The Annals of Statistics
1983, Vol. 11, No. 2, 370-371

H. MaLcoLm HubpsoN
Macquarie University

I shall restrict my comments to multiparameter estimation of Poisson means. The
discussion is then directly applicable to Monte Carlo simulation (for an example, see Efron
and Morris, 1975) and to contingency table data.

Log-linear models may be used in tables to smooth cell counts. Consider, for instance,
a two-dimensional contingency table in which the counts X,, have independent Poisson
distributions with means p,,, fori=1, ... ,I, j=1,...,J. Any simple model constraining
means, such as u,, = a,f),, fori =1, ..., I, j=1, ..., J, with 8; = 1, allows one to
estimate the cell means {yu,,} with increased precision, gained through the reduction in the
number of unknown parameters, in this case from IJ to I + < — 1. When cell means do not
conform exactly to a constrained model, compound Bayes estimators based on the ideas of
Robbins (1955) and Maritz (1969) may prove more suitable. Related methods evolve from
Stein’s 1961 result concerning estimation of means of Normal random variables and from
his subsequent introduction of the identity which underlies the authors’ work. Stein’s
methods are effective when means do not depart substantially from a simple model. The
estimators adapt automatically to such deviations. Thus the theory advanced in this paper
has spinoffs related to resistance of estimation procedures to model misspecification.

The criterion of risk minimaxity adopted by the authors is seen in this light as an
extreme form of resistance, but the efficiency of the estimator when the model is appro-
priate is another important consideration. The development of efficient, resistant proce-
dures for Poisson data is difficult, even when the corresponding methods for Normally
distributed data are well understood. The subject remains a stimulating area for research.

The authors are thus to be complimented on formulating a comprehensive theory which
both unifies many previous results for differing loss structures and simplifies the determi-
nation of risk properties of a stipulated estimator. Theorems 3.1 and 3.2 appear to be the
key results for the Poisson distribution (though, as noted in the paper, they apply also to
other cases). The ability to assess estimators which shrink towards a set of prior values is
important, and gives insight into the behaviour of similar estimators in which the “prior”
values are data determined. (The risk properties may not change much when one substi-
tutes stable data determined values for the constant lambdas). Therefore, the shrinkage
towards the very special origin, A; = - -+ = A, = X, in Theorems 4.1 and 4.2 makes the
results of Section 4 appear less generally applicable.

Although Theorems 3.1 and 3.2 add to our toolkit, the paper fails, in my opinion, to
deliver much of substance in the way of applications. There seems to be little evidence
that guesswork has been eliminated. The simulation results of Table 2 reveal that the
estimators considered have very little to offer. If variables X; represent the number of
events of different kinds occurring in parallel Poisson processes in a unit interval of time,
the risk reduction is equivalent to no more than an extension by 20% of the time period in
which counts accumulate. This is especially poor when it is realized that shrinking is being
directed to almost perfect prior estimates when 8; and &; are being used. The other
estimator 8, also shows little improvement and is not suited to shrinkage towards an
arbitrary set of initial estimates. The failure of . to achieve material risk reduction can be
illustrated by applying it to the data of Hudson and Tsui (1981, Section 4). Whilst a
transformation of the data permits normal based methods to be used to achieve a squared
error reduction of 46%, the estimator 8, achieves a reduction near 0%! By contrast, Hudson
and Tsui introduced an estimator which is uniformly superior to X in the approximate
sense of Hudson (1981)—in which 2(X) is replaced by 2*(X)—and showed that it achieves
a squared error reduction of 54%. This approximation is satisfactory in many circumstances,
and particularly when the means are large. It then provides a flexible, and much more
efficient, class of estimators than those considered by the authors.
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By considering the risk reduction when means are large, a restrictive assumption made
in this paper is exposed. With large means a variance stabilizing transformation such as
the square root suggests the appropriate form of estimator for large X (see Brown, 1979).
The result of limiting the effective sample size, by the choice N(X) in (2.7), to be the
number of observations which exceed the corresponding prior value is to severely reduce
the possible risk reduction with moderate to large means. The Stein estimator for
transformed data uses the full sample size. A corresponding choice when smaller counts
are being considered would set N(X) to be the number of non-zero counts. The choice
(2.7), as with the choice of d; in (2.9), greatly facilitates the mathematical argument of the
paper at the expense of forgoing the potential for substantial risk reduction.
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