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SHEFFER POLYNOMIALS FOR COMPUTING TAKACS'’S
GOODNESS-OF-FIT DISTRIBUTIONS"

By HEINRICH NIEDERHAUSEN

University of Toronto

How often does the empirical distribution pass over an acceptance band
around the hypothetical distribution function? Sheffer polynomials are applied
to derive the exact distribution of this goodness-of-fit distribution and its two-
sample analogue. This method leads to new proofs and extensions of Takacs’s

(1971) results.

1. Introduction and results. Let Xj, ..., Xy be iid. random variables with un-
known continuous distribution function and empirical distribution function Fx(x) =
Y2y 1 x (x). The well-known one-sided Kolmogorov-Smirnov test rejects the null
hypothesis that F is the true underlying distribution function, if

(1) K* =sup.{F(x) — Fx(x)}

is larger than a certain critical value a/M, depending on the significance probability «. In
other words, the null hypothesis is rejected if Fx + a/M intersects F.

In 1939, N. Smirnov introduced the test statistic o(M, a, 1) which counts the number
of intersections between F and Fx + a/M. He also derived the asymptotic distribution of
o(M, a, 1). In 1971, L. Takacs generalized o(M, a, 1) to o(M, a, c) by counting the number
of intersections between cF and Fx + a/M. Hence,

o(M, a, c) = Y20 Lop(x, .crx, (@ + @)/ M),

where F (Xo.») = 0 and F (Xa+1.m) > 1, such that the last term (i = M) always counts an
intersection if c = 1 and @ = 0.

In goodness-of-fit testing, o(m, a, ¢) can be used in two ways. One method
means choosing a (small) positive integer s and rejecting the null hypothesis if Ky =
sup {a|o(M, a, ¢) = s} is large. For ¢ = 1, K{ equals K* (see (1)). The other method
rejects the null hypothesis if 6(M, 0, 1) is too small. M. M. Siddiqui (1982) called this test
a matching test. Under any continuous alternative G, the power Il of the matching test
depends only on GF™!

II1=Pg(6(M,0,1) <s,) =1— Pg{F(X..m) < i/M < F (Xi+1. ») for more than s, of the
subscripts i =0, --., M}
=1-P{U, 4= GF Y (i/M) < U,4+..u for more than s, of the

subscripts i = 0, ---, M},

where U, --., Uy is a random sample from U0, 1), Up:ar = 0 and Upsr.pr = 1.
In general, there is no “closed form” for I, but if
0 for 0 =i < max(0, —a),
GF'(i/M) =1 (i + a)/(cM) for max(0, —a) < i < min(M, cM — a),
1 for min(M,cM — a) <i< M,

then Il = Pr(o(M, a, ¢) < s,), the null distribution of o. Siddiqui (1982) found that
limy—oEg{a(M, 0,1)/VM} equals the integral of f(x) = {2mx(1 — x)}~"2 over the set
{u €0, 1]| GF (u) = u}.
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Thus, the matching test is consistent if this set has Lebesgue measure 0. The function
f(x) gives most of its weight to the tails, and therefore the matching test has only small
power if F and G are equal (or very close) on the non-zero parts of the tails (cf.
Niederhausen, 1982). Consequently, we proceed analogously to Rényi-type statistics and
place a window on the order statistics, defining

o(M, a, ¢; b, B) = Y26 Liop(x, sy.er (X (G + @) /M)
for any pair of bounds & and B such that
(2) max(0, — a) = b < B = min(M, cM — a).
If the bounds & and B fall onto the extreme values in (2), then (M, a, c; b, B) =

(M, a, c). Takacs (1971a, Theorem 2) proved that for these extreme bounds and for a =
0 the null distribution of ¢ can be obtained from

P{o(M, a, c; b, B) > s}
__m SE,. (cM — a — j)M~ b (@+j—1i)™
(eM)™ =’ (M=) (=D —s)!
for all 0 = s = M. The expression in brackets [ ] equals one if ; = 0. In the same theorem

he also showed that for a = 0 and extreme bounds b and B the double sum (3) simplifies
to

(3 [ *{s(s + 1) = 3}]

P{o(M, a, c; 0, B) > s}
_Ml(s+a) oy (cM—i—a)”" (i+a)"

4

(M)~ (M- i) i—s)
M 1
= (C_M‘); {m (CM) (S + a)
) w (M—i—a)" (i+a)"
@ T M =) i—s)!

