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SUCCESSIVE SAMPLING IN LARGE FINITE POPULATIONS

By Louis Gorpon!

Energy Information Administration, U.S. Department of Energy

The permutation distribution induced upon a finite population by the
order of selection under successive sampling is closely related to the order
statistics of independent exponentially distributed waiting times. This char-
acterization is applied to obtain necessary and sufficient conditions for asymp-
totic normality of the sum of characteristics observed in a successive sample
from a finite population. The necessary and sufficient conditions generalize
previous results for simple random sampling without replacement, and apply
to sampling fractions close to 0 or 1.

1. Introduction and summary. Consider the finite population of labels Ux = {1, 2,
..+, N} with associated characteristics {yin, - - -, Ynv} and positive measures of size {x;n,
-+, xnn}. We sample the fraction fx of the population without replacement according to
the following scheme. The first unit to be sampled is taken with probability proportional
to the size measures x,. Subsequent units are taken sequentially from among those not yet
sampled with probability proportional to size relative to all units not yet sampled. This
sampling scheme is called successive sampling and has been studied by Rosen (1972), Holst
(1973) and Raj (1968, page 57). Sen (1979) studies another related successive sampling
scheme which results in a sample having a randomly determined number of selected units.

Holst generalizes the successive sampling scheme with fixed sample size as follows. To
each unit is assigned a cost of observation {cin, - -+, cyn}. The cost of a census of the full
population is ¢.+n = ¥, ¢,v. For a given sampling fraction fy between 0 and 1, we sample
successively with probability proportional to the x, until the total cost of the sample first
exceeds c+n - fn.

We refer to the former scheme (which results in a sample of fixed size) as uniform cost
successive sampling (UCSS) and the second scheme (in which a cost ceiling is fixed) as
variable cost successive sampling (VCSS). Note the UCSS is a generalization of simple
random sampling without replacement, and that VCSS is a generalization of UCSS.

Hajek (1960) gives necessary and sufficient conditions that a simple random sample of
size Nfy has a limiting Gaussian distribution centered at its sampling expectation and
scaled by its sampling standard deviation. The condition specializes in the case of sampling
fractions bounded away from 0 and 1 to the Noether condition, which requires that the
range of the centered y, be of order smaller than N'/2, The result is proved necessary and
sufficient whenever both Nfy and N(1— fy) grow arbitrarily large.

Holst (1973) shows that the Noether condition is sufficient for asymptotic normality
under VCSS, and hence under UCSS, when the sampling fraction fy is uniformly bounded
away from 0 and 1, and when both costs and size measures are uniformly bounded away
from 0 and infinity. In this paper, we show that when the costs and size measures are
bounded away from 0 and infinity, a variant of the Noether condition is necessary and
sufficient for asymptotic normality under both UCSS and VCSS. Our theorem generalizes
the Hajek result to VCSS, extending the Holst result to sampling fractions close to 0 or to
1, and showing the necessity of the conditions we propose.

Our proof is close in spirit to that of Hajek, in that we realize VCSS in such a manner
that the total of characteristics from a VCSS sample is very close to a sum of independent
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random variables. We then follow Hajek’s ideas in using the Lindeberg-Feller theorem to
show sufficiency and the Cramer-Levy theorem to show necessity.

2. Preliminaries. In this section we establish the notation and terminology that we
use in the remainder of the paper. Wherever convenient and unambiguous, we suppress
the explicit dependence upon N. We assume throughout the following regularity conditions:

(2.1) l=s¢=a,
(2.2) l=x,=<b,
(2.3) N'Y(y,—7*=1 where y=N"'Yy,.

We define the following scalar quantities: ¢+ = Y, ¢, ¢ is the solution to Y, ¢jexp(—x;ts)

= (1 _f)C+,

(2.4) re= Y, yexp(—x,ts),

(25) ¥r= A2, »xexp(—xt)}/{Xic.xiexp(—x.ty)},
(2.6) of = %, (3 — ¢, exp(=x,t) {1 — exp(—x;t)},
2.7) nr=Y, exp(—x,t).

We also need the following random quantities: Wy, - .. Wy are i.i.d. uniform exponential
random variables with mean 1,

(&) = Iiw>xn,

(2.8) Tr=sup{t|3, ¢, (&) > (1 = f)es },
Cr=3%icdi(T) — (1= fes,

(2.9) Ry =%, 5, (Ty),

(2.10) M(t; s, m) =Y (y, — c;m)exp(—sx;) {J, (t)exp(tx,) — 1}.

