseudo-factor _gm r c r-c
0 0 0 Grand mean
1 1
A= ASERAT Rows Block stratum

Columns
s s s Rows - Columns

coor
=)
o
-
>

5.3. Supplemented balance and related notions. Pearce (1960) described a class of
block designs possessing what he termed supplemented balance, and later Pearce (1963)
extended the notion to row-column and more general designs. A typical example is a
BIBD consisting of b blocks of k plots each and a standard balanced allocation of v
treatments, which is supplemented by the addition of an extra plot to each block to which
a control is applied. The resulting block design has b blocks each of k + 1 plots and v + 1
“treatments”, but is readily found to satisfy (GB) for the “treatment” decomposition

(5.3) T=90 7,8 7

where ¢ = 2(G), 9, is the (v — 1)-dimensional space of contrasts amongst the v original
treatments, and 7, is the 1-dimensional subspace spanned by the contrast comparing the
control to the average of the original treatments. This contrast is estimated with efficiency
1 in the intra-block stratum, whilst the contrasts in 7, are estimated intra-block with
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efficiency e* where 1 — e* = k(k + 1)7}(1 — e), e being the efficiency factor of the original
BIBD.

A similar analysis holds for block designs which only satisfy (GB) with more compli-
cated treatment decompositions, and also for row-column and other designs with supple-
mented balance: in these cases 7, is replaced by the direct sum of the terms relative to
which the original (unsupplemented) design satisfied (GB).

Pearce’s block designs with supplemented balance are a special case of a class of block
designs introduced by Nair and Rao (1942), which are themselves a variant on those
described in the previous sub-section. They are analogous to PBIBDs with group-divisible
association schemes defined on the treatments, but do not necessarily have equal group
sizes, in which case they do not define an association scheme. Despite this fact, even when
the group sizes are unequal the line of argument used in Proposition 5.1 carries over. We
illustrate the results with the case of two groups, as discussed in Nair and Rao (1942),
supposing that there are v; “rare” treatments each replicated r; times, and v, “frequent”
treatments each replicated r, times. Each pair of “rare” (resp. “frequent”) treatments
occurs together in the same block n,, (resp. ng;) times, whilst pairs of treatments one of
which is “rare” and the other “frequent” occur together in a block n,; = ny, times. It is
easy to establish that such designs are balanced with respect to the treatment decompo-
sition

T=90 950 %0

where 7 (resp. %) is the space of dimension i, — 1 (resp. n, — 1) spanned by contrasts
between the “rare” (resp. “frequent”) treatments, and 7 is spanned by the single d.f.
contrast comparing the average of the “rare” treatments with the average of the “frequent”
treatments. The array of efficiency factors is shown in Table 7.

5.4. Designs satisfying (GB). Nelder (1965) observed that most of the common designs
in use satisfied his definition of general balance. With our extension (GB) to designs in
which treatments are not necessarily equally replicated, we can go further and assert that
all block designs (with equal block sizes, and the usual dispersion model) satisfy (GB),
since it is quite obvious that TGT, T(B — G)T and T(I — B)T all commute. All row and
column designs which we have seen in the literature satisfy (GB), see Kshirsagar (1957),
Pearce (1963, 1975), Zelen and Federer (1964a) for examples, and so also do all designs
known to us with orthogonal block structure having three or more strata.

Knowing that a block design must satisfy (GB) is one thing; having explicit expressions
for the orthogonal projections {T}} is quite another matter. There are a very large number
of types of PBIBDs, and although it is generally not difficult to describe the structure of
their Bose-Mesner algebra, see MacWilliams and Sloane (1978, Chapter 21), and hence
obtain the {7}, most writers in statistics have not taken this viewpoint. Corsten (1976)
is an exception,

For classes of block designs which are not PBIBDs, other methods must be used; the
details concerning rectangular lattice designs, linked block and a number of other classes

TABLE 7
Treatment m 1 9 c Stratum:
term:

1 0 0 0 grand mean

- - — bn
A=1|o0 rn —nn Iy — nNg rnra 12 blocks
krl kr2 rnrs
k—-1) + k—-1) + b
0 ri( 1) + ny ro ) + ng oz plots

kry kry rire
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are available on request. Recently the class of a-designs was introduced, Patterson and
Williams (1976), these being obtained in a particularly simple way from a basic generating
array. This class seems to be so large, including BIBDs, PBIBDs, square and rectangular
lattice designs as well as many others, that it does not seem to be possible to give a general
description of the subspaces { 7;} relative to which the designs satisfy (GB). However this
should be regarded as a challenging unsolved problem.

