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ON THE JOINT ASYMPTOTIC DISTRIBUTION
OF EXTREME MIDRANGES'’

By C. ZACHARY GILSTEIN

Bell Laboratories

We derive the joint asymptotic distribution of the 2 midranges formed by
averaging the ith smallest normalized order statistic with the ith largest
normalized order statistic, i =1, - - - , k. We then derive the distribution of the
maximum midrange among these k extreme midranges and the limiting
distribution of this maximum as 2 — . These results imply that, even in
infinite samples, different distributions in the class of symmetric, unimodal
distributions with tails that die at least as fast as a double exponential
distribution may have different maximum likelihood estimates for the location
parameter. We also discuss the application of these results to a test of
symmetry suggested by Wilk and Gnanadesikan (1968).

1. Introduction. We present here two results on the distribution of midranges. The
midranges are defined to be the averages of symmetrically placed order statistics. We will
refer to the midranges formed by averaging symmetrically placed extreme order statistics
as extreme midranges. The first result gives the joint asymptotic distribution of the %
extreme normalized midranges. The second result gives the asymptotic distribution of the
mazximum of these % extreme normalized midranges and the limiting distribution of this
maximum as & — oo.

These theorems were derived while investigating the following problém. Let Xi, - -,
X,, be a sample of size n drawn independently from a distribution with density of the form

felx; p) = cge 85, —0<x <o,
where u is a location parameter, ¢ is a normalizing constant and
g€ G = {g|R'— R, g has two continuous derivatives, g (x) = g(—x),
g(0)=0, g"(x)>0VYx#0, lim..g"(x)/[g'(x)]*=0}.
Let i be a maximum likelihood estimate of the location parameter, and let
B(G)={ilg€ G}

be the set of all possible maximum likelihood estimates ji for a given data set and for the
family of distributions corresponding to g € G. Note that this is a family of unimodal,
symmetric distributions with tails that die at least as fast as the double exponential
distribution. Leamer (1981) has shown that

B(G) = {{i|min<i<zM; < i < maxi<;<zM;},

where (i) M; is the ith midrange, (ii) 7z is the greatest integer less than or equal to
(n + 1)/2, and (iii) the equalities hold if and only if all the midranges are equal. This result
says that given the data set, any point in the interval between the smallest and largest
midrange is a maximum likelihood estimate for some distribution in the family correspond-
ing to g € G. The problem considered is: does the range of the set B(G) tend to zero in
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914 C. ZACHARY GILSTEIN

probability as the number of data points increases to infinity regardless of from which
distribution in the above family we happen to be sampling? In fact, we will show below
that this is not the case. This implies that within the family of distributions given above,
different distributional assumptions may lead to different estimates even in infinite
samples.

Since the range of the midranges need not tend to zero in probability as n — o, we
investigate the asymptotic distribution of Ry =max<i<z M; —min;<;<; M;. The investiga-
tion of the asymptotic distribution of Ry led to the two results referred to above.

In Section 2, we will present the two main theorems. In Section 3, we will discuss further
the problem presented above as well as discuss an application of these results to a test of
symmetry suggested by Wilk and Gnanadesikan (1968).

2. The distribution of extreme midranges. In this section, we derive the joint
asymptotic distribution of the normalized k. extreme midranges and the asymptotic
distribution of the maximum of these £ midranges. These results will be proved for a very
general class of underlying distributions. This section is divided into three subsections.
The asymptotic distribution of extreme order statistics will be reviewed, and the joint
asymptotic density of the normalized % largest and % smallest order statistics will be
derived in Section 2.1. The joint asymptotic density of the £ extreme midranges and the
asymptotic density of the maximum of these 2 midranges will be derived in Sections 2.2
and 2.3 respectively.

2.1 The distribution of extreme order statistics. Let X, --., X, be an independent
identically distributed sequence of random variables drawn from a symmetric distribution
which satisfies the following assumption.

AssumPTION 2.1. Let F(x) be a distribution function. Assume that there is a real
number x;, such that, for all x; = x < «, f(x) = F'(X) and F”(x) exist and f(x) # 0.

Furthermore, assume
]_ —
lim, .. & [ F&) ] -o.

dx | f(x)
Distributions for which Assumption 2.1 holds are generally referred to as being of
exponential-type because the tails die at an exponential rate. We denote by Z1, - - - , Z, the

order statistics of the sample. The ith midrange, M;, is defined as M; = (Z; + Z,+1-:)/2.
It is well known (v. Galambos (1978) Theorem 2.7.2) that Assumption 3.1 is a sufficient
condition for there to exist normalizing sequences a, and b, > 0 such that

lim, P (Z, < @, + bpx) = exp(—e™), —o<x <o,

Furthermore, it is also known that the kth extremes can be normalized to have nondege-
nerate limiting distributions if and only if the maximum can be normalized and that the
same normalizing sequences can be used.

