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JUSTIFICATION FOR A K — S TYPE TEST FOR THE SLOPE
OF A TRUNCATED REGRESSION!

By P. K. BHATTACHARYA
University of California, Davis

A K — S type statistic computed from sequential ranks has been proposed
in the astrophysics literature for testing the slope of a truncated regression.
There is an easy heuristic justification for the test in the nontruncated case,
but it fails under truncation. This paper extends the heuristic justification to
the truncated case and outlines a more complete proof of the asymptotic
property.

1. Introduction. A current controversy in cosmology has led to the problem of
nonparametric inference about the slope 8 of a truncated regression Y = Bx + V in which
only those (x, Y) are observed for which Y = y,. Any pair (x, Y) with Y > y, is not
observed, nor do we have any record of such pairs. This is different from censoring where
Y > y, is replaced by y,. For a more complete discussion of the model see Bhattacharya,
Chernoff and Yang (1983), where a modification of a nonparametric estimate of 8 based on
Kendall’s tau is developed.

An entirely different approach to inference in the truncated problem was proposed by
Turner (1979), using a Kolmogorov-Smirnov test based on sequential ranks. It is easy to
present a heuristic justification for the applicability of the Turner procedure in the
nontruncated case, but that justification fails in the truncated case. Nevertheless, a Monte
Carlo simulation of a special case surprisingly indicated that the test seems to be valid in
the sense that the null distribution of the test statistic is approximately that of the K — S
statistic Dj.

The object of this paper is to explain this apparent anomaly by extending the heuristic
justification to the truncated case, and to outline a more complete proof. Though our
discussion is focused on a K — S type test, our main result (Theorem 3) justifies the validity
of a whole class of tests as pointed out in a remark at the end of Section 4. However, power
and efficiency comparisons of these tests are beyond the scope of our discussion.

2. Difference between the nontruncated and truncated cases. First consider
the nontruncated case and suppose the data (x;, Y1), - -+, (x, Y,) are arranged such that
x; < -+ < X, (We assume, for simplicity that the x; are distinct), and the residuals from
the true regression are i.i.d. with an unknown continuous cdf ¥. Then under Hy: 8 = 8o >
0, the residuals

Vi=Y,—Box,, 1=i=n

calculated for the hypothetical regression should exhibit the i.i.d. behavior, which can be
tested on the basis of sequential ranks R; of V, among (Vi, ---, Vi_1, V;) using the well-
known fact (cf. Bhattacharya and Frierson, 1981) that the sequential ranks Ry, ---, R,
from i.i.d. observations are independent of each other and of the order statistics, and that
R, is uniformly distributed on 1, ..., i. Hence the quantities ¢ = (2R; — 1)/2i are
independent and approximately uniform on (0, 1) for large i, so that if H., (¢) is the empirical
cdf of &1, - -+, &, then for large n, the empirical process X, (¢) = Vn {H,(t) — t} should
behave like the Brownian bridge B*(¢) under Hy. In particular, the asymptotic cdf of T,
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= Supo<i<: V1 (H,(t) — ¢} should be the same as that of the K — S statistic D}, viz., 1 —
exp(—2x%). On the other hand, if the true 8 < B,, then V, would tend to be smaller than v,
for i > j, the R, would tend to be small, and X, (¢£) would tend to attain larger values than
B*(t), causing T, to be relatively large. Thus 7', may be used as a test statistic for testing
H,.

The Turner procedure is an adaptation of the test statistic 7', to the truncated case.
Now the sequential ranks have to be modified in view of the fact that even under Hy, the
independent residuals are not identically distributed, but V, = Y, — Box, has cdf
F(v)/F(w,) for v < w,, where

w, = Yo — Box,

is the truncation point for V; and w, > --. > w,, ie., successive observations are
progressively truncated. For j < i, V, has a larger range of values than V;, and a comparison
between V, and V, is meaningless when w, < V; < w;. Thus we say that for j < i, V, is
comparable to V, only if V, = w, and subject to this condition, V, and V, are i.i.d. Hence,
Turner uses the modified sequential ranks {R,} by ranking each V, among those V; for
which j is in the set of integers

Si={j;V=w, 1=j=<i},

of which the number of elements N; is a random variable. Letting H.,(t) denote the
empirical cdf of

& =(2R,—1)/2N;, 1=<i=<n,
the test statistic now becomes
T, = supo<i<i Vn {H,(¢) — t}.