The only reason for this simplification is that b = 0. A similar result holds for the case B
= M as can be seen from the following symmetry relations

(5) P{o(M, a,c;b,B) >s} = P{o(M,(c—1)M—a,c; M— B,M — b) >s)}.

More references for special cases of (4) are given in Takacs (1971a).

We want to apply a recursive method to derive these distributions, using only very
simple properties of Sheffer polynomials. The proofs are just another example for an
approach which was applied in Niederhausen (1981) to Rényi type distributions. (For
brevity, I shall frequently refer to this paper, blending Takacs’s and my own notations for
the convenience of the reader.) As usual, each approach yields its own generalizations
which can be stated as follows.

THEOREM 1. Equation (3) holds for any a, b and B which satisfy the condition (2).
Equations (4) and (4’) hold if b = 0.

The advantages of the recursive method are even more apparent in the two sample
case. Let Yy, .-+, Y» be a second sample of iid. random variables with empirical
distribution function Fy. Takdcs (1971b) investigated a test statistic which counts the
number of subscripts j where

(6) Fy(Y,-1.~) = Fx(Y, ) + a/N < Fy(Y;.n).
If N = pM for any positive integer p, then (6) is equivalent to
(7) J—1=pMFx(Y, n) + |a],

and we can assume that a is an integer. A subscript j can be counted in (7) only if it is of
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the form j = pk + 1 + a. Denote by n(M, N, a + 1; b, B) the number of subscripts b < %
=< B where

(8) k= MFX(ka+a+1:N)-

Thus n(M, pM, a + 1; b, B) = n.(M, pM) in Takécs’s notation, if the window bounds fall
on the extreme values

9) b = max(0, [—a/p]) and B = min(M, | (N — a — 1)/p]).

Takéacs (1971b, Theorem 1) derived, for a =0, N = pM and B as in (9), the distribution of
7 under the null hypothesis that both samples have the same continuous distribution
function

P{n(M,N,a+ 1,0, B) > s}

M+ N\ w s(p+1)+a+1
(10) _p< M ) TR M= (p+ ) +a+1
J+ip+N—-pM—-—a—-1\[(M—-j)p+1)+a+1
’ J M-s—j
(10/) =ps (M};;N) {(]watlj) _ /IZBB_I _..}

for all 0 < s < B. More can be shown:

THEOREM 2. Let a and p be integers, p > 0 and a = 0. (10) and (10’) hold for all N
=M and 0 < B=min(M, |(N — a — 1)/p|). If b and B lie between the extreme bounds
(9), then, for any integer aand0<s=<B—-b

P{n(M, N, a+1; b, B) > s}

-1
(M+N M+N-j-pi—a—1
e (MEN) s (N e

3

o[+ DG -0 +a\fi+ip\sip+2s+2)—is—1i
- J-i i—s iip+s+1)

where the fraction equals 1 if i = 0.

Use the symmetry relation (see (2.7))
P{n(M,N,a+1;b,B)>s} =P{n(M,NN—pM —a; M — B, M — b) >s)

to obtain the analogous formulas to (10) and (10’) if B = M.

A more balanced treatment of the two samples can be achieved by counting the number
of subscripts k£ where either MFy (Y +q+1:n) = k as in (8) or NFy(Xe.n) = pk + a + 1.
The exact distribution is even easier to derive than for n, and the asymptotics are equally
simple (Niederhausen, 1982).

The existence of closed expressions for the distribution of ¢ and 7 is due to the linearity
of the sequences ((i + a)/(cM)) and (pk + a + 1). Exact distributions can be obtained for
general sequences by simple algorithms. Such algorithms are used in Niederhausen (1982)
to study the exact efficiency of the one-sample matching test versus the one-sample two-
sided Kolmogorov-Smirnov test.

References to earlier work on this distribution (for equal sample sizes) are given in
Takacs (1971b). In addition, we refer to the papers of Anega and Sen (1972), and Saran
and Sen (1983).