We now give the joint asymptotic density of the normalized upper % and lower % order
statistics. Since we are dealing with symmetric distributions, the normalizing sequences
for the lower % order statistics can be taken as —a, and b,. Also noting that the upper and
lower extremes are asymptotically independent (v. David, 1970), we may find their joint
density as the product of the asymptotic density for the normalized upper & and normalized
lower % order statistics. These asymptotic densities have been given by Dwass (1966) and
Weissman (1978), who investigated extremal processes. The results can also be obtained
by a direct use of Scheffe’s Theorem on the convergence of densities.

Let V; = (Z,+1-; — a.) /b, denote the ith normalized upper order statistic, where a, and
b, > 0 are the normalizing sequences for the upper extreme order statistics. Similarly let
U; = (Z; + a,)/b, denote the ith normalized lower order statistic. The joint asymptotic
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density of the normalized lower % and upper % order statistics is given by
1) fo,.... v, iU, Uk, v1,...,08)

= exp[_e"k - e_vk + Z;{=1 (uj - Vj)]]‘(ul<"'<uk) ]'(vk<"'<”l)'

2.2 The joint asymptotic distribution of extreme midranges. We now must make a
change of variables to get the joint asymptotic distribution of the normalized midranges,
Jq,- = (Uj+ V;)/2 = (Z; + Zn+1-:)/2b.. Note that these midranges are normalized by the
sequence b,,.

THEOREM 2.2. Define (a)* = max(0, a). The joint asymptotic density of the first k
normalized midranges as n — o is given by

o (2k)! exp[—2 Y51 m, — 4 3521 j(myer — my)* ]
fM],o-o,M;.(mly M) mk) = 7 (1 ¥ e_z,nk)zk )

@)

.

—0 < My, see, My < 0,
Proor. We first make a change of variables in (1) by setting »; = 2m; —u;, 1 <j < k.
The Jacobian of the transformation is 2%. Then,
fUoe e Unyyeo S Uy« o 5 Uy M, -+ o, M) = exp[—e™* —e“ 2™ + 2 3%, (4, — m;)]2:
X 'l(u,<- =) 1(2m;.—uk<2m,,,.—u,.,l<~ «e<2my—u,).

We now must integrate out the variables Uy, ..., U,. We will integrate the variables out
in the order u; then us, us, - - -, ur. Note that the range of u; is — < u; < min(u;+1, éiv1
+ 2(m; — my+q1)) for 1 = i<k —1and — < u, < 0. We start by integrating out u;; there
are two cases,

uy
f fUh...‘U,,‘M,‘...‘M,, du;, m; = my,
—w
and
uz+2(my—mg)
j fus,.-. Unbts, - 51, AU, My < ms.
—0c0

The two cases can be conveniently written together as

ug—2(my—my)*
f fo,.-- Unbts, - Bhs,- - - 31, Q1.
—00

Carrying out the integration, we obtain
2% ‘
fvs-. Uit B0, = 5 exp[—e™ —e™ 2™ —2 V% mi+ 2 V5 5w+ duy — 4(me — ma)*]
X <. <u) Lt 2memin),i=2, - k=2) -

Similarly, integrating over u; yields
2k —om
fu,-- U B, 31, = —2'(7)' exp[—e"” —e" M — 9 Zf’=1 m; + 2 2?‘:4 u;j

+ 6us — 4(mz — m1)* — 8(mz — mz)*]

X Lug<. - <un) Lt t 20mi=munn) i=3,+ - o=1) -
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Continuing in this way through & — 1, we arrive at
2k

e —plk "k_zmk — k )
2@ . @k =g Pl e + 2kup — 2 Yk my

fU’hMly A ,Mh =

@)

— 4k jmi—m)t], —o <up < o,
We now integrate over that part of (3) which involves u;:

(4) f exp[_eu,, _euk—ka + 2kuk] duk — f t2k—1e—t(1+e"2"'~) dt = I‘(2_k;) ,

. A (14 e™™)
where the substitution, ¢t = e“, has been used. Substituting this into (3) and simplifying,
.we arrive at the joint asymptotic density given in the theorem.

Theorem 2.2 generalizes the result of Gumbel (1944), who gave the asymptotic marginal
distribution of M.

2.3 The asymptotic distribution of the maximum of the midranges. With the joint
asymptotic distribution of the extreme midranges in hand, we are ready to attack the
problem of finding the asymptotic distribution of the maximum of the extreme midranges.
Let 7% = maxi<i<xM,. We want to find P(T, < x). The difficulty arises from the terms
involving (m:+1 — m;)", since these terms require the k-fold integral to be broken up into
integrals over many different regions. Theorem 2.3.1 gives a one-dimensional integral
expression for P(T < t). Lemma 2.3.3 then shows that this integral can be written as a
summation of a finite number of terms. Finally, Theorem 2.3.2 shows that as &2 — oo, T}
tends toward an exponential distribution.