Note that 7T} is the first time that the total cost of observation equals or exceeds fe., so
that C} =< 0.

3. The approximation. In this section, we show that the sum of characteristics
obtained in a successive sample can be approximated by a sum of independent random
variables. The main results are presented in Theorems 1 and 2. Theorem 1, which can be
obtained easily by induction on Nfy, characterizes successive sampling in terms of expo-
nential waiting times. It is stated without proof.

THEOREM 1. Denote by y. the sum of characteristics y; over the entire population.
The random vector ‘
(_')’+ - R/N)5y=1
has the joint distribution of the N partial sums obtained by successively sampling the

entire finite population Uy.

Theorem 2 provides the basic approximation. It is proved by reference to Lemmas 3.1
and 3.2. In order to simplify the notation, we state and prove the approximation results in
terms of the successive remainders Ry, rather than in terms of the successive sums of
characteristics actually observed.

LEMMA 3.1(a) Given € > 0, there exists a constant K (a, b, €) for which

P{|T;— t;/| > K(a, b, ) nf'/*} < ¢ whenever n; > K*(a, b, ¢).

(b) Under VCSS, (1 — f)° < exp(—x,t;) = (1 — )%
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ProoF. (a) Let d be a scalar with | d| < 1. Note that
|E(X, ¢diltr+ d) — (1= fles| >[d|(1 = fles/2
and that
Var{y, ¢,;J,(t; + d)} < ae®(1 — f)c..

From Chebychev’s inequality, P{|T; — t/| > d} < 8ae’/(d’ns). Hence, we may take
K*(a, b, ¢) = 8ae’/e.
(b) Let g = exp(—ty). Because of the regularity assumptions,
1-fes>FTcg’=c.g’ 1-fles<Tog=c.g
Hence (1 — f) <g < (1 — f)°. The result follows from regularity condition (2.2).

LEMMA 3.2. (a) Let Zin=o{Jin(s)|s<tandj=1, ---, N}, then {Mn(t; s, m), Fin,
0 <t} is a martingale.

(b))  (Rr—r) — M(Tp b5, 50) = Cryr+ 3, (% — ¥ (TH[1 — exp{x (T — )} ].

ProOF. Assertion (a) follows immediately from the lack of memory of the exponential
distribution. Assertion (b) is an immediate consequence of the definitions (2.8), (2.9) and
(2.10).

THEOREM 2. Ifns— oo, then (Rf— rf) — M(ts; ty, yr) = Cfyr+ Op (o7 ( fn,c)_l/z).

Proor. Given ¢ > 0, choose K = K(a, b, ¢) as in Lemma 3.1, and write dy = Kny"/%
Take N large so that bdy < 1. Then let I* = I{j74/<q), and use Lemma 3.1 and Taylor
series to write
I*| Ry — (ry + M(ty; tr, 35) + CPI) | <T*| Ty = 4| |Z (3 — ¢ 3%, (&) |

+ I T = 4| X |y — gyrlx| (G + d) = J, (4 — d) |
+ I Ty = 41 X |y — o7 %7 (8 — d)e™
+ I"max—y<a| M(&; t, 35) — M(4 — d; &, ¥) |
=I*|Tr— 4| | @] + I*| Ty — 4] @
+ I'*| Ty — t|°Qs + I*max,| Q4(t) |
<d| Q|+ dQ: + d*@; + max| Q4(t) |.

Note that y; was chosen exactly to make EQ; = 0, and that EQ} = %0}
From Lemma 3.1, 1 — exp(—x,Z) > f/b, so that

0} > Y (3 — 7)) exp(—x,t)f/b.

Hence EQ; < 2Kbe’f/*o;, and dEQ;3 < Kb%e’f'/*o;.

Because M is a martingale, the martingale maximum inequality applies to ., once we
evaluate EQ3(¢; + d). For scalar ¢, Q4(t) is a sum of independent random variables having
zero mean. Because EQ5(¢; + d) < 3Kbf /%o, the lemma is proved.

4. Necessary and sufficient conditions. In this section, we state and prove analogs
to the Noether conditions which apply to both UCSS and VCSS. We first introduce some
additional notation which we will use in the statement and proof of the main theorem.