1. Proof of Theorem 1. Denote the Lebesgue measure on R* by A*. We write
A{x; s} short for \*{0=<wy < ... =wp < x|wi< (i + a)/cM) < u;,, for more than s of the
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subscripts i = b, -+, B}, where uo =0, u4+1 = 0,0 <=s=B — band k= b + s. Thus,
(1.1) P{o(M, a, c; b, B) > s} = MIA\M(1; s}.

It will be convenient to set a, = (i + a)/(cM).
The following recursions are obvious. For all x > min(a;, ag)

AM{x;s) =YD AN 0=y < ++- =u, < a;|u, < a, < u,+, for
(1.2) exactly s + 1 of the subscripts i = b, -+ -, j}(x — a)* 7/ (k — j)!
= Y (M{a; 8) — M{a; s + D — a)* ™/ (k = ),
and for s = 1 and k& = B, using (1.2),
1.3 Nlaw 8) = Tibenr [M{a; 8 — 1) = N{a;; )11k = J)/ (M) (k = j)!

1
= m}\’“’l{ak; s—1}.

Equation (1.2) shows why we are mainly interested in those A*{as; s} where b + s <k =<
B. Define a double sequence (£7)n,s=0 of polynomials by

(1.4) thop-s(x) = Yi-srs N {aj; 8} — M{ay; s + ](x — a))* 7/ (k = j)!
for all k = b + s and for all x. The following properties can be easily verified.

() ti_s_s(x) =A*{x; s} forallx > arand b+ s <k < B, (ii) deg(ts) = n,

e d .

(iii) == t7(x) = th-1(x), (v) ta(x) #0.

dx

The last two properties imply that (¢7,).=0 is a Sheffer sequence for the differential operator
D (Niederhausen, 1982, page 940).

It is essential for our proof that ¢5_,_,(x) and A*{x; s} also agree at x = a, for all b + s
=< k < B. To see this, first note that accordant to (1.3) fors =0

1
(1.5) AMap; s + 1) = ;ﬂtz_l_b_s(ak).

Next, compute t5_,—,(az) from (1.4)
ti-o—s(ar) = YiZbes [N {ay; 8} — NM{a; s + B[k — 1)/ (M) /(k — )
+ M {an; s} — AN {ap; s+ 1).

The sum equals t}_1-5-(az)/(cM) and cancels against the last term on the right hand side
because of (1.5). Hence

1
(1.6) tios—s(ar) = N{an; s} = —= tiZh—s ().
) cM

Equation (1.6) also shows that the Sheffer sequences (¢},).=0 and (¢5~'/(cM)).=0 agree at
one point for each n. Therefore, they are equal everywhere (Niederhausen, 1982, Lemma
A.2), and we get forall b + s<k < B and x = a,

ANe(x; 8} = tiop—u(x) = (M) *th—p—s(x) = (cM)\*~*{x; 0}
1.7) =(M)"N*0=w=- - Swp-,=x|w= a = u,. for

atleastoneb<j=<k — s}

) xk—s
= (cM) {m - Sk—s(x)} ,

where s;—,(x) =A**(0=suy <.  Sup-y=x|w >a,forall b<j =<k — s}. (sn)n=0 is the
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Sheffer sequence for D with roots in

_fo i=0,...,b—1
"Sli+a)/(eM)  i=b

which frequently occurs in exact Rényi-type distributions. It is well known (cf. Niederhau-
sen, 1982, Theorem A.1) that

] ! — (1 k—s—1—1
sis() =y WHDNEMNT st ayp(epyy EZEF QD))
(1.8) ! h—s—3)
xkib k—
N

From (1.7) and (1.8) we get
Ji+a) (Yt
i! (G—s—=1i)

M{ay; s} = s(eM)7 Yi=;

Summing up the differences accordant to (1.2) yields (3) from (1.1). If B = M, we obtain
AM {1; s} directly from (1.7) and (1.8), proving (4) and (4’) via symmetry relations (5).