THEOREM 2.3.1. The distribution of T} is given by the following integral:

2k _ 1) kuk—l - e—Zt(k - l)uk—z

(5) P(Tx<t) = Fr,(t) =f ( k T du, k=1.

The proof of the above theorem is a consequence of the following two lemmas. For
convenience, we write X for e .

LEMMA 2.3.1. Define I;(s, t) recursively by I, = 1 and

(6) L (s, t) =f Li(u, t) du +j sYu™¥(u, t) du.

X
Then,

© (2k)! Li(u,t)
7 Fpr(t) = | 22k W50 o,
@ B R TR

Proor. We first make a change of variables in (2) by setting s; = exp(—2m;), i = 1,
..., k. The Jacobian of the transformation is (—%)*/[]%-1s:. Then,

(2R)(-1)* .
sty - 30 =P D (14 )2 T Ly 17%

where .
W, = 1, if Si+1= S8
7710, if s> s

Now, in terms of the S;’s, we can write
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" 7 (2k)! ‘
Fr, (t) = f oo (—hl (1 + s) 21421 (54187 ) Vi dsy -« - dsy,
2"k!
X X
where the factor (—1)* is used to invert the limits of integration.
We perform the integration in the order s; then s, -- -, sz. At each stage, because of
the factor W; in the exponent, the integral breaks into two parts. We suppress the factors

not involved in the first integration and write

S 0
L(ss, t) = J 1ds, + J sisT?ds,

X 2

where the definition of I, given in (6) has been used. Note that in the first integral s; < sz,
so that W; = 0, while in the second integral s; = s, so that W; = 1.

At the next integration the integral again breaks into two parts. Suppressing the factors
not involved in the second integration, and using (6), we can write

.

s3 o
I3(ss, t) =J I ds, +f s3sz*L ds;.

X ]
At each stage the integration breaks into two regions and depends on the value of the

integral from the previous stage. In general, we have

8+1 o
Lii(sj+1, 2) =J Ii(s;, t) dsy +f sis; 7 Ii(s), t) ds;.

X 541

Then for the final stage, we find

“(2R)! Li(sk, t)
2Rkl (1 + s)*

Sk .

FTk(t) =

We next find a closed form expression for I;(s, t).

LEMMA 2.3.2
j—1

(8) Ii(s, t) = 2 [js/™' = X(j — 1)s/7%].

J!
The proof follows easily by induction.

Proor oF THEOREM 3.3.1. By substituting the value of I, (u, t) given in (8) into (7), we
can write

du,

Fo) = | @R Rt — Xk — Dt
R B L] 1T+uw)?

which simplifies to the form given in the theorem.
We next evaluate the integral expression forFr,(¢) by using the fact that
) Fr,(t) = Fr,(t) — ¥)=1 [Fr,(t) = Fr,,, (t)].
To simplify the notation we will denote Fr, (¢) by F;. The next lemma gives a closed form
expression for the value of F; — Fj,,.
LEMMA 2.3.3.
(27)! X

e Fopy = .
(10) B =B =709 v
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ProoF. In the integral for F; in (5) let v = 1/(1 + u). The integral becomes (cf.
Abramowitz and Stegun, 1970, page 263):

1/(1+X) (2] _ 1)' ]
= T L 1=y iy = — V2,
F; J:) TG =2 [j— 1(1 v)’~'v X(1—-v)y ] dv

iTs s [ = <2ji_ I)ij_l s ( )Xz] : ]
1 1 (2 -1\, o 2 — 1\ o
=(1—+)-‘T2j-_—1|:2{=3 ( J i )X‘ —X2{'=g( J i )X‘]
1 -1\,
e ()

We now use (11) to evaluate F; — Fj.... By using the properties of the binomial coefficients,
we can show that for 0 < { <, the coefficient of X’(1 + X )‘2’ ~'in F; — Fj., is zero, while
for ¢ = j the coefficient is equal to (27)!/7!(j + 1)!, and the lemma follows

Using (9) and (10), we can write

(11)

_ ) X
(12) mﬂ”‘1+x Lﬂﬂu+nla+xwﬂ-

We now look for Fr7 = limy_,« Fr,(t). Since Fy,,, (¢) is the distribution of the maximum of
more variables that Fr, (¢), necessarily Fr,,, (¢) < Fr, (¢), Vt. By monotone convergence, Fr
must exist, Fr, (t) being bounded below by 0. Therefore, we can write

25 X/
JIG+ 1) 1+ X)¥H

1 .
(13) FT(t) =m— - llmk_,w 2;'.:1

Note that, since Fris the distribution of the maximum of an infinite number of symmetric
random variables, Fr(t) = 0, V¢ < O (that is, the right-hand side of (13) is zero for all