5.5. Designs not satisfying (GB).

A black sheep. Although all block designs satisfy (GB) this is not necessarily the case
for row-column designs as the following 4 X 4 example with four equally-replicated
treatments is shown in Table 8. To see that (GB) fails, one simply notes that the contrast
which compares treatment 1 with the average of treatments 2, 3 and 4 is an eigenvector
of T(C — G) T (notation as in Section 2 above) and not of T(ﬂ -G)T.

Other designs. Some designs in common use which may not satisfy (GB) are those in
which repeated measures are taken on a number of units, when both time (e.g. periods)
and subjects (say) are assumed to contribute to the dispersion model, i.e. are regarded as
“random effects”, and “residual” as well as “direct” treatment effects are included in the
model, see Cochran and Cox (1957) for a general discussion. The problem here is that
there are no residual effects applying to the first period. In general both time and subjects
are regarded as “fixed”, in which case no problems arise because the dispersion model is
then trivial.

Another class of designs whose structure and accepted analysis does not satisfy (GB)
is the class of so-called two-phase experiments, McIntyre (1955, 1956), Curnow (1959).
The explanation here appears to be simply the amount of structure in the experiment.

5.6. Concluding discussion. Throughout this paper we have discussed the notion of
balance and its generalisations from a purely theoretical point of view, focusing upon
contrasts with particular mathematical properties. It has not been our concern whether
these contrasts are natural, or of possible scientific interest, although this is clearly the
case in many common examples.

The designer of an experiment has a quite different perspective. Amongst other things,
he tries to ensure that contrasts of primary interest are estimated with as high a precision
as possible, subject to the constraints imposed by the experimental material. It by no
means follows that he should always design his experiment so that such contrasts are
eigenvectors of all the {TS,T} of Section 4.1; indeed in many cases this is impossible.

If a designed experiment with orthogonal block structure satisfies (GB), then the
coarsest decomposition 7 = @ 7 with respect to which it does so is uniquely defined by
the design. Other decompositions of 7 which satisfy (GB) can only arise by further
decomposition of the individual { 7} in the coarsest one. When the designer is able to
arrange that all of the subspaces { .7;} consist of contrasts of interest, the analysis of data
from the experiment and the display of the results will be particularly straightforward;
examples here include BIBDs and the designs of Section 5.3. In general, however, not all

TABLE 8
Design not satisfying (GB).

W] no| o
EN ! g
ENENE
el ol hol=
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contrasts of interest will belong to one of the 7, and it will be necessary in the analysis
to use the more complicated formula (4.2) involving the projections {T}; examples here
include unbalanced lattice designs.

A final point concerning the subspaces { 7} in (GB) is worth making. Even when they
do not consist of contrasts of scientific interest, they are frequently recognisable as arising
from a pseudo-structure on the treatments, i.e. an artificial view of the treatments relative
to which the { 7} are natural or interpretable. Examples here include many PBIBDs,
most lattice designs and Example 2 of Section 5.2. The most general design satisfying
(GB)—and we need go no further than block a-designs to find examples—involves a
decomposition of 7 into subspaces { 7} which have neither scientific interest nor any
natural or interpretable structure, however we care to view the treatments. Our general
theory applies to such designs, although it may be an affront to some to describe them as
balanced in any sense. We hope that our readers will appreciate the value of tracing the
path from balance in BIBDs through to the notion of general balance, and conclude that
the unity of outlook achieved outweighs any terminological problems met along the way.
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