From the joint behavior of {INV,} and {R,} established in Theorem 1, it is seen that
for given {N,} each ¢ has a conditional uniform distribution on 1/2N,, 3/2N,, ---,
(2N, — 1)/2N;, but due to the randomness of the sets S;, they are no longer independent.
This invalidates our heuristic argument for the nontruncated case. Can the almost uniform
distribution of & given {N,} suffice to permit us to extend the result to Turner’s statistic
T.? To do so will require, in Section 4, the consideration of:

ConDITION A. lim inf, . {miny <. " **® Y, F(w;)/F(w,)} > 0 for some § with
0 < 8 < % and some sequence {k,} — o such that n™"?k, — 0 as n — o.

Condition A implies that the rate of progressive truncation is not too severe. This
guarantees that {N,} increases sufficiently fast with high probability, so that the granular-
ity of the £, is negligible in the limit. A key theorem on weak convergence to the Brownian
bridge in the non-independent case (Theorem 4) is presented in the appendix.

3. Conditional uniformity and independence of {£;}. We recall that N, is the
number of V, comparable to V; for j < {, and that R, is the rank of V, among these N, V’s.
Theorem 1 states that the R,, and hence the &, are conditionally uniform and independent
and that the N, form a relatively simple Markov Chain. Let U, = F(V,) and a, = F (w;). We
shall prove:

THEOREM 1. The sequence {N,, 1 <i < n} is a Markov Chain with N; = 1 and

a k—1 a m—k+1
P{Nsi=k|N,=m)} = < m )(—*-‘) (1— ’“) , 1sk=m+1,

k—1 a, a,

and for given {N.,}, the R, are conditionally independent with R, uniformly distributed
on{1,2, .-.,N,}. )
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The proof of this theorem is simplified by use of the following easy lemmas which
require some additional notation. For j = 1, 2, ..., N;, let U} be the U = F(V) value
associated with the jth element of S,, i.e., the jth V which is comparable to V,. Let R; ;i be
the sequential rank of U}, among U}, Us, - - -, Uf. Clearly,

RLN‘ = Ri.

Finally let %, denote the collection, N;, S,, and {U;:j < i, j £S;}. Then Lemma 1 is
immediate.

LEMMA 1. Given %, the random variables U}, U, - - -, Ui, are conditionally ii.d.
and uniform on [0, a,].

Using the property of sequential ranks and that of conditional expectation, we then
have:

LEMMA 2. P{R,=r|%,Ru, - Ron_1} =N;'=P(R,=r|N.},1=r<N..

To describe the N, process, we observe that N,.; — 1 is the number of the N; U}, which
are less than or equal to a,.,. Applying the properties of sequential ranks again, it follows
that V.., — 1 has the conditional binomial distribution implied in:

LEMMA 3. P{Nl+1 = k' (gi,Rzl, ey, Rz,N,—l, Rt} =

N: PR a N,—k+1
e

Qa, a,

Lemma 3 implies the Markov chain part of Theorem 1. The proof of Lemma 3 extends
to yield:

LEmMMA 4. The conditional distribution of (N;s1, -+, N,) given (%,, R, - -- Ry-1,
R.)may be expressed in terms of N,, a., @41, -, Qn.

Proor oF THEOREM 1. The crucial point is that (N, Ry, N,, - - -, R,_1, N;) is determined
by Z = (%, Ru, ---, Rin-1). Hence Lemma 2 implies that given (N, Na, - - -, N;), R; is
uniformly distributed on 1 to N, and independent of (R;, Rs, ---, R._:). It remains to
demonstrate this behavior conditional on {N,:1 =i =< n}.

But Lemma 4 implies that (N;+1, - -+ N,) and (Ry, - - -, R;) are conditionally independent
given (N, Nz, --., N,). Then the conditional distribution of (Ry, --- R:) given (Ny, ---,
N,) is the same as that given (Ny, - -, N,). Hence, given (N, Nz, ---, N,), R, is uniformly
distributed on 1 to N, and R, is independent of R, R,, - - -, R;_,. It follows that the R; are
conditionally mutually independent given {N,}, and the theorem follows.

4. Granularity and the main result. If it were possible to neglect the granularity
of the distributions of the &, X, (t) = n'/*{H,(t) — t} would converge weakly to the
Brownian bridge on [0, 1] and Turner’s test statistic 7, would have the limiting K — S
distribution.

In the Appendix, Theorem 4 is established. It implies the convergence of X, subject to:

ConprTiON B. n72 Y% N;' 5,0 as n — o,

which is a restriction on the granularity of the £,. We shall prove Theorem 2 which states
that Condition A implies B. The weak convergence of X, in Theorem 3 and of the K — S
type statistic T, follow immediately, yielding our desired result.

The reader should note that, for simplicity of notation, there has been some abuse of
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notation. In stating Condition A, we should have noted that the x, and hence the w, and a,
= F(w,) may depend on n. A more complete notation would use .., W»; and a,; for 1 < i
=n.