2. Proof of Theorem 2. Denote the combined sample X, - - -, Xy, Y1, - -+, Yy by V1,

» Varen. It is a standard technique to represent two-sample rank statistics by lattice
path problems (cf. Mohanty, 1979). We construct a path from the ordered combined
sample Vi, -+, Varen a+n by going to the right in the ¢th step, if V, y.n belongs to
the X-sample, and going upwards, if V, s, v belongs to the Y’s. This path ends at the point
(M, N), and we denote the set of all such paths by 7 (M, N). Under the null hypothesis
M+ N

M

The condition (8) 2 = MFx(Y,x+q+1 n) means that the corresponding path reaches the
point (%, pk + a + 1) in its (pk + a + 1)th vertical step. Denote by D(k, m; s) the number
of paths in 7 (k, m); which (i) go upwards during their last step, and (ii) reach the line y
= px + a + 1, where b < x < B, more than s times from below. Hence

each path occurs with probability 1

2.1) P((M, N, a+1; b B)>s)= DM, N + 1; s)/<M+N),

It will be convenient to set a, = pi + a + 1.
The following recursions are obvious. For all m > min(a:, ag)

: . k—j+ 1-
(22)  D(k, m;s) = Y4B D, a/;s)—D(J,a;;S"‘l)]( =7 km_J a’)r

and for s = 1 and % < B,using (2.2),
. . +1)k—Jj)—1

Dk, @3 8) = $4bvs s DU, @3 s = 1) = DG, a; s)](‘p sl )
(2.3) J

=pDk—-1a.+1;s—1).

From now on, everything is completely analogous to the proof of Theorem 1. A Sheffer
sequence—but now for the backwards difference operator V—can be constructed from the
right hand side of (2.2) which is equal to D(k, m + 1; s) forallm > a,and b+ s < k < B.
It follows from (2.3), that equality holds also for m = a. The uniqueness property of
Sheffer polynomials shows again that (2.3) must hold for all m = a, if b + s < k < B.
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Hence,
D(k,m; s) =p°D(k —s,m + s; 0)

(2.4) = p*#{paths in .7 (k — s, m + s — 1) which reach the line

y=px+a+1 (x = b) from below}

=ps{<k-;'fs_l>—s,,_,,(m+s—1)},

where s;_,(m + s — 1) = #{paths in 7 (k — s, m + s — 1) which stay strictly over the line
y=px+a(x=b)}.
(Sn)n=0 is the Sheffer sequence for V with roots in

V={—1 foralli=0, .-+, b—1

pi+a foralli=bd

which also occurs in Rényi-type distributions. It is well known that (cf. Niederhausen,
1981, (3.8); Mohanty, 1979)

Sh—s(m + s —1) = Yo <l+piz+a)

2.5 .
25) m+s—1—-pi—a k—s—1

k+m-—1 s
=< k—s >_Zlk=b"'-
From (2.4) and (2.5) we get

D(j, a5 s) = p* ¥i=} (

.m+s—1—p(k—s)—a<k+m—2—i—pi—a>

i+pi+a s+ ps (p+1(y—-1i)—1
i pi—i)+s J—s—i '

Summing up the differences accordant to (2.2) yields (11) from (2.1). If B = M,

-1
P{n(M, N, a + 1; b, M) > s} =ps<M+ N) {(M tf) — Sm—s(N + s)}

M M
_ (M+N\[(M+N g (i+pita
=p M M'—S 1=0 l
(2.6) .N—pM+s+ps—a M+N-i—-pi—a-1
N+s—pi—a M-s—1i

-1
= ps<MA-; N) {Z;s oo

From B = M follows that pM + a + 1 < N. Therefore, we could not obtain Takacs’s
(1971b) original result, Theorem 1, because there N = pM and a = 0 is assumed. The
standard trick in such a situation is to turn the paths upside down and to run through
them backwards. Each point (i, j) is now transformed into (M — i, N — j), and we
are counting the number of paths in 7 (M, N) which leave the liney =px + N — pM — a
—1(M — b=x=<M - b) in a vertical step more than s times. Hence, they reach the line
y=px+ N—-—pM—a (M- B =x=< M — b) more than s times from below, and can
therefore be counted as before

27 Pn(M,N,a+1;bB)>s}=P{n(M,NN—pM—a;M— B,M— b) > s}.
Equation (10) is obtained from (2.6) in this way.
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