Let y; = y, — ¢, 5. Denote by R}, rf, ¥f, and o quantities as defined in (2.9), (2.4), (2.5),
and (2.6), with y; substituted for y,. Note that r; = r; — y/(1 — f)c.+, that y; = 0, and that
of = of.

Theorem 3 generalizes the theorem of Hajek (1960). Certain of the technical difficulties
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in the statement of the lemmas are necessitated by our need to prove the result for
sampling fractions close to unity.

THEOREM 3. Given regularity conditions (2.1) to (2.3), and that Nf(1 — f) — o, we
may conclude that the pair of statements

(4.1) o7 (Rs — ry) is asymptotically standard normal
(4.2) o7 (R} — r}) is asymptotically standard normal
is equivalent to the pair of statements

(4.3) ‘ o7 'CF—p 0

(4.4) 072 %, (% = 630 (L = D)y o 5i5hey = O

for all h > 0, where p, = exp(—x,ty).

Proor. From (2.7), nylies between (1 — f)N/a and (1 — f)Na, so that n;— . Note
also that, from (2.8),

(4.5) (R;— 1) — (Rj—r}) = C} 5.

Assume (4.3) and (4.4). From (4.3) and (4.5), we know that the limiting distributions
defined in (4.1) and (4.2) are identical, if they exist. From Theorem 2 and (4.3), the limiting
distribution of (4.1) is the same as that of Y, yjnB,, where B, = J,(t;) — p,, and p, =
exp(—x;ts). The latter sum is, however, a sum of independent Bernoulli random variables,
centered at expectations, scaled by the sum’s standard deviation.

The Lindeberg-Feller theorem assures us that the limiting normal distribution of the
sum is standard normal if, for each A > 0, the sums in (4.6) below converge to zero. See, for
example, Chung (1968, page 187).

07> ¥ E(y;B)L 5 >he)

(4.6)
=072 % (32 (1= P DL 1y 5h0y + (1= D)1= pyhopy )-

The latter sum converges to 0 for all 4 if and only if condition (4.4) is satisfied. Hence we
have shown that (4.3) and (4.4) imply (4.1) and (4.2).

We now prove the converse. Assume (4.1) and (4.2). Note that C} < 0. Because of (4.5)
and the convergence in (4.1) and (4.2) to identical limiting laws, (4.3) follows. Choose and
fix A > 0, and let

— -1
RY* = o7 X ¥ B/ (yp,1-p)>ho’)
and
— -1
RY =07 X ¥iB1(;y0,0-p)<hot) -

Because (4.3) is true, R%* + R% has a limiting standard normal distribution. Further, the
summands are stochastically independent, with variances bounded by 1. Hence, by the
Cramer-Levy theorem, we may assume without loss of generality that both summands
converge in law to normal distributions. See, for example, Feller (1971, page 525).

Because R%* has at most 2'/* atoms, we may conclude that its limiting law has at least
one atom of mass greater than 27'/%. Therefore, its limiting Gaussian law must place all its
mass at 0.

Hence, R} converges in law to a standard normal distribution. If R%* were not
eventually 0, R% would have variance bounded above by 1 — A, and would converge in law
to a standard normal distribution on some subsequence. This contradicts the Fatou lemma
applied to the variances of the R%. Hence R #* must eventually equal 0. The summands
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are therefore individually negligible, and so the Lindeberg-Feller condition must be
satisfied. Therefore, the sums (4.6) converge to 0 for each A > 0. It follows that condition
(4.4) holds, and we have shown that (4.1) and (4.2) imply (4.3) and (4.4).

Note that condition (4.3) is essentially relevant only to VCSS with very large sampling
fractions. Under UCSS, we always can make C/ identically 0 by choosing the sampling
fraction fy so that Nfy is an integer. Under VCSS, jy;/o; converges to 0 whenever
Nf(1 — f)* — o and the coefficient of variation of the y;/¢;’s is bounded away from 0. The
former condition is trivially established when the sampling fraction is bounded away from
1.

Note also, that as in Hajek (1960), if the sampling fractions fx lie between ¢ and 1— ¢,
for some ¢ > 0, then condition (4.4) is equivalent to max |y, — ¢;y¢|/os— 0. This condition
is the obvious analog to the Noether condition in the case of VCSS.
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