X=1).
Finally we show that the limiting distribution of 7% as 2 — o is an exponential

distribution.
THEOREM 2.3.2.
0, t=<0
Fr(t) = {1 —e% t>0.
ProoF. The proof follows easily from the identity

L '((21) j+1=%(1— =), |ul=13,

1)

.Jk

and recalling that X is our stand-in for e™%,

3. The range of the midranges. In Section 1, we considered the set
B(G) = {i| mini<i<r M; =< i < maxi<;<zM,}.

We are interested in whether the range of this set tends to zero in probability when the

underlying distribution is in the family of symmetric, unimodal distributions defined in the

introduction. It is straightforward to show that this class of distributions satisfies Assump-

tion 2.1, so that the theorems derived in Section 2 are applicable to the problem at hand.
Since the distributions we are considering are symmetric, we know that

li-[nn—-mop(maxlsisn_Mi < x) = 0’ Vx = 0’
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and
lim,,Pmin<,<zM; < x) =1, Vx=0.

Therefore, if max;<;<zM; has a nondegenerate limiting distribution, then the range of B(G)
cannot tend to zero in probability. In the previous section we have shown that

b 1—-e%, x>0.

Whether the asymptotic distribution of T = max;<;<zM;, which is greater than or equal
to T}, = max;=;=»M; for all %, is nondegenerate clearly depends on the normalizing sequence
b,.. Therefore, we will investigate this sequence below and give an expression for both a,
and b, in Theorem 3.1.

In the remainder of this section, we will further discuss the asymptotic distribution of
the maximum of the midranges. Finally, we will consider the implications of these theorems
with respect to the test of symmetry referred to in the introduction.

M;
limkawp(maxlsisklim —< x) = {0’ 2x x=0

THEOREM 3.1. Let
x
F,(x) = j c;e ¥ dt, —o<x<oo,

where g € G. Then, with a, and b, > 0 as given below, the maximum of a sample of size
n drawn independently from the distribution Fy(x) has a nondegenerate limiting distri-
bution

log[ g’ (g'(log n))] — log ¢,

14 . =g -

(14) a, =g (log n) 2 (2 og 1)
and

(15) b L

T2 (g ogn))

The proof makes use of the specific properties of g € G but otherwise follows similarly to
the derivation given in Galambos (1978) page 66-67, and is therefore omitted.

From the form of b, given above, we can immediately see that if lim._..g’(x) = c, then
the limiting distribution of max;<;<zM; is not degenerate at zero and the range of B(G)
does not tend to zero in probability. For the other possible case when lim,_,.g’(x) = o,
since the limiting distribution of max;«;<zM; = max;<;<sM;, the fact that lim g’(x) = o
does not necessarily imply that max;<;<zM; — 0 in probability. Let

M;
Fr,(t) = P(maxlsisib— < t)

and

M;
Fr,(t) = P(maxlsisklimn—»oo . < t).

We make the following conjecture: lim,, . Fr, = lim;_,..F7,. The proof is difficult because
it is hard to estimate Fr. for finite n and arbitrary g € G.

There is one case for which the above conjecture can be proved directly. This is the
case of a sample drawn from a double exponential distribution. By a technique analogous
to the proof of Theorems 2.2 and 2.3.1, it is possible to calculate

lim,, oP(maxi<izanM; < %), 0<a <’

The details are given in Gilstein (1980). However, for this case, lim._,.g’(x) equals 1, so
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that this case does not shed any light on the more interesting case in which lim,_,.g’(x) is
infinite.

As a final consideration we apply the above results to the test of symmetry proposed by
Wilk and Gnanadesikan (1968). Wilk and Gnanadesikan suggested plotting pairs of
symmetrically placed order statistics and looking for a linear relationship with a slope of
negative one. Consider the points (Z;, Z,.+1-:) and the line with slope equal to negative one
which passes through the point (xo, o). The deviation of the point (Z;, Z,.;—;) from this
line is equal to xo + Yo — Z; — Zn+1-i = X0 + Yo — 2M,. If the distribution is symmetric, then
the best line would tend to pass through the point (med X;, med X;), since then the
expected value of the deviations would be zero. However, the above theorems imply that
even if the sample is drawn from a symmetric distribution, if the tails of the distribution
do not die more quickly than an exponential distribution, then the maximum deviation of
the points (Z;, Z,+1-;) from this line does not tend to zero in probability as the number of
data points tend to infinity. This suggests that we should first trim some proportion, say
5 percent, of the extreme sample values. Since all the midranges would then be formed
from quantiles, the maximum midrange among the trirhmed set would tend to zero in
probability. This final result can be shown by using the bounds given in Gilstein (1981) to
show that the expected value of the maximum midrange among the trimmed set tends to
zero in probability.
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