THEOREM 2. Condition A implies Condition B.

ProoF. Since N, = 1, the events {N, = i"*"/% k, + 1 =i =< n} implies
n‘l/Z Ziz N:l < knn_1/2 + 2(1 _ 6)—1”/*1/2 {n(1-8)/2 — k’(ll*fs)/Z}’

which can be made less than arbitrary ¢ > 0 for %, and § as in Condition A, making n large.
Hence for large n,

Pn 2SI Ni'= ¢} < $% o1 P{N, < {4972},

Now N, = Yi_i 1{V, = w,} with E(N,) = ¥j-1 ai/a;, so that by Theorem 1 of Hoeffding
(1963), P{N, < i"*?/?} < exp(—2b%/i), where b, = E(N,) — i"*®”* for k, + 1 < i < n can be
made larger than i'/**°« for some a > 0 by Condition A. Thus as n — o,

P{n V21 N = e} = T +1 exp(—2a%%) < J exp(—20°x”) dx — 0.

k

n

Applying Theorem 4 of the Appendix we have:

THEOREM 3. Condition B implies that X,,(t) = n'*{H,(t) — t} converges weakly to
the Brownian bridge B*(t) in Skorokhod topology on D[0, 1] as n — oo.

A proof of Theorem 3 is outlined in the Appendix.
From Theorems 2 and 3 it follows that under Condition A, the limiting distribution of
T, = supo=:=1 n"/2{H,(t) — ¢t} is that of the Kolmogorov-Smirnov statistic D;.

REMARK. If instead of the K — S statistic 7', we want to use some other continuous
function g(X,(-)) of the empirical process, then such a statistic is also asymptotically
distributed as g (B*(-)) by Theorem 3. For example, linear rank statistics are seen to be
asymptotically normal.

5. Acknowledgement. The author remains grateful to Herman Chernoff for posing
the problem, pointing out the nature of difficulty, and finally suggesting substantial
changes in the original version of the paper for improved presentation.

APPENDIX

We first state an extended version of Theorem 15.6 of Billingsley (1968) which is needed
for the weak convergence of the empirical process X, (£) = n'/*{H,(t) — t}.

Let {Y,}, Y be random functions in D[0, 1] and {7, } a sequence of random vectors of
arbitrary dimensions. In our case, 7, = (N1, - -+ Ny).

THEOREM 4. Suppose that the finite-dimensional distributions (fdd) of {Y.} con-
verge to those of Y and that Y is left-continuous at 1 a.s. Suppose further that
(1) P{Ya(®) = Ya@) | =\ | Ya(te) = Ya@®) | = A 1n} S XN {@nlts) — @nlt1)}™

forti <t =<t and n = 1, where y = 0, a > %, and ¢, are a.s. nondecreasing random
functions (depending on 7,) converging pointwise in probability to a continuous function
pon[0,1). Then Y, —. Y.

Proor. Proceed as in Billingsley’s proof to arrive at a conditional counterpart of his
(15.30) with ¢, in place of F. To complete the proof, use the fact that by the hypothesis of
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the theorem, ¢, actually converges uniformly in probability to ¢ which is uniformly
continuous.

REMARK. The probability inequality (1) is implied by the moment inequality
(2) E{|Ya(t) = Ya(t)]"| Ya(ts) = Ya(®)] |10} = {@alte) — @ (1) )™

Proor or THEOREM 3. Let 1, = (Ni, --- N,), I, the indicator function of [0, #] and
Je(&, M) = L(&) — P{& < ¢t|n,). Then X, (t) = Y. (t) + Z,(t), where

) Yn(t) =n""2 2'11 Jt(gn Tln), Zn(t) = n 2 2'11 [P{gl = tln'l} - t]

By Theorem 1 and Condition B, sup|Z,(t)| < n”"* ¥ (2N,)™" —, 0 and it is enough to
show that Y, (¢) =, B*(¢t).
It is moderately routine to show that

TINYR(t) =n" 2R Ymi N, Iy (£, me) =072 YR $ >0 N(O, 6°),

where ¢ = Var{}{ A\;B*(t,)}. The main thing is to observe that ¢2 = n™' Y7 Var(;| n.)
—, o2 by Condition B and use the Berry-Esseen bound for the convergence of P{n™'/?
X L= oy | na}.

To complete the proof we show Y, satisfies the conditions of Theorem 4 with y = 2, «
=1, .(t) =n"' Y P{& < t|n.) and ¢ (t) = t. Inequality (2) is established by easy but
tedious algebra which we omit, and sup | . (¢) — @ (¢)| = n' ¥7 (2N;)~! =, 0 by Condition
B.
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